ON FINITE COMPLETE PRESENTATIONS AND EXACT
DECOMPOSITIONS OF SEMIGROUPS
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ABSTRACT. We prove that given a finite (zero) exact right decomposition
(M, T) of a semigroup S, if M is defined by a finite complete presentation
then S is also defined by a finite complete presentation. Exact right decom-
positions are natural generalizations to semigroups of coset decompositions
in groups. As a consequence we deduce that the Zappa-Szép extension of a
monoid defined by a finite complete presentation, by a finite monoid is also
defined by such a presentation.

It is also shown that when a semigroup A isomorphic to a variant semigroup
A(z) that is defined by a finite complete presentation, where x belongs to a
sandwich matrix P, together with some other conditions, we deduce that the
zero Rees matrix semigroup M° [A; I, J; P] is also defined by a finite complete
presentation.

1. INTRODUCTION

Let S be a semigroup, M a subsemigroup of S and T a subset of S. We say that
the pair (M, T) is an ezact right decomposition of S if:

(i) S = MT?"; and

(ii) for every s € S exists only one m € M and only one ¢t € T such that s = mt,
where 7! = T'U {15} and 1g is the identity of the monoid S* obtained from S by
adding an identity if necessary. This pair origins a decomposition of S as a disjoint
union of bijective sets of the form Mt, with ¢t € T'. As such, exact decompositions
of semigroups are obvious generalizations to semigroups of the coset decomposition
in groups.

A particular case of the coset decomposition in groups is the concept of exact
factorization [16]. Let G be a group and H, H' be two subgroups (not necessarily
normal); then (H, H’) is said to be an exact factorization of G if G = HH' and
for every g € G exists only one h € H and only one h’ € H’ such that ¢ =
hh'. Obviously when H is normal in G the exact factorization is called semidirect
product. Exact factorizations of groups appear under several different names such
as general product [20], Zappa-[Rédei-]Szép products 28, 31], and apparently were
introduced in 1904 [26].
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In the same way, given a semigroup with M, T < S, we say that the pair (M,T)
is an exact factorization of S if S = MT and for every s € S exists only one m € M
and only one t € T such that s = mt. Although the concepts of exact decompo-
sition and exact factorization have in general different meanings, it is known that
exact factorizations of monoids are also exact decompositions. The fundamental
facts about exact factorizations of semigroups were established in [5]. An exact
decomposition [factorization] (M, T) is said to be finite if T is finite.

On the other hand finite complete (that is, noetherian and confluent) presenta-
tions are used to solve word problems among other algebraic decision problems (see
[4, 13, 21] for examples). The word problem is solved using the ‘normal form algo-
rithm’: given two words v and v, we can calculate irreducible elements uy and vy

such that u %_ ug and v %_ vg, and we conclude that u < , v if and only if ug and vg
are identical words. This application reveals the importance of such presentations.

Groves and Smith [9] proved that if H is a subgroup of finite index in G and H is
defined by a finite complete presentation, then G is also defined by a finite complete
presentation. In [18] the first author generalized this result to some particular cases
of factor decompositions of monoids. In particular, it is proved that if a group G
is defined by a finite complete presentation then the completely simple semigroup
MIG;I,J; P] is also defined by a finite complete presentation. These results will
be generalized in Section 6.

As usual in Semigroup Theory and with the advantage of enlarging the class of
applications we introduce the notion of zero exact right decomposition for semi-
groups with zero - see Section 4 for the definition. The main result of the paper is
the following theorem which is a direct consequence of Theorem 5.1.

Theorem 1.1. Let (M, T) be a finite (zero) exact decomposition of a semigroup S.
If M is defined by a finite complete presentation, then S is also defined by a finite
complete presentation.

As a consequence we get a result on a natural generalization of the group Zappa-
[Rédei-]Szép product for the class of semigroups - see [14] for details on Zappa-Szép
extensions.

Corollary 1.2. Let S be the Zappa-Szép extension of a monoid M by a finite
monoid T. Then if M is defined by a finite complete presentation, then S is also
defined by a finite complete presentation.

There are more examples of finite (zero) exact decompositions of semigroups
such as zero Rees matrix semigroups (see Section 6), or the coset decomposition
of groups of finite index, where Theorem 1.1 appears as a natural generalization
of Groves and Smith result [9]. The consideration of the converse of Theorem 1.1
immediately suggests the following problem:

Open question 1.3. Given a finite (zero) exact decomposition (M, T) of a semi-
group (with zero) S defined by a finite complete presentation, is M also defined by
such a presentation?

A positive answer to this question would necessarily solve the analogous hard
open problem for groups, where it is asked whether the property of being defined
by a finite complete presentation is preserved on passing from a group to a finite
index subgroup - see [9] and also the partial solution in [24].
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It is known that a monoid defined by a finite complete presentation is of type
FP,, for all n € N [1] and also of finite derivation type (F'DT for short) [27]. The
two properties F'P3 and F'DT are equivalent in the class of groups [6] (see also [22]).
Also, the property F'Pj is preserved when passing from a group to some finite index
subgroup, and vice-versa. So it is natural to ask the following:

Open question 1.4. Given a finite (zero) exact decomposition (M, T) of a semi-
group (with zero) S, does the property of having FDT hold in S if and only if it
holds in M ¢

Partial solutions to this open problem can be found in [19] and [30].

2. PRELIMINARIES

Let X be an alphabet. We denote by X* the free monoid on X and by X the
free semigroup on X. the empty word on X* will be denoted by 1. For an element
of X*, a word w, we denote the length of w by |w|. We use |w|y to denote the
number of occurrences of letters from the subset Y of X in the word w € X™*.

A presentation is a pair (X | R), where X is an alphabet and R is a binary
relation in X*. The set R is also referred to as rewriting system and its elements as
rewriting rules. Usually, a rewriting rule r € R is written in the form r = (r41,7_1)
or, simply, 41 — r_1. We say that the presentation is finite if both R and X are
finite.

In X* we define a binary relation, —,, denoted as single-step reduction, in the
following way:

U—, v & u=wryiwe and v =wir_1ws
for some (ry1,7—1) € R and wy,ws € X*. The transitive and reflexive closure of

—,, is denoted by .. A word u € X* is said to be R-reducible, if there is a word

v € X* such that v —, v. If a word is not R-reducible, it is called R-irreducible or
simply irreducible. By Irr(R) we denote the set of all R-irreducible words.

By <, we denote the equivalence relation induced by —, which is a congruence
on the free monoid X*. The quotient of the free monoid X* by what is called

the Thue congruence <5, generated by R origins the monoid defined by R and
it is denoted by M(X;R). The set X is called the generating set and R the
set of defining relations. More generally, a monoid is said to be defined by the
presentation (X | R) or by the rewriting system R if M = M(X;R). Thus, the
elements of M are identified with congruence classes of words from X*. We will
sometimes identify words and elements they represent, writing v = v if the two
words u,v € X* represent the same element of M. We shall write u = v if they are
identical as words.

We say that a rewriting system R on X is noetherian if the relation —, is well-
founded, in other words, if there are no infinite descending chains

wl_)Rw2_)Rw3_>R..._)an_)R...

We say that R is confluent if whenever we have u—>,v and u 5,0’ there is a

word w € X* such that v >, w and o' >, w. If R is simultaneously noetherian

and confluent we say that R is complete. We say that a presentation is noetherian,
confluent or complete if its associated rewriting system has the respective property.



4 J. ARAUJO AND A. MALHEIRO

It is easy to verify that, if R is a noetherian rewriting system, each congruence
class of M (X; R) contains at least one irreducible element. Assuming R noether-
ian, then R is a complete rewriting system if and only if each congruence class of
M(X; R) contains exactly one irreducible element [29, Theorem 1.2.2]. Hence, a
complete rewriting system fixes a unique normal form for each of its congruence
classes.

In the above concepts, if we replace monoid by semigroup and X* by X+ we
get similar definitions and the analogous results also hold. It is straightforward to
prove that a monoid is defined by a finite complete monoid presentation if and only
if it is defined by a finite semigroup presentation - see [8] for details. Hence the
results stated in this paper do not specify the kind of presentation being used since
there is no ambiguity doing so.

It is important to notice that for a finite rewriting system R on a set X each
word u of X* can only be reduced in finitely many ways. If we also assume that
R is noetherian then each descending chain starting at u has finite length and thus
there exists a maximum on the length of any word appearing on all descending
chains starting at w. That maximum is called the stretch of u and it is denoted
by str(u). Observe that if u —pg v then str(u) > str(v). Also note that if v is a
proper factor of w then stg(u) > str(v).

We end this section with a technical result that gives sufficient conditions on a
rewriting systems to be noetherian.

Proposition 2.1. Let R be a finite noetherian rewriting system on the alphabet X .
LetY be an alphabet disjoint from X. Then a rewriting system on X UY consisting
of rewriting rules from R or of the form I — r, with

o |lly > |r|y; or
o (I,r)e X*YXT x X*Y; or
e (I,r)e XTY xY,

s noetherian.

Proof. Let R’ be a rewriting system on the conditions of the statement. We shall
prove that R’ is noetherian. In order to do that we introduce a binary relation = on
(X UY)T which can be easily checked to be irreflexive, transitive and well-founded.
A word w in (X UY)* has the form z,u,z,—1 - z1u120, With n € Ng, u; € Y,
and z; € X*. In the same way a word w’ € (XUY)* has the form ./, u;, x], _; - - - xju)xzg.
We write w > w’ if:
(1) n>m; or
(2) n=m and exists k € {0,...,n} such that z; = 2}, for i < k, and stg(xy) >
str(x},); or
(3) n = m and exists k € {0,...,n} such that x; = =z, for i < k, str(xy) =
stgr(x),) and xp —, 2},
It is now routine to check that, for any words w,w’ € (X UY)*, if w —r w’ then
w = w’ and thus R’ is noetherian since = is well-founded. Nevertheless, it is worth
observing that for some of the relations of R’ we will get z}, as a proper factor of

x, for some k, and hence the stretch of the first is strictly less than the stretch of
the second. O

Further information on rewriting systems can be found in [4].
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3. REWRITING SYSTEMS ON SEMIGROUPS WITH ZERO

A semigroup with zero presentation is a pair (X | R) where R is a rewriting
system on the alphabet X U {0} being 0 a symbol not in X. This pair origins a
semigroup with zero in the following way: we add to the rewriting system R the
rewriting rules (0x,0) and (x0,0), for any z € X, and the rewriting rule (00, 0);

with this new rewriting system, say Ro, we get the Thue congruence <& roand hence
the semigroup resulting from the quotient of the free semigroup (X U {0})* by

RD. Clearly the congruence class of the word 0 is a zero on the semigroup. This
semigroup with zero is denoted by So(X; R).

We say that a semigroup with zero S is defined by the semigroup with zero
presentation (X | R) if S is isomorphic to Sp(X; R). Also, we say that (X | R) is a
semigroup with zero presentation that defines S.

One of the easiest ways to obtain a semigroup with zero is to add to a semigroup
an extra element which will behave like a zero. Let us consider the following
semigroup construction. Let S be a semigroup (with or without a zero) and let
0 be a symbol not in S. Consider the set S U {0} which will be denoted by S°.
On this set we define a binary operation - by extending the binary operation on S
to SO defining 0-s = s-0 = 0, for any s € S°. This set S° equipped with this
new operation is a semigroup with zero. Notice that even if S has originally a zero
element the new semigroup S is a semigroup with a zero distinct from the original
zero of S.

Proposition 3.1. Let R be a finite complete rewriting system on the alphabet X .
Let 0 be a symbol not in X. Then the rewriting system

RU{(0z,0), (20,0) : z € X U {0}}

on the alphabet X\ U{0} is complete. In particular, if S is defined by a finite complete
rewriting system then so does the semigroup S° obtained from S by adding a zero
element.

Proof. Let S be the semigroup defined by the finite complete presentation (X | R).
If in the Proposition 2.1 we take Y to be the set {0} we can conclude that the
rewriting system Ry = RU {(0z,0), (20,0) : € X U {0}}, is noetherian.

Clearly, the semigroup presentation (X U {0} | Ry) defines the semigroup with
zero SO. Also, the irreducible elements of the rewriting system R are in one-to-one
correspondence with S°. Therefore the rewriting system Ry is complete. O

Let S be a semigroup with zero defined by the [finite] complete semigroup pre-
sentation (X | R). Suppose that the zero of S is represented by some word
z on X*. Applying a Tietze transformation we get a semigroup presentation
(X U {0} | RU{(2,0)}) which also defines the semigroup S. In fact if 0 is a
symbol not in X then the rewriting system on X U {0},

RU {(2,0)} U {(0z,0), (20,0) : z € X U{0}}

is [finite] complete and defines S, being 0 the irreducible representing the zero of S
[7, Proposition 5].

The next example shows that the analysis of the completeness of a semigroup
with zero presentation should involve the rewriting rules that are implicit in the
semigroup with zero presentation.
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Example 3.2. Let us consider the semigroup with zero defined by the complete
semigroup presentation {(a | a® = a®). This is a two element semigroup, composed
by the congruence classes of the irreducible words a and a®. It is easy to see that
the semigroup with zero presentation (a | a® = a?, a® = 0) is noetherian but both
irreducible words a0 and O represent the zero of S. Thus the rewriting system is
not complete.

By [7, Proposition 5], if we add to the rewriting system the implicit rewriting
rules of a semigroup with zero presentation we get a complete rewriting system.

Taking into account the previous considerations, a semigroup with zero presen-
tation (X | R) will be said complete if the semigroup presentation

(XU{0} | R, Oz — 0, 20 — 0, (zx € X U{0}))

is complete.

By Proposition 3.1, if (X | R) is a complete semigroup presentation defining S
then (X | R) is a complete semigroup with zero presentation defining S° where 0
is the irreducible representative of the zero of S°.

Proposition 3.3. Every [finite] complete semigroup (with zero) presentation defin-
ing a semigroup with zero S induces a [finite] complete semigroup with zero presen-
tation defining S where the letter O is the irreducible element representing the zero

of S.

Proof. If S is a semigroup with zero defined by the complete semigroup presentation
(X | R) then by [7, Proposition 5] (X | R, z — 0) is a complete semigroup with zero
presentation defining S where the letter 0 is the irreducible element representing
the zero of S.

If S is defined by the complete semigroup with zero presentation (X | R), where
0 is not irreducible, it means that (X U {0} | R,0z — 0, 20 — 0, (z € X U{0}))
is a complete semigroup presentation defining S. Now, for technical reasons let us
replace the letter 0 by another letter not in X U {0}. After that and arguing as in
the last paragraph we get a complete semigroup with zero presentation defining S
where the letter O is the irreducible element representing the zero of S. (]

4. EXACT AND ZERO EXACT DECOMPOSITIONS

In this section we present the basic definitions and results on zero exact decom-
positions.

Let (M, T) be an exact decomposition of a semigroup S. If the semigroup S has
a zero the notion of exact right decomposition imposes several restrictions to the
semigroups under consideration. If the zero is an element of T" or of M we easily
conclude that at least one of them has only one element. Otherwise, since the zero
must be a product of an element in M by an element in T', and M is a subsemigroup
and using the uniqueness of the decomposition we conclude that M is a right zero
semigroup. In view of the previous comments the definition of exact decomposition
is modified and it is introduced the notion of zero exact right decomposition of a
semigroup with zero.

Let S be a semigroup with zero denoted by 0, let M be a subsemigroup of S and
T be a subset of S. The pair (M, T) is said to be a zero exact right decomposition
of S if:

(i) S\{0} = (M\{0}) T; and
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(ii) for every non-zero element s of S exists only one m € M\{0} and only one
t € T' such that s = mt.

As mentioned in the introduction T represents the set T'U {1g}, where 15 is the
identity of the monoid S*. If such pair exists the semigroup S is said to be zero
exact right decomposable.

Lemma 4.1. Let (M, T) be a zero exact right decomposition of a semigroup S. We
have

(i) t € (M\{0})t, for any t € T\{1s};
(ii) S = {0}U(Urer (M\{0})?);

Proof. (i) Let t € T\{1s} C S\{0}. Then t = mt’, for some m € M\{0}, and
t' € T. Hence we have the equality mt = m?t', with m,m? € M\{0} and t,t' € T.
By the uniqueness property we get ¢t = ¢. From these arguments we conclude that
t e (M\{0})t.

(ii) Obvious from the previous item. O

Remark 4.2. The previous lemma also holds for the non zero case, in which case
it is enough to remove the zero from the statements.

Regarding the above lemma and the notion of coset decomposition for groups,
the set T will be called a right transversal for M in S. Throughout the paper
we will consider right transversals so by transversal we shall always mean a right
transversal and by a (zero) exact decomposition a zero exact right decomposition.

Emphasizing the fact that the transversal will always include the identity of
S1 we will write 7' to represent the transversal and 7' will be the set such that
T' = TU{1}. Notice also that if (M, T) is a (zero) exact decomposition of a monoid
S, then the identity of S also belongs to M.

On the above definition notice that M may or may not include the zero of S. If
it does not include we can always consider the subsemigroup with zero M U {0}.
Recall that if M is defined by a complete presentation then, by Proposition 3.1,
also M U {0} = MY is defined by a complete presentation.

5. PROOF OF THE MAIN THEOREM

In this section we present a theorem in which a finite complete presentation of
a zero exact decomposable semigroup S is given, provided the decomposition has a
finite transversal and the subsemigroup is defined by a finite complete presentation.
As a consequence we get the main result of the paper Theorem 1.1.

Theorem 5.1. Let (M, T) be a zero right decomposition of a semigroup with zero
S. Suppose that M contains the zero of S and that it is defined by the finite com-
plete semigroup with zero presentation (X | R), where 0 is irreducible. Then the
semigroup with zero presentation with generators X UT and rewriting rules

(Ri) tity — M hl2=smlsi ey e UL, m € Irr(R))

0, tita =, 0.
(Ro) iz — 8”2’ ?i =s 8”2" (thh € Tyts € TU{1},2 € X,m € Irr(R))
) 14 =g Y.

(R3) mt — ¢ (teT,me Irr(R),mt =4 t)

is [finite] complete and defines S.
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Proof. Denote by R’ the set RU Ry U Ry U R3 U Ry, where R4 are the rewriting
rules of the form Oy — 0, y0 — 0, for all y € X U{0} UT. Notice that if T is finite
and (X | R) is finite then R’ is also finite.

From the conditions of the theorem we know that the semigroup presentation
(XU{0} | R, 0 — 0, 20 — 0, (z € X U{0})) is complete and defines M. The
Proposition 2.1 can be applied considering the disjoint sets X U{0} and T'. Indeed,
it is straightforward to check that each rewriting rule from R’ satisfies at least
one of the possibilities given in the conditions of the proposition. Therefore R’ is
noetherian.

To conclude our proof it is now sufficient to show that the relations from R’ hold
in S and that the elements of the semigroup S are in one-to-one correspondence with
the irreducible elements of the new presentation. We shall identify the elements
of (X U{0}UT)" with the corresponding elements of S by identifying an element
of X with the corresponding representative in M and any letter of T with the
correspondent element in S of T'.

Since each non-zero element of S can be decomposed in the form mt, with
m € M\{0} and t € T, it is clear from their definition that the relations in R; and
R5 hold in S. Recall that in S some of the products might be zero. Hence, in some
of the rewriting rules we will have to choose between the appropriate decomposition
of the form mt or the zero of S. By Lemma 4.1 each t € T belongs to Mt, and
hence for each t € T there exists an R-irreducible word m; such that m;t = t. Thus
all relations from R3 hold in S.

For each t € T let m; denote the irreducible element of R such that mt = t.
We claim that the set of irreducible elements of the rewriting system R’ on the
alphabet X U {0} UT is U,cr(Irr(R)\{m:})t UT U Irr(R) U {0}. First observe
that all words in this set are irreducible. Now, the process to obtain an irreducible
element goes as follows: if the word contains the letter 0 then using relations from
R4 we get the irreducible word 0; otherwise, using rewriting rules from Ry we can
obtain a word with no letters from 7" on the left of a letter from X; then, using
the relations from R; and from R we get an R-irreducible element on the left of a
letter (it might be the empty word) from T; in case we get myt, for some t € T,
we apply a rewriting rule from Rj3 to obtain a letter in 7.

As already mentioned each non-zero element of S is uniquely decomposable as the
product of an element of M\ {0} and an element of T*. Clearly the set (M\{0}) T =
S\M is in one-to-one correspondence with (J,c(Irr(R)\{m:})t UT and M is in
one-to-one correspondence with Irr(R). Thus we conclude that S is one-to-one
correspondence with our set of irreducible elements of R’ as required.

Therefore, the [finite] semigroup with zero presentation in the theorem is com-
plete and defines the semigroup S. d

Proof of Theorem 1.1. By Proposition 3.3 we can obtain from any [finite] complete
semigroup presentation a [finite] complete semigroup with zero presentation defining
the same monoid where 0 is irreducible. Hence the case of semigroups with zero in
Theorem 1.1 follows from the previous theorem.

The non-zero case can be obtained in the following way. Suppose that (M,T)
is an exact right decomposition of a semigroup without a zero S. Then (M°,T)
becomes a zero exact right decomposition of S°. By Proposition 3.1 the semigroup
M? is defined by a finite complete presentation since M also is. Therefore, applying
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the result for semigroups with zero we conclude that S° is defined by a [finite]
complete presentation.

Observe that S is a subsemigroup of S° whose complement is an ideal. Hence, by
[23, Theorem C] we deduce that S is defined by a [finite] complete presentation. O

6. APPLICATIONS TO ZERO REES MATRIX SEMIGROUPS

Completely (0-)simple semigroups are an important class of semigroups. The
problem of relating the properties of the semigroup with the properties of its max-
imal subgroups was studied in several papers (see for example [2, 3, 12, 15, 17,
18, 19]). They can be defined using the notion of ideal. A non-empty set A of a
semigroup S is called a left ideal if SA C A, a right ideal if AS C A and an ideal if
it is both a left and a right ideal. Completely (0-)simple semigroups, among other
characterizations (see [11]), are those semigroups with no proper ideals, except {0}
for completely O-simple, and with (0-)minimal left and right ideals.

There is a particular semigroup construction first used by Rees [25] to obtain a
description of the completely simple and completely 0-simple semigroups in terms
of their maximal subgroups. This construction can be generalized replacing the
subgroups by a general semigroup A and it is usually called (zero) Rees matrix
semigroup over A.

The zero Rees matrix semigroups can be defined in the following terms: let A
be a semigroup, let I and J be non-empty sets and let P = (pj;) be a J x I matrix
with entries in AU{0}; suppose that P is regular, that is, no row or column consists
entirely of zeros; the set I x A x J U {0} with multiplication

. s ) (i1,01Dj1i,02,J2), i pjriy € 4;
1,01, 12, G2, = i
(i1, a1, 51)(i2, az, j2) { 0, if pj,i, = 0.

is called the I x J zero Rees matrix semigroup over the semigroup A with the sand-
wich matrix P and it is denoted by M°[A; I, J; P]. The Rees Theorem states that
if A is a group we get a completely 0-simple semigroup, and that every completely
0-simple semigroup is isomorphic to a semigroup constructed in this way.

If in the above definition we allow P to have only elements from A and the set
of elements is I x A x J we get the definition of I x J Rees matrix semigroup over
the semigroup A with sandwich matrix P usually denoted by M[A; I, J; P].

Let A be a semigroup and let 2z € A. We denote by A(x) the semigroup, known
as the variant of A, with base set A and multiplication * given by a * b = axb, for
all a,b € A. See [10] for more on variant semigroups.

Before stating the main result of the section let us recall that the Rees matrix
semigroup M[A;I, J; P] is finitely presented if and only if A is finitely presented
and the sets I, J and S\U are finite, where U is the ideal of S generated by the
entries of P [3].

Theorem 6.1. Let A be a semigroup, let I and J be non-empty finite sets and let
P be a reqular J x I matriz with entries in A (AU{0}). Suppose that there exists
an entry x of P and y,z € A such that:

(1) A= A(z);
(i1) the inner right translation pyy : A — A, a — azy, is bijective;
(iii) the inner left translation M., : A — A, a — zza, is bijective.
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If A is defined by a finite complete presentation then the (zero) Rees matriz semi-
group M[A;1,J; P] (M°[A;1,J;P]) is also defined by a finite complete presenta-
tion.

Proof. Let us first prove for the zero Rees matrix semigroup. Without loss of
generality suppose that 1 € I, 1 € J and p;; = z. In addition suppose A is defined
by a finite complete presentation.

Clearly the sets {1} x A x {1}, {1} x A x {1} U{0} and {1} x A x JU {0} are
subsemigroups of the zero Rees matrix semigroup M°[A; 1, J; P] and by condition
(¢) the semigroups {1} x A x {1} and A are isomorphic. Therefore, by assumption
and by Proposition 3.1 also {1} x A x {1} U {0} is defined by a finite complete
presentation.

We claim that the pair ({1} x 4 x {1} U {0}, ({1} x {y} x J')!) is a finite zero
exact right decomposition of {1} x A x JU {0}, where J' is the set J\{1} . Indeed,
since pgy is bijective, each non-zero element (1, a, j) of {1} x A x JU{0} is uniquely
decomposed as (1,a’,1)(1,y, j), for some a’ € A such that a’xy = a. Consequently,
by Theorem 1.1 the semigroup {1} x A x J U {0} is defined by a finite complete
presentation.

Denote by I’ the set I\{1}. By symmetry it can be proved that ({1} x A x JU{0}, (I' x {z} x {1})")
is a finite zero exact left decomposition of the zero Rees matrix semigroup M°[A; I, J; P).
Thus applying the dual of Theorem 1.1 for left transversals we get the intended re-
sult.

For the non-zero case the matrix P has only non-zero elements and hence
M[A;1,J; P] is a subsemigroup of M°[A; 1, J; P] whose complement is an ideal.
Therefore, by [23, Theorem C] we conclude that M[A; I, J; P] is defined by a finite
complete presentation. O

The existence of an entry in the matrix for which the variant semigroup is iso-
morphic to A is an important condition of the theorem. A related idea to that of
variant semigroups is that of mid-monoids. An element u in a semigroup A is called
a mididentity if aub = ab, for all a,b € A. If such u exists in A then A is called a
mid-monoid. It is known [10, Lemma 3.6] that a semigroup A is a mid-monoid if
and only if A has a regular element = (i.e., exists 2’ € A such that z2’z = z) such
that A(x) = A. This result becomes evident in the case of monoids since for all
invertible elements = of the monoid we have A = A(x).

Remark 6.2. If A is a monoid and one of the entries of the matrix P is an
invertible element then conditions (i), (ii) and (iii) of Theorem 6.1 hold.

Since in a group all elements are invertible we immediately recover the following
result originally proved in [7]:

Corollary 6.3. Let S be a completely 0-simple semigroup with finitely many left
and right ideals. If every mazimal subgroup of S is defined by a finite complete
presentation then so is S.

We notice that the complete rewriting system obtained in this case is different
from the one obtained in [7].
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