
On Fine-Grained Geolocalisation of Tweets and
Real-Time Traffic Incident Detection

Jorge David Gonzalez Paulea,∗, Yeran Sunb, Yashar Moshfeghic,∗

aSchool of Computing Science, University of Glasgow, UK
bUrban Big Data Centre, University of Glasgow, UK

cDepartment of Computer & Information Sciences, University of Strathclyde, UK

Abstract

Recently, geolocalisation of tweets has become important for a wide range of
real-time applications, including real-time event detection, topic detection or
disaster and emergency analysis. However, the number of relevant geotagged
tweets available to enable such tasks remains insufficient. To overcome this lim-
itation, predicting the location of non-geotagged tweets, while challenging, can
increase the sample of geotagged data and has consequences for a wide range of
applications. In this paper, we propose a location inference method that utilises
a ranking approach combined with a majority voting of tweets, where each
vote is weighted based on evidence gathered from the ranking. Using geotagged
tweets from two cities, Chicago and New York (USA), our experimental results
demonstrate that our method (statistically) significantly outperforms state-of-
the-art baselines in terms of accuracy and error distance, in both cities, with
the cost of decreased coverage. Finally, we investigated the applicability of our
method in a real-time scenario by means of a traffic incident detection task. Our
analysis shows that our fine-grained geolocalisation method can overcome the
limitations of geotagged tweets and precisely map incident-related tweets at the
real location of the incident.
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1. Introduction

In recent years, social media services have gained increasing popularity
within the research community. Specifically, Location-Based Social Networks
(LBSN) [1], such as Twitter, have become very popular as its data is gener-
ated in real-time and can contain spatially fine-grained geolocations (i.e. at a
street, building or neighbourhood level). Such characteristics has provided new
opportunities for a broad range of real-time applications such as real-time event
detection [2, 3, 4, 5, 6, 7, 8], sentiment analysis [9], urban planning [10], topic
detection [11], and disaster and emergency analysis [12, 13, 14].

Several of aforementioned applications depend on the availability of suffi-
cient fine-grained geotagged tweets. However, since only a very small sample of
tweets in the Twitter stream (1% to 2%) contain geographical information [15],
the effectiveness of such applications is limited. Thus, to increase this sample, ge-
olocating (or geolocalising) non-geotagged tweets has become an important yet
challenging task. In this paper, we tackle this problem by presenting a method
for geolocalising non-geotagged tweets at a fine-grained level1. To better ge-
olocalise tweets, we propose a novel approach that combines evidence gathered
from geotagged tweets that are similar based on their contents to a given non-
geotagged tweet.

Other approaches have been proposed in the past to provide fine-grained
geolocalisation of tweets; e.g. [16, 17]. In these works, for each predefined geo-
graphical area an aggregation of the geotagged tweets belonging to that area is
performed by concatenating their texts into a document. Then, a vector repre-
sentation of that area is created from the generated document using a bag-of-
words approach. To geolocate a given tweet, the most similar area to that tweet
is returned based on its content similarity using the generated vectors.

Although approaches mentioned above have provided important insights on
how to tackle fine-grained geolocalisation of tweets, due to the noisy nature of
Twitter data [18], such an aggregation method can diminish the importance of
infrequent yet relevant geotagged tweets and affect the accuracy of matching
algorithms, decreasing the accuracy of the geolocalisation. In addition, by ag-
gregating the tweets into a single document, the important evidence contained
in the meta-data of the tweet is lost. In contrast to previous works, we avoid
aggregating the geotagged tweets and treat each one individually as a single
document, thus representing each area as multiple bag-of-words vectors. This
way, we give each tweet the same chance during the matching process and enable
the use of evidence in its meta-data for better geolocalisation.

To tackle the problem of fine-grained geolocalisation of tweets, we adopted
a weighted majority voting algorithm. We estimate the geographical location of
a given non-geotagged tweet by collecting the geolocation votes of the content-
based most similar geotagged tweets to that tweet. In this paper, we refined our
previous work [19] by incorporating a new weighting function that combines

1Specifically, fine-grained locations are defined as squared areas of size 1 km in this work
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the evidence gathered from the geotagged tweets. These weights are calculated
based on the credibility of the users of the geotagged tweet and the degree
of content similarity with respect to the non-geotagged tweet. The credibility
of the user is calculated as a score that represents the user’s posting activity
and its relevance to the physical location they are posting from. To validate
our approach, we then performed an exhaustive study across three test collec-
tions, which contain tweets gathered from two different cities. Our experimental
results showed (statistically) significant improvements regarding accuracy and
reduction of geographical distance error compared to baselines.

Finally, we extend our previous work [19] by studying the applicability
of our fine-grained geolocalisation approach in a real-time scenario. We inte-
grated our approach into a real-time traffic incident detection task for geolocal-
ising incident-related tweets. Our analysis demonstrates that our geolocalisation
method can overcome the limitations of geotagged tweets, mapping more pre-
cisely the incident-related tweets to the real incident locations.

The contributions of this paper can be summarised as follows:

• First, we proposed a novel approach for fine-grained geolocalisation of non-
geotagged tweets, which adopts a weighted majority voting algorithm to
combine evidence gathered from the content-based most similar geotagged
tweets.

• Second, we perform an exhaustive evaluation of our approach on three
test sets of geotagged tweets posted on two different cities, including a big
dataset gathered from one of the major cities in the USA (i.e. New York).

• Finally, we performed a traffic incident detection task to demonstrate the
applicability of our approach in a real-time practical scenario.

The rest of the paper is organised as follows. In Section 2 we discuss previous
research and motivate our work. We introduce our approach for fine-grained
geolocalisation of non-geotagged tweets in Section 3. Section 4 presents our
experimental setup and discusses our results. Finally, we show the applicability
of our model in a real-time scenario in Section 6.

2. Background

First approaches in the literature on geolocalising social media data [20, 21,
22, 23] addressed the localisation of Twitter users rather than individual social
media posts. To achieve this, these approaches extract all the tweets posted by
a single user to infer their city or home location. However, not all the tweets
of a user are geotagged, which leads to a sparse dataset. As we aim to locate
individual non-geotagged tweets, our work can be placed one step before the
Twitter user geolocalisation task, reducing the sparsity of the data.

There is a lot of research aiming to identify the problem of geolocalising
individual non-geotagged tweets. For example, Schulz et. al. [24] tackled this
problem by exploiting different spatial indicators of a tweet – i.e. tweet text
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or user profile – and mapping them to different geospatial datasets such as
DBpedia Spotlight or Geonames. More recently, other works tackled this problem
by dividing the geographical space into areas of a given size and then modelled
the language for each area [16, 17, 25, 26, 27]. Then, for a given non-geotagged
tweet the most likely area is returned based on the probability that the tweet
was issued in that area. However, these studies work at a coarse-grained level of
granularity – i.e. zip codes to city or country level. In contrast, the problem we
aim to tackle in this work is the geolocalisation of Twitter posts at a fine-grained
level – i.e. street or neighbourhood level.

An example of previous research on fine-grained geolocalisation is the work
by Kinsella et. al. [16]. They attempted to predict location from country level
to postal code level. As a result, the accuracy of their model decreases sig-
nificantly when trying to predict at such fine-grained level. Another example
of fine-grained geolocalisation is the work by Paraskevopoulos et. al. [17]. The
authors refined the approach proposed by Kinsella et. al. [16] by dividing the ge-
ographical space into fine-grained squares of size 1 km. Finally, Flatow et. al. [28]
followed a completely different approach by estimating the geographical centre
of word n-grams using a Gaussian Mixture Model.

In this paper, inspired by Paraskevopoulos et. al. [17], we follow the strategy
of dividing the city into squares of size 1 km. The work mentioned above perform
a concatenation of texts of tweets belonging to each square to represent that area
as a single bag-of-word vector. However, in contrast to this work we consider
each tweet individually, representing each area as multiple bag-of-word vectors
during the prediction process.

Also, our approach takes into account the credibility of tweets. Considering
the quality of sources to verify the information generated from them is related
to the truth discovery problem [29]. Different algorithms have been proposed
to address the problem [30]. In this work, we have decided to apply a voting
approach due to its simplicity and effectiveness.

Some works have attempted to measure the quality of the information from
Twitter users [31, 32, 33] and specifically for event detection and disaster and
emergency management [34, 13]. For example, McCreadie et. al. [13] consid-
ered the idea of assigning a credibility score to tweets, but for the disaster and
emergency detection task. They computed the credibility score using regression
models with text features and user information. This credibility score is utilised
to inform the user about the veracity/credibility of events derived from social
media. We also incorporate the credibility of tweets in our fine-grained geolo-
calisation approach. But, in contrast to McCreadie et. al. , we incorporate this
score as a weight for each vote in our adopted majority voting approach.

The majority voting algorithm is a well known, fast and effective strategy
widely adopted for prediction and re-ranking tasks [35, 36, 37]. However, to the
best of our knowledge, this is the first time the majority voting is considered to
tackle the geolocation of tweets. Next section describes our approach in detail.
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3. Fine-Grained Geolocalisation Approach

Our proposed approach consists of three stages. First, we divide the geo-
graphical area of interest into a grid of 1 km squared areas, and associate each
geotagged tweet to an area based on its location. As discussed in Section 2, the
grid approach is a popular technique to represent geographical areas at different
levels of granularity in the literature [16, 17]. Second, we obtained the Top-N
content-based most similar geotagged tweets to each non-geotagged tweet using
a retrieval model (see Section 4.2). Finally, we combine the evidence gathered
from the above mentioned Top-N tweets by adopting a weighted majority voting
algorithm, which we introduce in the following Section.

3.1. Weighted Majority Voting
In order to combine evidence gathered from the Top-N content-based most

similar geotagged tweets to a non-geotagged tweet tng, we adopt a weighted
majority voting algorithm [35, 36, 37, 38, 39, 40] as follows. Each element of
the Top-N tweets is represented as a tuple (ti, li, ui), where li is the location
associated with the geotagged tweet ti posted by the user ui. Finally, we select
the most frequent location within the Top-N set as the inferred location for the
non-geotagged tweet. We can formalise it as:

Location(tng) = argmax
lj∈L

(
N∑
i=1

Wti(α, tng) ∗ V ote(tlii , lj)

)
(1)

where L is the set of unique locations (lj) associated with the Top-N geotagged

tweets, and tlii is the location of the i-th tweet in the rank. Then, a vote is given
to the location lj by the tweet ti as follows:

V ote(tlii , lj) =

{
1 tlii = lj
0 tlii 6= lj

(2)

The vote from tweet ti is weighted by:

Wti(α, tng) = α · Credibility(ui) + (1− α) · Sim(ti, tng) (3)

where α ∈ [0, 1], and Credibility(ui) is the credibility of user ui that posted
the tweet ti (see Section 3.2). Sim(ti, tng) is the content-based similarity of the
geotagged tweet (ti) with the non-geotagged tweet (tng) given by a retrieval
model (see Section 3.3). Finally, the location lj that obtains the highest number
of votes is returned as the final predicted geolocation for a given non-geotagged
tweet.

We decided to use a linear combination as our weighting function in order to
study the effectiveness of each of the components together and separately. There-
fore, when using α = 1 only the credibility score is considered, whereas the
content-based similarity is considered when α = 0. Likewise, when α = 0.5 both
components are considered equally.
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3.2. Extracting Credibility from a Tweet’s User

We believe that some users generate content that is highly relevant to the
physical location they are posting from. However, to ensure that the content is
credible we compute a score based on the posting activity of the user. Finally,
we utilise this score to weight the vote of a tweet in our adapted majority voting
algorithm, as discussed above in Section 3.1.

To obtain the credibility score we use the training and validation sets in-
troduced in Section 4.1, and compute it as follows. First, we obtain the Top-N
most content-based similar tweets from the training set for every tweet in the
validation set. Second, for each of the tweets in the Top-N (tsi) we calculate
their geographical distance with respect to their corresponding validation tweet
(tvi). Finally, for each user ui we define a set TN that contains all the tweets tsi
posted by the user. Finally, the credibility of user ui is given by the ratio of all
tweets in TN placed within less than 1 km distance from their corresponding
tvi tweet in the validation set, formally defined as:

Credibility(ui) =
|{tsi ∈ TN | distance(tsi, tvi) ≤ 1km}|

|TN |
(4)

Figure 1 shows the distribution of credibility ratios when considering differ-
ent cut-off points for N across all users evaluated in the validation set for the
city of Chicago (see Section 4.1). As can be observed, an important chunk of the
user population exhibit a low ratio (≤ 0.01). On the other hand, the rest of the
population is uniformly distributed except 0.46− 0.5 and 0.96− 1, where there
is a noticeably higher concentration of users. We observed similar patterns in
all the cities considered in Section 4.1.

3.3. Similarity Score and Tweet Geolocation

Previous research [41, 42] has shown the correlation between the content of
the tweets and their geographical location. This is because high similar tweets
are related to the same topic/event, and therefore they are likely to be posted
in the same location. Based on this assumption, we believe that the level of
content-similarity with the content of the Top-N geotagged tweets is a strong
indicator of the actual geolocation for a given non-geotagged tweet.

For example, given the non-geotagged tweet “Welcome to my birthday party
at 7th avenue”, and the geotagged tweet “Amazing birthday party in a nightclub
at 7th avenue”, their contents are highly related as they refer to the same
event (birthday party at 7th avenue). Therefore, they will be associated with
a high similarity score, and it is very likely that they were posted in the same
geographical locations.

However, we can find some cases in which the level of similarity is not suf-
ficient to ascertain whether any two tweets share a geographical location. For
example, given the non-geotagged tweet “Happy Birthday to my friend David”,
and the geotagged tweet “Amazing birthday party at 7th avenue”, they will be
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Figure 1: Distribution of Tweet Users’ Credibility. The Figure presents the num-
ber of Twitter users (y-axis) distributed over different values of credibility ratios
(x-axis).

associated with a low similarity score as both tweets contain the term “birth-
day”, but they are not referring to the same event. This indicates that although
the topics are related to a birthday event, they may or may not be referring to
the same event in the same location.

To this end, we introduced the similarity score Sim(ti, tng) in Equation 3 in
Section 3.1. The contribution of the similarity component is controlled by the
values of α. In addition, the lower the value of α the higher the contribution of
the content-based similarity score to the total weighting of each tweet vote.

3.4. Time Complexity

In this Section, we discuss the time complexity of our proposed approach. To
do that, we consider the two main components of our approach explained pre-
viously in this section: the ranking component, and the majority voting algo-
rithm. Other elements such as the credibility ratio, the creation of the grid of
squared areas, and the association of each geotagged to its corresponding area
can be computed off-line, and therefore will not be considered.

The ranking task in information retrieval has been widely investigated and
optimised over the time. In this work, we adopted the most common approach
that implements an inverted-index that maps words to documents. This way,
the number of documents to explore is reduced to only the Dp documents that
contain any of the words of the query [43]. This corresponds to an overall time
complexity of O(Dp). Nevertheless, more advanced implementations have re-
duced this complexity further [44].

For our second component, we implemented a majority voting algorithm
that performs the task in linear time O(N), where N is the Top-N elements
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in the rank considered by the majority voting algorithm. This is achieved by
storing each element’s frequency in a hash table, so only one iteration over the
input candidates is needed to count frequencies.

Overall, our proposed approach performs the geolocalisation of a non-geotagged
tweet in time O(Dp+N). This complexity shows the convenience of our approach
for real-time applications (i.e. real-time traffic incident detection).

4. Experimental Setup

In this section, we describe the experimental setup that supports the evalua-
tion of our proposed approach for fine-grained geolocalisation of non-geotagged
tweets.

4.1. Data

Previous studies have shown that geotagged and non-geotagged data have
the same characteristics [45]. Thus, models built from geotagged data can poten-
tially be generalised to non-geotagged data. Moreover, as we only use geotagged
data from specific cities, we assume that the city-level (or similar) of a tweet is
known and focus on detecting their fine-grained location2. Therefore, we exper-
imented over a ground truth sample of English geotagged tweets located in two
different cities. Tweets were collected from the Twitter Public stream3. Our first
dataset contains 131,273 geotagged tweets posted on March 2016 in Chicago
(USA). Also, we collected two different datasets with tweets posted in New
York City (USA) containing 155,114 from March 2016, and 1,318,065 geotagged
tweets from September 2014. As a preprocessing step, usernames and hashtags
were preserved as tokens, all hyperlinks were removed from tweets, and re-tweets
were preserved in the dataset. Then, for each tweet we removed punctuations,
removed stop-words [46], applied Porter Stemmer [47] and tokenised to extract
words (1-gram). Finally, using Apache Lucene4, we created an inverted index
that maps words to tweets.

To evaluate our approach, we divided each dataset into three subsets. We
used the first three weeks of tweets in our collection (i.e. the first three weeks
of March and September) as a training set. We then randomly divided the last
week data into validation and test sets to ensure that they have similar charac-
teristics. Table 1 describes the distribution of tweets for the three datasets.

4.2. Models

In this section, we describe the baseline models, as well as the different
configurations of our approach utilised in our experiments. In total, we have
implemented three state-of-the-art approaches (explained in detail below) as
strong baselines. Based on their general approach, we have divided the baselines
models into two groups: grid-based approaches and density-based approaches.

2The city-level location of tweets can be derived from previous works such as [24, 16, 20]
3https://dev.twitter.com/streaming/public
4http://lucene.apache.org/core/
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Table 1: Number of tweets distributed between training, validation and testing
for our three datasets. We collected geotagged tweets from the Twitter Public
Stream posted in two different cities: Chicago (USA) (“Chicago”) and New York
City (USA) (“NYC”).

Number of Tweets
Dataset Collection Time Training Validation Testing
Chicago March 2016 111,627 9,823 9,823
NYC 1 March 2016 128,746 13,184 13,184
NYC 2 September 2014 1,123,125 97,470 97,470

4.2.1. Grid-Based Baseline Models

Our grid-based approaches model the space by dividing the geographical area
using a grid structure. To adapt the baselines to the task of fine-grained geolo-
calisation, for each city mentioned in Section 4.1, we created a grid structure of
squared areas with a side length of 1 km (denoted by “fine-grained grid”).

Hulden: Firstly, we implemented the work by Hulden et. al. [27] (de-
noted by “Hulden”). Following authors approach, we have modelled each cell
of the 1 km grid using Multinomial Naive Bayes (denoted by “Naive Bayes”)
and Kullback-Leibler divergence (denoted by “Kullback Leiber”) using words
as features. We also report standard Naive Bayes and Kullback-Leiber versions
using kernel density estimation, denoted as “Naive Bayes+KDE” and “Kull-
back Leiber+KDE” respectively.

Paraskevopoulos: In this baseline, for each of the cells in the 1 km “fine-
grained grid” described above, we created a document by concatenating the text
of the tweets associated with that cell. We then indexed these documents (see
Section 4.1). After indexing the documents, we retrieve the most content-based
similar document (Top-1) for each non-geotagged tweet. As our retrieval model,
we implemented TF-IDF, to follow Paraskevopoulos et. al. [17] (denoted by
“TF-IDF”). We also tried four alternative retrieval models including Language
Model with Dirichlet Smoothing (denoted by “LMD”), Divergence From Ran-
domness (denoted by “DFR”), IDF (denoted by “IDF”) and BM25 (denoted by
“BM25”).

It is important to note that the results presented in this paper are based
on an adaptation of Paraskevopoulos et. al. [17] since we have removed stop-
words [46] and applied Porter stemming [47], while the original work did not
take these actions5. We also did not consider time dimension as it is out of the
scope of this work, in contrast to Paraskevopoulos et. al. [17] model.

Additionally, note that Paraskevopoulos et. al. [17] extended Kinsella et. al. [16]
approach to work at a fine-grained level by using a 1 km grid, and TF-IDF as
retrieval model instead of Language Model with Dirichlet Smoothing. Therefore,

5We also tried an implementation without removing stop-words nor applying Porter stem-
ming, which resulted in the lower performance and hence we did not report them.
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our adaptation of Paraskevopoulos that use Language Models (“LMD”) follows
the work by Kinsella et. al. [16].

4.2.2. Density-Based Baseline Model

Flatow: We also implemented the work by Flatow et. al. [28] (denoted
by “Flatow”) that utilises Gaussian Mixture Models to assign a location to
geospecific word n-grams, based on the number of tweets that contains the n-
grams and its spatial density. An n-gram is geospecific if we can create an ellipse
that covers a predefined maximum area (s) and contains at least a certain ratio
of the total tweets (t). As we are working at a fine-grained level, we fixed s
to 1 km2 and experimented with different values of t (0.5, 0.6, 0.7, 0.8), being
t = 0.8 the best performing one.

4.2.3. WMV Model

Our proposed approach explained in Section 3 (denoted by “WMV”) was
implemented. We used the same squared areas of the fine-grained grid defined
for the baseline models. However, in WMV model, each of these defined squared
areas was represented as multiple bag-of-word vectors where each vector rep-
resents a single geotagged tweet associated with that area. By doing this, we
indexed each tweet as a single document for the retrieval task. All tweets were
preprocessed following the same step explained in section 4.1.

After indexing the tweets, a retrieval task was performed to obtain the Top-N
content-based most similar geotagged tweets for each non-geotagged tweet. Sim-
ilarly to the baselines, we investigated the same five retrieval models to max-
imise the performance of our approach, returning the longitude and latitude
coordinates of the Top-1 tweet as the predicted location. The results indicated
that using IDF gave us the best performance. This is consistent with previous
research findings in microblog information retrieval [48].

Finally, we apply our weighted majority voting algorithm on top of the
retrieval task. In our experimental evaluation we considered the Top-3, -5, -7
and -9 content-based most similar tweets obtained from the retrieval task, and
different values of α for the weighting function (0.0, 0.25, 0.55, 0.75, 1.0). The
final predicted location is the predefined area that obtains the majority of the
votes.

4.3. Metrics

We reported the following metrics for evaluating the effectiveness of our
approach.

• Average Error distance (km): We compute the distance on Earth
(Haversine formula [49]) between the predicted location and the real coor-
dinates of the tweet in our ground truth. As described in Section 4.2, the
output of our models can be either a tweet or a squared area. When our
prediction is a single tweet, we compute the distance between two coor-
dinates; when our prediction is an area, the distance between the ground
truth coordinate and the centroid of the area is calculated.
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• Accuracy: We measure the accuracy of our model in two ways. First, we
calculate whether the centroid of the predicted area lies within a radius of
1 km from the real location of a tweet (denoted by “Accuracy@1 km”).

Second, we calculate whether the real location of a tweet falls within the
predicted area or not (denoted by “Accuracy@GRID”). Note that in
“WMV”, “Huldens” and “Paraskevopoulos” models, this area corresponds
to a squared area of side length 1 km, whereas for “Flatow” this area
corresponds to an ellipse.

• Coverage: We consider Coverage as the fraction of tweets in the test
set from which our approach finds a geolocation regardless of the distance
error.

5. Results

In this section, we present our experimental results on fine-grained geolocali-
sation of tweets using our adapted weighted majority voting approach compared
to the baseline models. We report the average error distance, accuracy, and cov-
erage for our approach evaluated on the “Chicago”, “NYC 1” and “NYC 2”
datasets. These results are presented in Table 2, Table 3 and 4 respectively. A
paired t-test was conducted to assess if the difference in effectiveness between
the models is statistically significant.

5.1. Performance

As shown in Table 2, 3 and 4, our approach (“WMV”) (statistically) sig-
nificantly outperforms grid-based baseline models (i.e. “Parakevopoulos” and
“Hulden”) in terms of accuracy and error distance, regardless of the value of N
in all datasets. However, this increase of accuracy and error distance is accom-
panied with the cost of a decrease in coverage. Additionally, our findings show
that, as the number of voting candidates (i.e. Top-N) increases, our approach
achieves lower error distance, higher accuracy, but lower coverage. Therefore,
considering the Top-3 tweets resulted in the best trade-off regarding error dis-
tance, accuracy and coverage.

In addition, our results suggest that the aggregation of tweets to represent
an area as a single vector leads to a decrease in accuracy when working at a
fine-grained level of granularity. Consistently with this observation, our density-
based baseline (“Flatow”) behaves better than other grid-based approaches
(“Hulden” and “Parakevopoulos”). Nevertheless, compared to “Flatow” our ap-
proach (“WMV”) still performs better when using Top-3 and α = 0.75. More-
over, as the values of α are close to 0.0, our model outperforms “Flatow” in
terms of average error distance.

Finally, despite their geographical and cultural differences, our approach
performs similarly across the two cities investigated in our experiments. Such
similarity in performance suggests that our approach can be generalised and
adapted to different cities. Also, we evaluated our approach in two datasets with
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Chicago
Model Config AED SDE A@Grid A@1km Coverage
Hulden Naive Bayes+KDE 7.461 9.776 15.87% 30.00% 100%
Hulden Kullback Leibler +KDE 7.570 9.656 9.621% 25.66% 100%
Hulden Naive Bayes 6.215 9.442 48.61% 51.72% 100%
Hulden Kullback Leibler 6.994 10.222 46.39% 49.32% 100%
Paraskevopoulos TF IDF 8.686 9.583 37.37% 40.95% 99.98%
Paraskevopoulos LMD 7.025 8.610 40.32% 44.20% 99.98%
Paraskevopoulos IDF 13.987 9.276 11.12% 12.96% 99.98%
Paraskevopoulos DFR 8.839 9.284 34.11% 37.54% 99.98%
Paraskevopoulos BM25 8.234 9.032 36.16% 39.52% 99.98%
Flatow t = 0.8, s = 1km2 2.903 5.581 15.21% 59.62% 69.85%
WMV@Top-3 α = 0.0 2.389∗† 5.622∗† 72.36%∗† 75.27%∗† 67.06%∗†

WMV@Top-3 α = 0.25 2.333∗† 5.564∗† 72.85%∗† 75.85%∗† 66.68%∗†

WMV@Top-3 α = 0.55 2.365∗† 5.597∗† 72.38%∗† 75.60%∗† 66.13%∗†

WMV@Top-3 α = 0.75 2.898∗† 6.126∗† 67.69%∗† 71.14%∗† 75.22%∗†

WMV@Top-3 α = 1.0 3.768∗† 6.773∗† 60.27%∗† 63.85%∗† 86.30%∗†

WMV@Top-5 α = 0.0 1.662∗† 4.781∗† 79.67%∗† 82.32%∗† 58.33%∗†

WMV@Top-5 α = 0.25 1.643∗† 4.734∗† 79.76%∗† 82.44%∗† 58.17%∗†

WMV@Top-5 α = 0.55 1.665∗† 4.716∗† 78.94%∗† 81.97%∗† 59.45%∗†

WMV@Top-5 α = 0.75 1.857∗† 4.947∗† 77.07%∗† 80.17%∗† 61.77%∗†

WMV@Top-5 α = 1.0 3.182∗† 6.339∗† 65.63%∗† 69.17%∗† 75.15%∗†

WMV@Top-7 α = 0.0 1.343∗† 4.316∗† 82.98%∗† 85.23%∗† 53.71%∗†

WMV@Top-7 α = 0.25 1.349∗† 4.318∗† 82.91%∗† 85.26%∗† 53.56%∗†

WMV@Top-7 α = 0.55 1.428∗† 4.429∗† 81.99%∗† 84.44%∗† 54.49%∗†

WMV@Top-7 α = 0.75 1.584∗† 4.653∗† 80.41%∗† 83.00%∗† 55.94%∗†

WMV@Top-7 α = 1.0 2.592∗† 5.806∗† 71.39%∗† 74.27%∗† 65.10%∗†

WMV@Top-9 α = 0.0 1.208∗† 4.091∗† 84.24%∗† 86.75%∗† 51.19%∗†

WMV@Top-9 α = 0.25 1.254∗† 4.180∗† 83.86%∗† 86.44%∗† 51.18%∗†

WMV@Top-9 α = 0.55 1.317∗† 4.242∗† 82.99%∗† 85.65%∗† 51.60%∗†

WMV@Top-9 α = 0.75 1.489∗† 4.485∗† 81.29%∗† 84.06%∗† 52.83%∗†

WMV@Top-9 α = 1.0 2.166∗† 5.312∗† 74.69%∗† 77.65%∗† 58.84%∗†

Table 2: Results for “Chicago” dataset. The table presents the Average Er-
ror Distance in kilometres (AED), Accuracy at Grid (A@Grid), Accuracy at 1
kilometre (A@1km) and Coverage for our proposed approach (“WMV”) against
the baselines using the Top-N (@TopN) elements in the rank. Significant differ-
ences (p<0.01) with respect to the best density-based baseline (“Flatow”) and
the best grid-based baseline (“Paraskevopoulos LMD”) are denoted by ∗ and †

respectively.
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NYC 1
Model Config AED SDE A@Grid A@1km Coverage
Hulden Naive Bayes+KDE 6.648 8.480 9.72% 23.57% 100%
Hulden Kullback Leibler +KDE 6.568 8.445 8.64% 19.92% 100%
Hulden Naive Bayes 6.309 8.970 39.35% 43.78% 100%
Hulden Kullback Leibler 7.129 9.769 37.40% 41.76% 100%
Paraskevopoulos TF IDF 7.505 9.177 34.79% 38.39% 99.98%
Paraskevopoulos LMD 7.169 8.527 34.10% 37.29% 99.98%
Paraskevopoulos IDF 12.755 9.634 10.21% 12.78% 99.98%
Paraskevopoulos DFR 7.609 8.955 32.93% 36.28% 99.98%
Paraskevopoulos BM25 7.460 8.772 34.88% 38.25% 99.98%
Flatow t = 0.8, s = 1km2 2.903 5.681 16.29% 65.52% 72.46%
WMV@Top-3 α = 0.0 2.491∗† 5.673∗† 67.35%∗† 71.83%∗† 58.65%∗†

WMV@Top-3 α = 0.25 2.427∗† 5.617∗† 67.95%∗† 72.52%∗† 58.44%∗†

WMV@Top-3 α = 0.55 2.460∗† 5.638∗† 67.18%∗† 72.50%∗† 60.84%∗†

WMV@Top-3 α = 0.75 3.179∗† 6.300∗† 60.35%∗† 66.19%∗† 71.05%∗†

WMV@Top-3 α = 1.0 3.939∗† 6.794∗† 53.63%∗† 59.68%∗† 82.36%∗†

WMV@Top-5 α = 0.0 1.784∗† 4.905∗† 75.37%∗† 79.48%∗† 49.02%∗†

WMV@Top-5 α = 0.25 1.727∗† 4.721∗† 75.37%∗† 80.03%∗† 49.04%∗†

WMV@Top-5 α = 0.55 1.768∗† 4.757∗† 75.01%∗† 79.65%∗† 51.08%∗†

WMV@Top-5 α = 0.75 2.021∗† 5.058∗† 72.24%∗† 77.41%∗† 54.21%∗†

WMV@Top-5 α = 1.0 3.824∗† 6.686∗† 56.04%∗† 61.58%∗† 74.90%∗†

WMV@Top-7 α = 0.0 1.414∗† 4.271∗† 79.15%∗† 83.12%∗† 44.86%∗†

WMV@Top-7 α = 0.25 1.428∗† 4.292∗† 79.06%∗† 83.02%∗† 44.92%∗†

WMV@Top-7 α = 0.55 1.482∗† 4.333∗† 78.26%∗† 82.50%∗† 46.31%∗†

WMV@Top-7 α = 0.75 1.628∗† 4.511∗† 76.42%∗† 81.28%∗† 48.32%∗†

WMV@Top-7 α = 1.0 3.286∗† 6.268∗† 60.96%∗† 66.64%∗† 64.74%∗†

WMV@Top-9 α = 0.0 1.237∗† 3.902∗† 81.06%∗† 84.98%∗† 42.01%∗†

WMV@Top-9 α = 0.25 1.250∗† 3.907∗† 80.94%∗† 85.00%∗† 41.99%∗†

WMV@Top-9 α = 0.55 1.329∗† 3.973∗† 79.78%∗† 84.01%∗† 43.02%∗†

WMV@Top-9 α = 0.75 1.509∗† 4.324∗† 78.17%∗† 82.62%∗† 44.71%∗†

WMV@Top-9 α = 1.0 2.730∗† 5.781∗† 66.17%∗† 71.61%∗† 55.86%∗†

Table 3: Results for “NYC 1” dataset. The table presents the Average Error
Distance in kilometres (AED), Accuracy at Grid (A@Grid), Accuracy at 1 kilo-
metre (A@1km) and Coverage for our proposed approach (“WMV”) against the
baselines using the Top-N (@TopN) elements in the rank. Significant differences
(p<0.01) with respect to the best density-based baseline (“Flatow”) and the best
grid-based baseline (“Paraskevopoulos LMD”) are denoted by ∗ and † respec-
tively.
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different sample sizes from the same city, “NYC 1” in Table 2, and “NYC 2”
in Table 4. As a result, we observed similar behaviour in performance when our
approach is applied in a bigger dataset (“NYC 2”), but with a cost of a decrease
in performance.

NYC 2
Model Config AED SDE A@Grid A@1km Coverage
Hulden Naive Bayes+KDE 12.671 11.182 4.74% 11.25% 100%
Hulden Kullback Leibler +KDE 13.164 12.075 5.15% 12.16% 100%
Hulden Naive Bayes 14.335 13.154 17.05% 19.91% 100%
Hulden Kullback Leibler 15.521 13.909 17.01% 19.68% 100%
Paraskevopoulos TF IDF 13.981 11.687 17.11% 19.54% 84.59%
Paraskevopoulos LMD 13.831 11.353 17.64% 19.96% 99.98%
Paraskevopoulos IDF 17.248 10.997 6.20% 7.58% 99.98%
Paraskevopoulos DFR 14.266 11.662 17.92% 19.40% 99.98%
Paraskevopoulos BM25 13.576 11.233 17.48% 19.82% 99.98%
Flatow t = 0.8, s = 1km2 7.356 8.668 11.42% 36.06% 44.48%
WMV@Top-3 α = 0.0 6.134∗† 9.195∗† 48.20%∗† 52.10%∗† 31.69%∗†

WMV@Top-3 α = 0.25 6.175∗† 9.217∗† 47.96%∗† 52.02%∗† 32.27%∗†

WMV@Top-3 α = 0.55 6.148∗† 9.169∗† 47.66%∗† 52.30%∗† 33.74%∗†

WMV@Top-3 α = 0.75 7.243∗† 9.590∗† 40.82%∗† 45.55%∗† 42.08%∗†

WMV@Top-3 α = 1.0 11.53∗† 10.824∗† 22.94%∗† 26.31%∗† 81.73%∗†

WMV@Top-5 α = 0.0 4.867∗† 8.178∗† 54.89%∗† 58.82%∗† 24.84%∗†

WMV@Top-5 α = 0.25 4.921∗† 8.214∗† 54.34%∗† 58.42%∗† 25.76%∗†

WMV@Top-5 α = 0.55 4.94∗† 8.209∗† 53.99%∗† 58.30%∗† 26.63%∗†

WMV@Top-5 α = 0.75 5.444∗† 8.501∗† 50.31%∗† 54.82%∗† 29.74%∗†

WMV@Top-5 α = 1.0 11.921∗† 10.732∗† 20.78%∗† 23.57%∗† 81.45%∗†

WMV@Top-7 α = 0.0 4.188∗† 7.657∗† 59.00%∗† 63.24%∗† 21.04%∗†

WMV@Top-7 α = 0.25 4.240∗† 7.682∗† 59.54%∗† 62.66%∗† 21.72%∗†

WMV@Top-7 α = 0.55 4.257∗† 7.646∗† 57.88%∗† 62.28%∗† 22.43%∗†

WMV@Top-7 α = 0.75 4.682∗† 7.890∗† 54.66%∗† 59.23%∗† 24.50%∗†

WMV@Top-7 α = 1.0 11.747∗† 10.630∗† 20.89%∗† 23.66%∗† 73.34%∗†

WMV@Top-9 α = 0.0 3.988∗† 7.453∗† 60.14%∗† 64.37%∗† 19.11%∗†

WMV@Top-9 α = 0.25 4.018∗† 7.468∗† 59.54%∗† 63.97%∗† 19.75%∗†

WMV@Top-9 α = 0.55 4.022∗† 7.402∗† 58.73%∗† 63.33%∗† 20.38%∗†

WMV@Top-9 α = 0.75 4.356∗† 7.604∗† 55.99%∗† 59.23%∗† 24.50%∗†

WMV@Top-9 α = 1.0 11.475∗† 10.539∗† 21.62%∗† 24.36%∗† 65.25%∗†

Table 4: Results for “NYC 2” dataset. The table presents the Average Error
Distance in kilometres (AED), Accuracy at Grid (A@Grid), Accuracy at 1 kilo-
metre (A@1km) and Coverage for our proposed approach (“WMV”) against the
baselines using the Top-N (@TopN) elements in the rank. Significant differences
(p<0.01) with respect to the best density-based baseline (“Flatow”) and the best
grid-based baseline (“Paraskevopoulos LMD”) are denoted by ∗ and † respec-
tively.

5.2. Effects of the Similarity Score

As introduced in Section 3.3, we believe that the similarity between the con-
tents of a given non-geotagged tweet, and the Top-N content-related geotagged
tweets, can be indicative of the geolocation for non-geotagged tweets The ef-
fects of Equation 3 can be observed in Tables 2, 3 and 4. As the values of alpha
decrease, our approach achieves higher accuracy, and reduce the average error
distance. This pattern can be observed for any of the investigated values of N for
the Top-N tweets in the rank. This demonstrates the validity of our assumption
that similar tweets are likely to be posted in the same geographical area.

6. Applicability on Real-Time Traffic Incident Detection

To show the usefulness of our approach in a practical scenario, we inte-
grated our fine-grained geolocalisation approach into a real-time traffic incident
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detection task. The objective of the traffic incident detection task is to identify
traffic-related content in the Twitter stream, and provide this information in
real-time to end-users and transportation managers.

The advantages of using Twitter data for detecting traffic incidents are
many-fold. First, Twitter data provides first-hand detailed descriptions of the in-
cidents, which are reported by human beings. Second, people move everywhere
and provide a wider coverage of the transportation network than traditional
traffic detection systems, which use sensors that are placed in the main roads
of the transportation network. Therefore, such characteristics of Twitter data
can be complementary to expensive traditional systems, which are unable to
provide first-hand detailed information of the incident. For these reasons, many
research efforts have tackled the problem of filtering the Twitter stream to ob-
tain quality traffic incident-related information [50, 51, 52, 53, 54]. In addition,
knowing the precise location of the incident is crucial for reliably perform such
task; however, previous works are limited by the small number of geotagged
data available in the Twitter stream.

In this study, we aim to investigate to what extent fine-grained geolocalisa-
tion can provide reliable geotagged data to address this task. To this end, we
performed an exhaustive analysis to determine differences in the spatial proxim-
ity between incident-related tweets – geotagged and geolocalised – with respect
to traffic incidents reported in the city of New York, USA.

6.1. Extracting Incident-Related Tweets

In order to perform the real-time incident detection task, we obtained a
ground truth dataset of human labeled incident-related tweets6 generated by
Schulz et. al. [52, 55]. The dataset contains 1,858 tweets posted from January
2014 to March 2014 in a 15 km radius around the city centre of New York. The
tweets are categorised as “crash” and “non-incident”.

To obtain incident-related tweets, we first trained a classifier on this ground
truth dataset to determine whether a tweet is incident-related or not (following
previous works [52]). The final evaluation showed that our classifier was able
to correctly identify incident-related tweets with an accuracy of 90.45%, which
is consistent with similar works [54, 51, 52]. We utilised our classifier to filter
1.3 million geotagged tweets posted in New York between October 2014 and
December 2014. As a result, we obtained a total of 597 tweets categorised as
incident-related (labelled as “crash”) for our analysis.

6.2. Fine-Grained Geolocalisation of Incident-Related Tweets

We estimated the geolocation of the incident-related tweets using our fine-
grained geolocalisation approach introduced in Section 3. This approach was
trained and evaluated on the “NYC 2” dataset described in Section 4.1.

6http://www.doc.gold.ac.uk/~cguck001/IncidentTweets/
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To configure our geolocalisation method, we selected the parameters that
give us a reasonable trade-off between accuracy and coverage. Thus, we con-
figured our method to utilise the Top-3 content-based most similar geotagged
tweets, and α = 0.55. As can be observed in Table 4, this configuration achieved
an average error distance of 6.248 km, 52.30% accuracy, and 33.74% coverage.

Finally, we ran our fine-grained geolocalisation method on the 597 incident-
related tweets obtained in Section 6.1. As a result, our fine-grained geolocalisa-
tion approach was able to estimate the location of 42.84% of the incident-related
tweets with an average error of 8.518 km, where 24.56% of them were placed
within 1 km distance from their real location.

6.3. Effectiveness Analysis

To assess the effectiveness of the geolocalised incident-related tweets, we
investigated whether the spatial distribution pattern of the tweets is clustered
around the actual locations of the incidents. We perform this analysis by using
the original locations (geotagged), and the locations estimated by our method
(geolocalised) in Section 6.2.

Traffic Incidents Data. Both geotagged and geolocalised tweets were com-
pared against a ground truth dataset containing traffic incidents reported by the
New York Police Department7. Specifically, we extracted motor vehicle collisions
which occurred on any road in New York during the period of study (October-
December 2014). According to previous research [56, 57], the majority of traffic
incidents occur in road intersections. Therefore, to obtain a more realistic rep-
resentation of the locations of traffic incidents, we collected the location of road
intersections provided by the New York Open Data Portal8.

Comparing Against Traffic Incidents. The bivariate K function [58, 59,
60, 61] was used to explore how incident-related tweets are distributed around
road intersections in comparison with traffic incidents. Generally, the variance
stabilized K-function (L-function) is used in data analysis. This function is used
to examine repulsive, attractive, and random relationships between two point
sets within a distance window (d). The bivariate L-function for two point sets
(A and B) can be written as:

LAB(d) =

√
KAB(d)

π
− d (5)

and

KAB(d) =
S

NANB

NA∑
i=1

NB∑
i=1

w(Ai, Bj)I(|Ai −Bj | < d) (6)

7https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/

h9gi-nx95
8https://opendata.cityofnewyork.us/
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where S is area of study area, NA and NB are the number of points in set A
and B. Ai and Bj are locations of points, and |Ai−Bj | is the distance between
Ai and Bj . I is the identity function, and w(Ai, Bj) is an edge correction, set
to 2 if |Ai −Bj | is greater than the distance of Ai to the nearest “edge” of the
record, otherwise it is set to 1.

6.4. Results

The bivariate L-function, introduced in Section 6.3, was calculated with a
Monte Carlo envelope constructed at the 95% confidence level with 999 Monte
Carlo simulations. Specifically, bivariate L-statistics were computed for three
pairwise point sets: 1) traffic incidents versus road intersections, 2) geotagged
incident-related tweets versus road intersections, and 3) geolocalised incident-
related tweets versus road intersections. Figures 2 and 3 shows bivariate L statis-
tics for the three pairwise point sets respectively at different distances (d).

Figure 2: Spatial relationship between traffic incidents and road intersections. The
y-axis contains the values of the Bivariate L-function (L(d)) and different distances
(x-axis). L-function values falling above the simulation envelope (doted line) mean
attractive relationship.

As can be observed in Figure 2, traffic incidents are significantly clustered
around road intersections (L(d) falls above the simulation envelope) when dis-
tance is below 3,000 metres (see Figure 2). This indicates that traffic incidents
tend to take place around road intersections, and supports the assumption that
road intersections represent realistic locations of traffic incidents [56].

On the other hand, as can be observed in Figure 3 geotagged incident-related
tweets are randomly distributed around road intersections (L(d) falls below
or overlaps the simulation envelope) at almost all distances (see left Figure
3). In contrast, geolocalised incident-related tweets are clustered around road
intersections (L(d) falls above the simulation envelope) when distance is below
3,000 metres (see right Figure 3).

These results show that geotagged incident-related tweets are randomly dis-
tributed around realistic locations of traffic incidents. In contrast, geolocalised
incident-related tweets are clustered around the realistic locations of traffic in-
cidents. A possible explanation to this is that some Twitter users post their
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incident-related tweets after they have left the actual place of the incident. In
this cases, the location of the incident-related tweets could not represent the
actual location of incident. This is consistent with previous findings [50].

Figure 3: Spatial relationship between: geotagged incident-related tweets and
road intersections (left Figure), and geolocalised incident-related tweets and road
intersections (right Figure). The y-axis contains the values of the Bivariate L-
function (L(d)) and different distances (x-axis). L-function values falling above
the simulation envelope (doted line) mean attractive relationship.

In addition, we assigned each incident-related tweet – geotagged and geolo-
calised – to the most likely traffic incident according to spatio-temporal proxim-
ity criteria. To do this, each traffic incident is linked to all the incident-related
tweets that are posted within 30 minutes before and after the incident time.
Then, the distances in kilometres between each traffic incident and the linked
tweets are computed. As a result of this, geotagged incident-related tweets are
located at an average distance of 3.300 km from the traffic incidents; while
geolocated incident-related tweets are located at an average distance of 2.911
km. After conducting a t-test, the p-value (p<0.01) showed that geolocated
incident-related tweets are statistically significant closer to traffic incidents com-
pared to geotagged incident-related tweets.

AVG Distance
Geotagged incident-related 3.300 km†

Geolocalised incident-related 2.911 km†

Table 5: Average distance to traffic incidents in kilometres of geotagged incident-
related tweets and geolocalised incident-related tweets. A t-test was conducted to
assess that differences are statistically significant, and are denoted by † (p<0.01).

These results show the applicability of our approach, and how geolocalisation
can be used for performing real-time traffic incident detection. Furthermore, we
observed a mismatch between the coordinates reported by the geotagged tweets
and the actual locations of the incidents. This is because some Twitter users
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may not post in the place of the event, but they mention the actual location in
the text. We showed that our fine-grained geolocalisation approach could reduce
this issue, and provide precisely located tweets that are highly correlated with
the real locations of traffic incidents.

7. Conclusions

In this work, we proposed an approach for fine-grained geolocalisation of
tweets by adopting a weighted majority voting algorithm. The weight of each
tweet vote is obtained by calculating the credibility of its user.

Inspired by grid-based approaches [17, 16, 27], we worked at a fine-grained
level by dividing a city into a set of predefined geographical areas of size 1
km. However, in contrast to these works, we did not concatenate the text of
tweets into a document to create a single bag-of-word vector to represent a
predefined area. Instead, our approach treats each tweet individually as a single
document and represents each area as multiple bag-of-word vectors.

To demonstrate the effectiveness of our approach, we conducted an exper-
iment on three datasets of English geotagged tweets collected during March
2016 from two different cities, Chicago and New York, with 131,273 and 155,114
tweets respectively. Moreover, we collected a bigger dataset from New York with
1.3 million tweets posted in October 2014. We implemented grid-based as well
as density-based state-of-the-art approaches as baselines to compare against our
model.

Our experimental results show that our weighted majority voting approach
(statistically) significantly outperforms the baselines in terms of accuracy and
error distance, in both cities, across all the investigated values of N for the Top-
N tweets, with the cost of decrease in coverage in the two cities of study. We
also observed that, as the number of voting candidates (i.e. Top-N) increases,
our approach achieves lower error distance and higher accuracy, but lower cov-
erage. Our findings suggest that the aggregation of tweets to represent an area
as a single vector leads to a decrease in accuracy when working at a fine-grained
level of granularity. This behaviour is observed across both datasets and suggests
that our approach can be generalised and adapted to different cities.

We also integrated our fine-grained geolocalisation approach into a real-
time incident detection task to demonstrate its applicability. We compared geo-
tagged and geolocalised incident-related tweets with real locations of traffic
incidents. We found that users may not post incident-related content at the
real locations of the incidents. We then demonstrated that our geolocalisation
method could overcome this issue, and map precisely incident-related tweets at
the real locations of the incidents.

This shows the power of our proposed approach in predicting geolocation of
tweets, and can substantially expand the sample of geotagged data at a fine-
grained level (i.e. street level or neighbourhood level), helping to a wide range
of applications, including real-time event detection, topic detection and disaster
and emergency analysis.
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8. Future Directions

This work has opened several interesting research questions to be investi-
gated in the future. The first research direction is to investigate the effect of
temporal aspect of tweets in our model. It is known that time is an impor-
tant feature to take into account to improve geolocalisation [62]. Currently, our
model does not take temporal characteristics into account. We, therefore, aim
to incorporate such characteristics into our approach as future work.

The second research direction is to investigate the effect of data sparsity and
in some cases, the cold-start problem in our model. In this work, we have shown
that some users can provide more valuable information about a location than
others by computing a credibility score based on their past activity. However,
currently, we do not take into account the user cold-start problem; i.e. users who
have posted only one tweet or few tweets. In future work, we aim to address this
problem by varying the amount of data available for training, and conducting
a comprehensive analysis of the minimum number of tweets per user needed
to effectively calculate its credibility. In addition, in future work, we aim to
investigate how the stability of our model is affected by varying the size of
training data.

The third research direction aims to investigate the drawbacks of using grids
in our approach. The strategy of dividing the geographical space into fixed-size
cells suffers from data sparsity problem since some cells may not have sufficient
data points, and thus be under-represented.

The fourth research direction is to perform a qualitative study on the dif-
ference between tweets that tend to give high weighted votes, and tweets that
tend to give low weighted votes. As the vote of a tweet is given by the level
of credibility computed for the user that posted the tweet, a qualitative study
could reveal differences in the contents (e.g. words, location names or entities)
and the context (e.g. type of event) in which high credible users are involved
when posted their tweets.

The fifth research direction involves investigating the decrease of coverage
observed in our results (see Section 5). This can be caused because our weighted
majority voting approach does not return any prediction is there is no enough
evidence (i.e. there is no a majority location). By analysing such cases, we can
gain insights that help us to improve the performance of the model by increasing
coverage while maintaining high accuracy.

The final research direction is to investigate the effect of location name dis-
ambiguation in our model. For example, given the word “7th avenue”, it may
refer to the 7th avenue in New York or the 7th avenue in Chicago. This issue
can be affecting the accuracy of our model. Therefore, it merits further inves-
tigation to evaluate the effect that disambiguation cases have on effectiveness,
and incorporate methodologies into our model to alleviate this problem.
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