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1 Introduction

In this paper, we focus on the following convex semi-infinite programming problem with second-order
cone constraints (SOCCSIP):

Minimize f(x)
(SOCCSIP) subject to x ∈ K, c(x, s) ≤ 0 ∀s ∈ Ω, (1.1)

where Ω ⊆ Rm is a given compact set playing a role of index set, f : Rn → R is a continuously
differentiable convex function, and c : Rn+m → R is a continuously differentiable function such that
c(·, s) is convex for any index s ∈ Ω. K is the Cartesian product of several second order cones (SOCs),
i.e., K = Kn1 × · · · × Knm where

Knj :=


{

x = (x1, x̃) ∈ R × Rnj−1
∣∣∣ x1 ≥ ‖x̃‖

}
(nj ≥ 2)

{x ∈ R |x ≥ 0} (nj = 1)

with n = n1 + · · · + nm.
A semi-infinite programming (SIP) [9, 11, 16, 24, 27] problem, which contains finitely many vari-

ables on a feasible set described by infinitely many constraints, is written as follows:

Minimize f(x)
(SIP) subject to g(x, s) ≤ 0 ∀s ∈ Ω,
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where f : Rn → R and g : Rn+m → R are continuously differentiable functions and Ω ⊂ Rm is a
given compact set. If Ω is finite, the SIP is a finite optimization problem usually called a nonlinear
programming (NLP).

The SIP has strong practical backgrounds in approximation theory, optimal control and numerous
engineering problems such as optimum filter design in signal processing, resource allocation in decen-
tralized systems, and decision making under competition (see e.g. [12, 22] and references therein). The
main difficulty for solving SIP is to deal with infinitely many constraints. During the last decade, many
numerical algorithms have been developed for solving SIPs (see [7, 18, 21, 26, 29, 31] and references
therein). A typical algorithm for solving SIP generally generates a sequence of finitely constrained
auxiliary optimization problems that can be solved by standard algorithms for NLPs. Existing meth-
ods for SIPs can be roughly divided into three types: exchange methods [18, 19, 26, 32], discretization
methods, and reduction-based methods (see, e.g. [26, 30] and references therein). Exchange and dis-
cretization methods are numerically expensive in general. The cost per iteration increases dramatically
as the cardinality of the auxiliary problem grows. Globally convergent reduction based methods, on
the other hand, require strong assumptions and are often conceptual methods which can be imple-
mented in a rather simplified form merely. Exchange and discretization methods, therefore are often
used only for the first stage of the solution process to generate an approximate solution of the SIP,
whereas reduction-based methods are typically employed only in the final stage of the solution process
in order to provide a higher accuracy of the solution and a better rate of convergence. Recently,
Wu, Li, Qi and Zhou [33] proposed an iterative method for solving KKT system of the SIP in which
they drop some redundant points at some certain iterations. Qi, Wu, and Zhou [25] and Li, Qi, Tam
and Wu [20] presented semismooth Newton method and smoothing Newton method for solving SIP,
in which the index set Ω is specified by Ω = {s | cj(s) ≤ 0 (j = 1, . . . , r)} with twice continuously
differentiable functions cj : Rm → R (j = 1, . . . , r). They proved that their algorithms have nice
convergence properties, but these two methods cannot ensure the feasibility. For linear SIPs, Lai and
Wu [19] proposed the explicit algorithm in which they solve a linear programming with a finite feasible
set Ek. They drop out redundant points in Ek at each iteration and only keep active points, which
ensures |Ek| ≤ n [28] for each k, and hence the algorithm is very efficient in saving computational
time.

The main goal of this paper is to design an explicit exchange method for solving SOCCSIP (1.1)
and study its convergence properties. In the algorithm we inherit Lai and Wu’s explicit exchange
technique [19], but we also introduce the relaxed scheme in which maximization problem with respect
to s ∈ Ω need not be solved in each iteration. Our algorithm has only to find some s ∈ Ω such
that a certain criterion with small η > 0 is satisfied. We also note that the spectral factorization
associated with Euclidean Jordan algebra is exploited in the convergence analyses. In the classical
studies on the cutting plane or exchange type methods (see [18, 21, 26, 32] and references therein),
the convergence properties were analyzed in a componentwise manner. However, such analyses does
not make sense for SOCCSIP any more since the SOC does not have componentwisely independent
structure. To overcome these difficulties, we introduce the coordinate system based on the spectral
factorization in Euclidean Jordan algebra associated with SOC. We then prove that the algorithm
terminates in a finite number of iterations and the obtained output sufficiently approximates the
optimum of SOCCSIP (1.1).

When f and c(·, s) are affine for any s ∈ Ω, SOCCSIP (1.1) reduces to the SOCLSIP studied by
Hayashi and Wu [13]. They proposed an explicit exchange method for solving SOCLSIP and provided
its convergence theorems. However, their results for SOCLSIP cannot be applied to SOCCSIP (1.1)
directly. Indeed, the difference from the SOCLSIP study [13] can be given as follows.

• In case of SOCCSIP, we have to evaluate the residual values f(xk+1)−f(xk)−∇xf(xk)>(xk+1−
xk) and c(xk+1, s) − c(xk, s) −∇xc(xk, s)>(xk+1 − xk) in each iteration. However, those values
are absent when f and c(·, s) are affine.
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• We introduce the finite index set Ω0 ⊂ Ω, whose elements are never dropped throughout the
iterations. Thanks to this scheme, the boundedness of the generated sequence is guaranteed.
This technique was not introduced in [13].

• Some assumptions needed for the convergence analyses in [13] can be removed (especially in the
strictly convex case).

This paper is organized as follows. In Section 2, we give some preliminaries needed for the later
analyses. In Section 3, we develop an explicit exchange method for solving SOCCSIP (1.1). In Section
4, we establish the convergence analysis of the proposed algorithm. In Section 5, we give some
numerical results.

2 Preliminaries

In this section, we give some fundamental knowledge on SOCCSIP (1.1) and the SOC which will be
necessary in the subsequent sections.

Throughout the paper, we suppose that SOCCSIP (1.1) satisfies the following assumption.

Assumption A (i) The solution set of SOCCSIP (1.1) is nonempty and compact. (ii) The nonnega-
tive constraint in SOCCSIP (1.1) has an influence on the optimal value, that is, inf{f(x) |x ∈ K} <
inf{f(x) |x ∈ K, c(x, s) ≤ 0 (∀s ∈ Ω)}. (iii) There exists x ∈ K such that c(x, s) < 0 for all s ∈ Ω.

Then, we have the following two theorems; the first one can be shown by using [3, Prop. 2.3.1], [1,
Lem. 3.1], and the convergence theorem for the discretization method [26, Chap. 7], and the second
one can be proved by an analogous argument in Theorems 5.97–5.99 and Proposition 5.104 in [5].

Theorem 2.1 Suppose that Assumptions A(i) and A(ii) hold. Then, there exists Ω0 = {s0
1, . . . , s

0
m0

} ⊂
Ω such that the following statements hold:

• f is level-bounded on the set K ∩
{
x

∣∣ c(x, s0
i ) ≤ 0 (i = 1, 2, . . . ,m0)

}
.

• inf
{
f(x)

∣∣ x ∈ K
}

< inf
{
f(x)

∣∣ x ∈ K, c(x, s0
i ) ≤ 0 (i = 1, 2, . . . ,m0)

}
.

Theorem 2.2 Suppose that Assumption A(iii) holds. Let M(Ω) be the space of all bounded regular
Borel measures on Ω, and M+(Ω) be the nonnegative cone in M(Ω). Then, there exist x ∈ K and
µ ∈ M+(Ω) such that

x>
(
∇f(x) +

∫
Ω
∇xc(x, s)dµ(s)

)
= 0,

∫
Ω

c(x, s)dµ(s) = 0,

∇f(x) +
∫

Ω
∇xc(x, s)dµ(s) ∈ K, c(x, s) ≤ 0 (∀s ∈ Ω),

where ∫
Ω
∇xc(x, s)dµ(s) :=

(∫
Ω

∂

∂xi
c(x, s)dµ(s)

)
i=1,...,n

∈ Rn.

Moreover, if x is an optimum of SOCCSIP (1.1), then there exist an nonnegative number q ≤ n,
multipliers {ui}i=1,...,q and attainers {si}i=1,...,q such that vectors {∇xc(x, si)}i=1,...,q are linearly inde-
pendent, and

K 3 x ⊥ ∇f(x) +
q∑

i=1

∇xc(x, si)ui ∈ K,

ui > 0, c(x, si) = 0 (i = 1, . . . , q), (2.1)
c(x, s) ≤ 0 ∀s ∈ Ω.
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We next give some properties on the SOC. We introduce the spectral factorization for a single
SOC K` in Euclidean Jordan algebra [8, 10]. For any vector y := (y1, ỹ) ∈ R × R`−1 with ` ≥ 2, its
spectral factorization is defined by

y = λ1(y)v1(y) + λ2(y)v2(y),

where λi(y) ∈ R and vi(y) ∈ R` (i = 1, 2) are the spectral values and vectors, respectively, defined by

λi(y) := y1 + (−1)i‖ỹ‖, (2.2)

vi(y) :=


1
2

(
1, (−1)i ỹ

‖ỹ‖

)
if ỹ 6= 0,

1
2

(
1, (−1)iw

)
if ỹ = 0.

Here, w ∈ R`−1 is an arbitrary vector with ‖w‖ = 1. It is obvious that

λ1(y) ≤ λ2(y), λ1(y) ≥ 0 ⇔ y ∈ K`,

λ1(y) = 0 ⇔ y ∈ bdK`, λ1(y) > 0 ⇔ y ∈ intK`

and
‖v1(y)‖ = ‖v2(y)‖ = 1/

√
2, v1(y)>v2(y) = 0.

Now, we study the relation between the complementarity on SOCs and the spectral factorization.
The vectors x ∈ Rn and z ∈ Rn are said to satisfy the second-order cone complementarity if

x ∈ K, z ∈ K, x>z = 0. (2.3)

It is easily seen that (2.3) holds if and only if

xj ∈ Knj , zj ∈ Knj , and x>j zj = 0, (j = 1, . . . ,m) (2.4)

where xj and zj denote the Cartesian subvectors of x and z, respectively, i.e.,

x = (x1, . . . , xm), z = (z1, . . . , zm) ∈ Rn1 × · · · × Rnm . (2.5)

Moreover, by [13, Prop. 2.3], we have

v1(xj) = v2(zj) and v2(xj) = v1(zj).

3 The explicit exchange method for SOCCSIP

In this section, we propose an explicit exchange method for solving SOCCSIP (1.1) and give some
fundamental properties. In each iteration of the algorithm, we solve a finitely constrained convex
programming as a subproblem. For a finite set E = {s1, . . . , sm} ⊂ Ω, let CSOCP(E) denote the
finitely constrained convex second-order cone programming problem defined as

CSOCP(E) :
Minimize f(x)

subject to x ∈ K, c(x, sj) ≤ 0 (j = 1, . . . ,m).

Then, the first-order optimality condition of CSOCP(E) is given by

z := ∇f(x) +
m∑

j=1

ν(sj)∇xc(x, sj) ∈ K, x ∈ K, x>z = 0,

c(x, sj)ν(sj) = 0, c(x, sj) ≤ 0, ν(sj) ≥ 0 (j = 1, . . . ,m),

(3.1)
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where ν(sj) (j = 1, . . . ,m) denotes the Lagrange multiplier corresponding to the constraint c(x, sj) ≤
0. For more details on the optimality conditions, see e.g., [4, 5]. Actually, (3.1) reduces to a monotone
second-order cone complementarity problem (SOCCP), which can be solved by existing algorithms [6,
10, 14, 15, 23]. Nonlinear second-order cone programming such as CSOCP(E) is also studied by some
researchers [17, 34], but they are still immature.

The concrete scheme of the algorithm is written as follows.

Algorithm 1

Step 0. Find a finite index set Ω0 = {s0
1, . . . , s

0
m0

} satisfying Theorem 2.1, and let E0 be such that
Ω0 ⊂ E0 ⊂ Ω and |E0| < ∞. Solve CSOCP(E0) to obtain its optimum x0. Choose a small
number η > 0 and set k := 0.

Step 1. Find an sk
new ∈ Ω such that

c(xk, sk
new) > η. (3.2)

If such an sk
new does not exist, i.e., maxs∈Ω c(xk, s) ≤ η, then stop. Otherwise, let

Ek+1 := Ek ∪ {sk
new}.

Step 2. Solve CSOCP(Ek+1) to obtain its optimum xk+1 and the Lagrange multipliers {νk+1(s)|s ∈
Ek+1}.

Step 3. Let
Ek+1 := Ω0 ∪

{
s ∈ Ek+1 \ Ω0

∣∣ νk+1(s) > 0
}
.

Let k := k + 1 and go to Step 1.

Steps 1 and 2 are the main differences from the algorithm in [19]. Note that, it is also possible to choose
multiple elements satisfying (3.2) in Step 1. Although we merely deal with the single-point exchange
scheme in the following analyses, they are also applicable to multiple exchange type algorithms. In
Step 2, CSOCP(Ek+1) can be solved by using an existing method. Step 3 is to remove the constraints
that are inactive at the optimum xk+1 and corresponding to t ∈ Ek+1 \ Ω0. Here, we note that xk+1

also solves CSOCP(Ek+1). Moreover, the sequence {xk} is bounded since we have Ω0 ⊂ Ek+1 for all
k. (See Proposition 4.1 given later.)

Next, we define some notations for convenience. For a finite set E = {s1, . . . , sm} ⊂ T , we
denote the feasible set and the optimal value of CSOCP(E) by F(E) ⊂ Rn and V (E) ∈ [−∞, +∞),
respectively, i.e.,

F(E) :=
{
x

∣∣ x ∈ K, c(x, sj) ≤ 0 (j = 1, . . . ,m)
}
,

V (E) := inf
{
f(x)

∣∣ x ∈ K, c(x, sj) ≤ 0 (j = 1, . . . ,m)
}
.

Moreover, we denote the optimal value of SOCCSIP (1.1) by V ∗ ∈ R, i.e.,

V ∗ := inf
{
f(x)

∣∣ x ∈ K, c(x, s) ≤ 0 (∀s ∈ Ω)
}
.

Let {xk} and {νk(s)} be the sequences generated by Algorithm 1, and {zk} be defined as

zk := ∇f(xk) +
∑
s∈Ek

νk(s)∇xc(xk, s). (3.3)

Then, the complementarity slackness condition (3.1) yields

xk ∈ K, zk ∈ K, (xk)>zk = 0,

c(xk, s) ≤ 0, νk(s) ≥ 0, c(xk, s)νk(s) = 0, ∀s ∈ Ek.
(3.4)

Moreover, by using the spectral factorization for Cartesian subvectors xk
j and zk

j (see (2.5)), we define
x̂k

ij , ẑk
ij ∈ R and êk

ij ∈ Rnj for each k as follows:
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• When nj = 1,

x̂k
1j := x̂k

2j :=
1
2
xk

j , ẑk
1j := ẑk

2j :=
1
2
zk
j , êk

1j := êk
2j := 1. (3.5)

• When
[
nj ≥ 2 and k = 1

]
or

[
nj ≥ 2, k ≥ 2, and ‖

√
2v1(xk

j ) − êk−1
1j ‖ ≤ ‖

√
2v1(xk

j ) − êk−1
2j ‖

]
,

x̂k
1j := λ1(xk

j )/
√

2, x̂k
2j := λ2(xk

j )/
√

2, ẑk
1j := λ2(zk

j )/
√

2, ẑk
2j := λ1(zk

j )/
√

2,

êk
1j :=

√
2v1(xk

j ) =
√

2v2(zk
j ), êk

2j :=
√

2v2(xk
j ) =

√
2v1(zk

j ).
(3.6)

• When nj ≥ 2, k ≥ 2, and ‖
√

2v1(xk
j ) − êk−1

1j ‖ > ‖
√

2v1(xk
j ) − êk−1

2j ‖,

x̂k
1j := λ2(xk

j )/
√

2, x̂k
2j := λ1(xk

j )/
√

2, ẑk
1j := λ1(zk

j )/
√

2, ẑk
2j := λ2(zk

j )/
√

2,

êk
1j :=

√
2v2(xk

j ) =
√

2v1(zk
j ), êk

2j :=
√

2v1(xk
j ) =

√
2v2(zk

j ).
(3.7)

Then, we have

xk = (xk
j )

m
j=1 =

(
x̂k

1j ê
k
1j + x̂k

2j ê
k
2j

)m

j=1
, zk = (zk

j )m
j=1 =

(
ẑk
1j ê

k
1j + ẑk

2j ê
k
2j

)m

j=1
, (3.8)

for each k. For such factorizations, we have the following proposition

Proposition 3.1 [13, Prop. 3.4] Let xk
j and zk

j be factorized as (3.8). Then, for each i = 1, 2, j =
1, . . . ,m, and k ≥ 1, the following statements hold.

(a) max(x̂k
ij , ẑ

k
ij) ≥ 0 and min(x̂k

ij , ẑ
k
ij) = 0.

(b) (i) ‖êk
ij‖ = 1. (ii) êk

ij ∈ bdKnj and (êk
1j)

>êk
2j = 0 if nj ≥ 2

(c) (êk
ij)

>êk+1
ij ≥ 1/2.

We also define

dk := xk+1 − xk,

Fk := f(xk+1) − f(xk) −∇f(xk)>dk,

Gk := f(xk) − f(xk+1) + ∇f(xk+1)>dk

Pk(s) := c(xk+1, s) − c(xk, s) −∇xc(xk, s)>dk,

Qk(s) := c(xk, s) − c(xk+1, s) + ∇xc(xk+1, s)>dk.

Since f and c(·, s) are continuously differentiable and convex, we have

Fk = o(‖dk‖), Gk = o(‖dk‖), Fk ≥ 0, Gk ≥ 0
Pk(s) = o(‖dk‖), Qk = o(‖dk‖), Pk(s) ≥ 0, Qk(s) ≥ 0.

4 Convergence analysis

In this section, we show that the proposed algorithm terminates in a finite number of iterations under
some mild conditions. Furthermore, we prove that the last output is sufficiently close to the optimal
solution of SOCCSIP (1.1) if the criterion value is sufficiently close to zero.
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4.1 Some technical propositions

In this subsection, we give some technical propositions that are important and convenient for analyzing
the convergence of Algorithm 1.

We first show the boundedness of the generated sequence.

Proposition 4.1 The sequence {xk} generated by Algorithm 1 is bounded, i.e., there exists M > 0
such that ‖xk‖ ≤ M for all k.

Proof. Let L∗ be the optimal level set of SOCCSIP (1.1), i.e., L∗ := {x | f(x) ≤ V ∗}. Then,
L∗ ∩ F(Ω0) is bounded from Theorem 2.1. Moreover, we have xk ∈ L∗ ∩ F(Ω0) for all k since
f(xk) ≤ V ∗ and xk ∈ F(Ek) ⊂ F(Ω0). Hence {xk} is bounded.

The following proposition evaluates the increment of the optimal value of CSOCP(Ek) in each
iteration.

Proposition 4.2 For all k ≥ 0, we have

f(xk+1) − f(xk)

= (zk)>xk+1 + Fk +
∑
s∈Ek

νk(s)(Pk(s) − c(xk+1, s)) (4.1)

= −(zk+1)>xk − Gk −
∑
s∈Ek

νk+1(s)
(
Qk(s) − c(xk, s)

)
+ νk+1(sk

new)
(
c(xk, sk

new) − Qk(sk
new)

)
(4.2)

= −(zk+1)>xk − Gk −
∑
s∈Ek

νk+1(s)
(
Qk(s) − c(xk, s)

)
− νk+1(sk

new)∇xc(xk+1, sk
new)>dk (4.3)

Proof. By the definitions of dk, zk, Fk and Pk(s), we have

(zk)>xk+1 = (zk)>(xk+1 − xk) +
∑

s∈Ek
νk(s)c(xk, s)

=
(
∇f(xk) +

∑
s∈Ek

νk(s)∇xc(xk, s)
)>

dk +
∑

s∈Ek
νk(s)c(xk, s)

= ∇f(xk)>dk +
∑

s∈Ek
νk(s)

(
∇xc(xk, s)>dk + c(xk, s)

)
= f(xk+1) − f(xk) − Fk +

∑
s∈Ek

νk(s)
(
c(xk+1, s) − Pk(s)

)
,

where the first equality follows from (3.4). Thus we have (4.1).
Next, we show the last two equalities. By the definitions of dk, zk+1, Gk and Qk(s), we have

−(zk+1)>xk

= (zk+1)>(xk+1 − xk) +
∑

s∈Ek+1
νk+1(s)c(xk+1, s)

=
(
∇f(xk+1) +

∑
s∈Ek+1

νk+1(s)∇xc(xk+1, s)
)>

dk +
∑

s∈Ek+1
νk+1(s)c(xk+1, s)

= ∇f(xk+1)>dk +
∑

s∈Ek+1
νk+1(s)

(
∇xc(xk+1, s)>dk + c(xk+1, s)

)
= ∇f(xk+1)>dk +

∑
s∈Ek+1

νk+1(s)
(
Qk(s) − c(xk, s)

)
= ∇f(xk+1)>dk +

∑
s∈Ek

νk+1(s)
(
Qk(s) − c(xk, s)

)
+ νk+1(sk

new)
(
Qk(sk

new) − c(xk, sk
new)

)
= ∇f(xk+1)>dk +

∑
s∈Ek

νk+1(s)
(
Qk(s) − c(xk, s)

)
+ νk+1(sk

new)∇xc(xk+1, sk
new)>dk

where the first equality follows from (3.4) with k := k + 1, the fifth equality follows from Ek+1 =
Ek ∪ {sk

new} and νk+1(s) = 0 for any s ∈ Ek+1 \ Ek+1, and the last equality holds since νk+1(sk
new)

c(xk+1, sk
new) = 0. Thus we have (4.2) and (4.3).

Note that we have Fk ≥ 0, νk(s) ≥ 0, c(xk+1, s) ≤ 0, and Pk(s) ≥ 0 for any s ∈ Ek. Moreover,
zk ∈ K and xk+1 ∈ K entail (zk)>xk+1 ≥ 0. These inequalities and (4.1) lead us to the following
corollary.
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Corollary 4.1 The sequence of optimal values {f(xk)} of {CSOCP(Ek)} is monotonically nonde-
creasing, i.e.,

f(x0) ≤ f(x1) ≤ · · · ≤ f(xk) ≤ f(xk+1) ≤ · · · ≤ V ∗.

The following proposition shows that the distance between xk and xk+1 never converges to 0.

Proposition 4.3 Let {xk} be the sequence generated by Algorithm 1. Then, there exists dmin > 0
such that ‖xk − xk+1‖ ≥ dmin for all k.

Proof. Note that function c(·, sk
new) is locally Lipschitzian since it is convex and c(x, sk

new) < ∞
for any x ∈ Rn. Also, we have c(xk, sk

new) > η and c(xk+1, sk
new) ≤ 0 for all k. Thus, noticing the

boundedness of {xk} and Ω, we have

0 < η ≤ c(xk, sk
new) − c(xk+1, sk

new)
≤ L‖xk − xk+1‖,

where L > 0 is the Lipschitzian constant. Hence, letting dmin := η/L > 0, we obtain the result.

The following two propositions show that the sequences {
∑

s∈Ek
νk(s)} and {‖zk‖} are bounded,

and
∑

s∈Ek
νk(s) is positive away from 0.

Proposition 4.4 Let {xk} and {νk} be the sequences generated by Algorithm 1, and {zk} be defined
by (3.3). Then, there exists M > 0 such that ‖zk‖ ≤ M and

∑
s∈Ek

νk(s) ≤ M for all k.

Proof. Let x ∈ K and β > 0 be chosen so that c(x, s) ≤ −β for any s ∈ Ω. (Such a vector and a
positive number exist from Assumption A.) Then, we have

0 ≤ (zk)>(x − xk) +
∑

s∈Ek
νk(s)c(xk, s)

= ∇f(xk)>(x − xk) +
∑

s∈Ek
νk(s)

(
∇xc(xk, s)>(x − xk) + c(xk, s)

)
≤ ∇f(xk)>(x − xk) +

∑
s∈Ek

νk(s)c(x, s)

≤ ∇f(xk)>(x − xk) − β
∑

s∈Ek
νk(s),

where the first inequality follows from (zk)>x ≥ 0 and (3.4), the second inequality is due to the
convexity of c(·, s), and the last inequality follows from c(x, s) ≤ −β. Hence, we have

∑
s∈Ek

νk(s) ≤
∇f(xk)>(x − xk)/β, which implies the boundedness of {

∑
s∈Ek

νk(s)} since ∇f is continuous and
{xk} is bounded. The boundedness of {‖zk‖} can be easily shown by the definition of zk and the
boundedness of {

∑
s∈Ek

νk(s)}.

Proposition 4.5 Let {xk} and {νk} be the sequences generated by Algorithm 1. Then, there exists
α > 0 such that

∑
s∈Ek

νk(s) ≥ α for all k.

Proof. Assume that the statement does not hold for contradiction. Then, Algorithm 1 does not
terminate finitely, and lim infk→∞

∑
s∈Ek

νk(s) = 0. Since {xk} is bounded from Proposition 4.1,
there exists K ⊆ {1, 2, . . .} such that x := limk→∞,k∈K xk and limk→∞,k∈K

∑
s∈Ek

νk(s) = 0. Also,
we have limk→∞,k∈K zk = ∇f(x) from (3.3) and the boundedness of {∇xc(xk, s)}. Thus, we have
from (3.4) x ∈ K, ∇f(x) ∈ K and x>∇f(x) = 0, which imply f(x) = min{f(x) |x ∈ K} due
to the convexity and the KKT conditions. Hence, by Theorem 2.1 and Ω0 ⊂ Ek, we must have
f(x) < V (Ω0) ≤ V (Ek) = f(xk). However, this contradicts f(xk) ≤ f(xk+1) ≤ · · · ≤ f(x).
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4.2 Finite termination for strictly convex case

We first prove that Algorithm 1 terminates in a finite number of iterations when f or c(·, s) is strictly
convex.

Assumption B At least one of the following statements holds: (a) f is strictly convex; (b) c(·, s) is
strictly convex for any s ∈ Ω.

Theorem 4.1 Suppose that Assumption B holds. Then, Algorithm 1 terminates in a finite number
of iterations.

Proof. Suppose to the contrary that Algorithm 1 does not finitely stop. Then, by Corollary 4.1,
we have V∞ := limk→∞ f(xk) with

f(x1) ≤ f(x2) ≤ · · · ≤ f(xk) ≤ f(xk+1) ≤ · · · ≤ V∞ ≤ V ∗. (4.4)

Thus,

lim
k→∞

(
f(xk+1) − f(xk)

)
= 0. (4.5)

Let sk
min := argmins∈Ek

Pk(s) for each k. (Notice that Ek 6= ∅ from Proposition 4.5.) Since {xk}
and Ω are bounded, there exist x, d ∈ Rn, smin ∈ Ω, and an index set K ⊆ {1, 2, . . .} such that
limk→∞,k∈K(xk, dk, sk

min) = (x, d, smin). Hence, by (4.1) and its nonnegativity of each term, we have

0 = lim
k→∞,k∈K

Fk = f(x + d) − f(x) −∇f(x)>d, (4.6)

0 = lim
k→∞,k∈K

∑
s∈Ek

νk(s)Pk(s). (4.7)

If (a) of Assumption B holds, then we have d = 0 from (4.6) and the strict convexity of f .
However, this contradicts Proposition 4.3. If (b) of Assumption B holds, then (4.7) together with∑

s∈Ek
νk(s) ≥ α > 0 from Proposition 4.5 yields that

0 = lim
k→∞
k∈K

∑
s∈Ek

νk(s)Pk(s) ≥ lim
k→∞
k∈K

Pk(sk
min)

∑
s∈Ek

νk(s)

≥
(
c(x + d, smin) − c(x, smin) −∇xc(x, smin)>d

)
α,

which implies c(x + d, smin) − c(x, smin) − ∇xc(x, smin)>d = 0. Since c(·, smin) is strictly convex, we
have d = 0. However, it also contradicts Proposition 4.3.

4.3 Finite termination without strict convexity

In this section, we show the finite termination of Algorithm 1 without assuming the strict convexity
of f or c(·, s). First we give a lemma that plays a crucial role in later analyses.

Lemma 4.1 Let θ : Rn → R be an arbitrary continuously differentiable convex function, and x, y ∈ Rn

be arbitrary vectors. Then we have

θ(y) − θ(x) −∇θ(x)>(y − x) = 0 ⇐⇒ θ(x) − θ(y) + ∇θ(y)>(y − x) = 0.
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Proof. The above formula holds evidently when x = y. Also, if we have (⇒), then (⇐) holds
automatically by swapping x for y. Therefore, we only show (⇒) with x 6= y.

Let x and y be arbitrary vectors such that x 6= y and θ(y) − θ(x) − ∇θ(x)>(y − x) = 0. Choose
α ∈ (0, 1) arbitrarily. Then, we have

0 = αθ(y) − αθ(x) − α∇θ(x)>(y − x)

=
[
(1 − α)θ(x) + αθ(y) − θ

(
(1 − α)x + αy

)]
+

[
θ
(
(1 − α)x + αy

)
− θ(x) −∇θ(x)>

(
(1 − α)x + αy − x

)]
,

which implies

(1 − α)θ(x) + αθ(y) − θ((1 − α)x + αy) = 0 (4.8)

and θ((1 − α)x + αy) − θ(x) −∇θ(x)>((1 − α)x + αy − x) = 0 since θ is convex. Hence, we have

−∇θ(y)>(y − x) = ∇θ(y)>(x − y)
= lim

t↓0

(
θ((1 − t)y + tx)) − θ(y)

)
/t

= lim
t↓0

(
(1 − t)θ(y) + tθ(x)) − θ(y)

)
/t

= θ(x) − θ(y),

where the third equality follows from (4.8) with α := 1 − t. This completes the proof.

In order to show the finite iteration of the algorithm, we introduce the following assumption.

Assumption C There exist k̂ ≥ 0 and δ > 0 such that the following statements holds.

(i) For all k ≥ k̂, it follows max(x̂k
ij , ẑ

k
ij) ≥ δ.

(ii) For all k ≥ k̂ and s ∈ Ek, it follows max(νk(s),−c(xk, s)) ≥ δ.

(iii) For all k ≥ k̂, it follows νk+1(sk
new) ≥ δ.

(iv) For all k ≥ k̂, it follows ∇xc(xk+1, sk
new)>(xk − xk+1) ≥ δ‖xk − xk+1‖.

We note that this assumption can be checked in each iteration of the algorithm. Statements (i) and
(ii) claim that the complementarity conditions in (3.4) should be satisfied sufficiently strictly. Due
to the complementarity, we always have min(νk(s),−c(xk, s)) = min(x̂k

ij , ẑ
k
ij) = 0. Statement (ii) also

implies νk(s) ≥ δ for all s ∈ Ek\Ω0 since all inactive indices not belonging to Ω0 are removed in Step 3.
Statement (iv) requires that the angle between ∇xc(xk+1, sk

new) and xk − xk+1 should be strictly less
than π/2. (See Figures 1 and 2.) Although this statement may not be intuitively recognizable, it
was satisfied for all test problems in our numerical experiment. Indeed, ∇xc(xk+1, sk

new)>(xk − xk+1)
is guaranteed to be at least nonnegative when νk(sk

new) > 0.∗1 Moreover, as the following three
propositions (Propositions 4.6 – 4.8) indicate, we have some mild and intuitive conditions under which
Assumption C (iv) holds.

Proposition 4.6 Suppose that K consists of a single SOC, i.e., K = Kn. Moreover, assume that
there exist k̂ ≥ 0 and δ > 0 such that Assumption C(i) holds, |∇f(xk)>xk| ≥ δ, and xk ∈ bdKn \ {0}
for all k ≥ k̂. Then, Assumption C(iv) holds.

∗1By (4.3) together with the nonnegativity of (xk)>zk+1, Gk, νk+1 and Qk(s), we have 0 ≤ f(xk+1) − f(xk) ≤
νk+1(s

k
new)∇xc(xk+1, sk

new)>(xk − xk+1). Dividing both sides by νk+1(s
k
new) > 0, we obtain the nonnegativity result.
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xk+1 xkr
(xk+1; sknew)
ontour of f(x)

(x; sknew) � 0K
(x; s) � 0(s 2 Ek)

Figure 1: Assumption C (iv) holds.

xk+1 xkr
(xk+1; sknew)
ontour of f(x)


(x; sknew) � 0 K 
(x; s) � 0(s 2 Ek)
Figure 2: Assumption C (iv) does not hold.

Proof. The convexity of c(·, s) together with 0 ≤ νk+1(s) ⊥ −c(xk+1, s) ≥ 0 yields∑
s∈Ek

νk+1(s)∇xc(xk+1, s)>(xk+1 − xk) ≥
∑

s∈Ek
νk+1(s)

(
c(xk+1, s) − c(xk, s)

)
≥ 0. (4.9)

Moreover, noticing zk+1 = ∇f(xk+1) + νk+1(sk
new)∇xc(xk+1, sk

new) +
∑

s∈Ek
νk+1(s)∇xc(xk+1, s), we

have

−∇xc(xk+1, sk
new)>(xk+1 − xk)

=
[
(∇f(xk+1) − zk+1)>(xk+1 − xk) +

∑
s∈Ek

νk+1(s)∇xc(xk+1, s)>(xk+1 − xk)
] /

νk+1(sk
new)

≥ (∇f(xk+1) − zk+1)>(xk+1 − xk)
/

νk+1(sk
new)

≥ (∇f(xk+1) − zk+1)>(xk+1 − xk)‖xk+1 − xk‖
/

(2M2),

where the first inequality follows from (4.9), and the last inequality holds since ‖xk+1−xk‖ ≤ ‖xk+1‖+
‖xk‖ ≤ 2M and νk+1(sk

new) ≤ M by Propositions 4.1 and 4.4, respectively. Hence, it suffices to
show the existence of a positive number δ′ > 0 such that (∇f(xk+1) − zk+1)>(xk+1 − xk) ≥ δ′

for all k sufficiently large. Suppose for contradiction that lim infk→∞(∇f(xk+1) − zk+1)>(xk+1 −
xk) ≤ 0. Then we have lim infk→∞∇f(xk+1)>(xk+1 − xk) = lim infk→∞(zk+1)>(xk+1 − xk) = 0 since
∇f(xk+1)>(xk+1 − xk) ≥ 0 and −(zk+1)>(xk+1 − xk) ≥ 0. Thus, due to the boundedness of {zk} and
{xk}, there exist K ⊂ {0, 1, 2, . . .} and vectors x, x+ and z+ such that limk→∞,k∈K(xk, xk+1, zk+1) =
(x, x+, z+) and

∇f(x+)>(x+ − x) = (z+)>(x+ − x) = 0. (4.10)

By xk+1 ∈ Kn \ {0} for all k ≥ k̂ and Assumption C (i), we must have x+ ∈ Kn \ {0}, which together
with Kn ∈ z+ ⊥ x+ ∈ Kn and Assumption C (i) yields z+ ∈ Kn \ {0}. Moreover, since (4.10) implies
Kn ∈ z+ ⊥ x ∈ Kn, there must exist a nonnegative scalar∗2 β ≥ 0 such that x = βx+ and β 6= 1.
(Notice that x+ 6= x.) Hence, by (4.10), we have 0 = ∇f(x+)>(x+ − x) = (1 − β)∇f(x+)>x+, i.e.,
∇f(x+)>x+ = 0. However, this contradicts the assumption that |∇f(xk)>xk| ≥ δ for all k ≥ k̂. Thus,
Assumption C (iv) holds.

Proposition 4.7 If c(·, s) is affine for any s ∈ Ω, then Assumption C(iv) holds.

Proof. Since Proposition 4.1 implies ‖xk − xk+1‖ ≤ ‖xk‖ + ‖xk+1‖ ≤ 2M , we have

∇xc(xk+1, sk
new)>(xk − xk+1) = c(xk, sk

new) − c(xk+1, sk
new) > η >

η

2M
‖xk+1 − xk‖,

where the equality holds since c(·, sk
new) is affine, and the first inequality follows from c(xk, sk

new) > η
and c(xk+1, sk

new) ≤ 0. Hence, letting δ := η/(2M), we obtain Assumption C (iv).

∗2Notice that, if K consists of multiple SOCs, then the three points x, x+ and 0 may not be collinear.
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Proposition 4.8 Suppose that function c is quadratic with respect to x, i.e., it is given as

c(x, s) := x>M(s)x + 2q(s)>x + r(s),

where M : Ω → Rn×n, q : Ω → Rn and r : Ω → R are continuous, and M(s) ∈ Rn×n is symmetric and
positive semidefinite for any s ∈ Ω. Moreover, assume that q(s)>ξ 6= 0 for any s ∈ Ω and ξ ∈ Rn \{0}
with ξ>M(s)ξ = 0. Then, Assumption C (iv) holds.

Proof. Let sk ∈ Ek be an arbitrary element with νk(sk) > 0. Let ξk ∈ Rn be any vector such that
‖ξk‖ = 1 and ∇xc(xk, sk)>ξk = 2(M(sk)xk + q(sk))>ξk = 0. Then we have

c(xk + ξk, sk) = (xk + ξk)>M(sk)(xk + ξk) + 2q(sk)>(xk + ξk) + r(sk)
=

[
(xk)>M(sk)xk + 2q(sk)>xk + r(sk)

]
+ (ξk)>M(sk)ξk + 2(M(sk)xk + q(sk))>ξk

= (ξk)>M(sk)ξk,

where the last equality follows since ∇xc(xk, sk)>ξk = 0 and c(xk, sk) = 0 from νk(sk) > 0.
We first show that there exists δ′ > 0 such that

(ξk)>M(sk)ξk ≥ δ′ (4.11)

for all k. Suppose for contradiction that there does not exist such an δ′ > 0. Then, we must have
lim infk→∞(ξk)>M(sk)ξk = 0. Since {xk}, {ξk} and {sk} are bounded and M(s) is continuous, there
exists K ⊂ {0, 1, . . .} such that limk→∞,k∈K xk = x, limk→∞,k∈K ξk = ξ, limk→∞,k∈K sk = s, and
ξ
>
M(s)ξ = 0. Notice that ξ

>
M(s)ξ = 0 implies M(s)ξ = 0. Moreover, we have ∇xc(x, s)>ξ = 0 since

∇xc(xk, sk)>ξk = 0 for all k. We thus have 0 = ∇xc(x, s)>ξ = 2(M(s)x + q(s))>ξ = q(s)>ξ. However,
this contradicts the assumption.

Next, we show that there exists δ′′ > 0 such that

−∇xc(xk, sk)>(xk+1 − xk) ≥ δ′′ (4.12)

for all k. Let Pk :=
{
x

∣∣ ∇xc(xk, sk)>(x−xk)
}

= 0, x̃k+1 be the Euclidean projection of xk+1 onto Pk,
and θk be the angle between xk+1 −xk and x̃k+1 −xk. Notice that we always have 0 ≤ θk ≤ π/2 since
(xk+1 −xk)>(x̃k+1 −xk) =

(
(x̃k+1 −xk)− (x̃k+1 −xk+1)

)>(x̃k+1 −xk) = ‖x̃k+1 −xk‖2, where the last
equality follows from (x̃k+1 − xk+1) ⊥ (x̃k+1 − xk). If θk > π/4, then we have −∇xc(xk, sk)>(xk+1 −
xk) = ‖∇xc(xk, sk)‖‖xk+1 − xk‖ cos(π/2 − θk) > γdmin/

√
2, where dmin > 0 is defined in Proposition

4.3 and γ > 0 is the positive number such that

‖∇xc(xk, sk)‖ ≥ γ (4.13)

for all k.∗3 If θk ≤ π/4, then we have ‖x̃k+1 − xk‖ = ‖xk+1 − xk‖ cos θk ≥ dmin/
√

2. Hence, letting
ξk := (x̃k+1 − xk)/‖x̃k+1 − xk‖ and τk := ‖x̃k+1 − xk‖, we have

c(x̃k+1, sk) = (x̃k+1)>M(sk)x̃k+1 + 2q(sk)>x̃k+1 + r(sk)
= (xk + τkξ

k)>M(sk)(xk + τkξ
k) + 2q(sk)>(xk + τkξ

k) + r(sk)
= τ2

k (ξk)>M(sk)ξk

≥ d2
minδ

′/2,

where the last equality follows since c(xk, sk) = 0 and ∇xc(xk, sk)>ξk = 0, and the inequality is due
to (4.11) and τk = ‖x̃k+1 − xk‖ ≥ dmin/

√
2. Since c(xk+1, sk) ≤ 0 and c is locally Lipschitzian, there

∗3Assumption A (iii) and Proposition 4.1 yield 0 < −c(x, smin) ≤ c(xk, sk) − c(x, sk) ≤ ∇xc(xk, sk)>(xk − x) ≤
‖∇xc(xk, sk)‖(M + ‖x‖), where smin := argmins∈Ωc(x, s). Therefore, we can choose γ := −c(x, smin)/(M + ‖x‖) > 0.
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exists L > 0 such that d2
minδ

′/2 ≤ c(x̃k+1, sk)−c(xk+1, sk) ≤ L‖x̃k+1−xk+1‖, that is, ‖x̃k+1−xk+1‖ ≥
d2

minδ
′/(2L). So we have

−∇xc(xk, sk)>(xk+1 − xk) = ‖∇xc(xk, sk)‖‖x̃k+1 − xk+1‖ ≥ γd2
minδ

′/(2L),

where γ > 0 is a positive number given by (4.13).
Finally, we show that Assumption C(iv) holds. Notice that

∇f(xk+1)>(xk+1 − xk) ≥ ∇f(xk)>(xk+1 − xk)

=
[
zk −

∑
s∈Ek

νk(s)∇xc(xk, s)
]>(xk+1 − xk)

≥
∑

s∈Ek
νk(s)δ′′ ≥ αδ′′, (4.14)

where the first inequality is due to the convexity of f , the second inequality follows from (4.12) and
(zk)>xk = 0 ≤ (zk)>xk+1, and the last inequality is due to Proposition 4.5. We thus have

νk+1(sk
new)∇xc(xk+1, sk

new)>(xk − xk+1)
= −νk+1(sk

new)∇xc(xk+1, sk
new)>(xk+1 − xk)

=
[
− zk+1 + ∇f(xk+1) +

∑
s∈Ek

νk+1(s)∇xc(xk+1, s)
]>

(xk+1 − xk)

≥ αδ′′ +
∑

s∈Ek
νk+1(s)

[
Qk(s) − c(xk, s) + c(xk+1, s)

]
≥ αδ′′, (4.15)

where the first inequality is due to (4.14), (zk+1)>xk+1 = 0 ≤ (zk+1)>xk, and the definition of Qk(s),
and the last inequality follows from νk+1(s) ≥ 0, Qk(s) ≥ 0, c(xk, s) ≤ 0 and νk+1(s)c(xk+1, s) = 0.
By Propositions 4.1 and 4.4, we have νk+1(sk

new) ≤ M and ‖xk−xk+1‖ ≤ ‖xk‖+‖xk+1‖ ≤ 2M . Hence,
dividing both sides of (4.15) by νk+1(sk

new) > 0, we obtain

∇xc(xk+1, sk
new)>(xk − xk+1) ≥ αδ′′

νk+1(sk
new)

≥ αδ′′

2M2
‖xk − xk+1‖.

Now, by using the aforementioned assumption and lemma, we provide the theorem for the finite
iteration of Algorithm 1.

Theorem 4.2 Suppose that Assumption C holds. Then, Algorithm 1 terminates in a finite number
of iterations.

Proof. Suppose to the contrary that Algorithm 1 does not finitely terminate. Then, by Corollary 4.1
we have

f(x1) ≤ · · · ≤ f(xk) ≤ f(xk+1) ≤ · · · ≤ V ∗,

which implies

lim
k→∞

(f(xk+1) − f(xk)) = 0. (4.16)

Hence, each term in (4.1) also converges to 0 due to its nonnegativity. Let E+
k := {s ∈ Ek | νk(s) >

0} = {s ∈ Ek | νk(s) ≥ δ}, and sk
max := argmaxs∈E+

k
Qk(s). Moreover, noticing the boundedness of

{xk} and Ω, let (x, x+, smax) ∈ R × R × Ω be an arbitrary accumulation point of {(xk, xk+1, sk
max)}.

Then, there exists an index set K ⊆ {0, 1, 2, . . .} such that limk→∞,k∈K(xk, xk+1, sk
max) = (x, x+, smax).

Since we have Proposition 4.3, it must hold x 6= x+.
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We first show that, for each s ∈ Ω0, there exists k̄ such that either

νk(s) ≥ δ (∀k ≥ k̄) or νk(s) = 0 (∀k ≥ k̄). (4.17)

Fix s ∈ Ω0 arbitrarily. Then, by Assumption C(ii), we must have either lim supk→∞ νk(s) = 0 or
lim supk→∞ νk(s) ≥ δ. If lim supk→∞ νk(s) = 0, then we obviously have νk(s) = 0 for all k sufficiently
large. If lim supk→∞ νk(s) ≥ δ, then there exists K ′ ⊂ {1, 2, . . .} such that |K ′| = ∞ and νk(s) ≥ δ
for all k ∈ K ′. Since νk(s)c(xk+1, s) converges to 0, we have an ε ∈ (0, δ2) and k̄′ ≥ k̂ such that
0 ≤ −νk(s)c(xk+1, s) < ε for all k ≥ k̄′. Now, choose an arbitrary k̄ ≥ k̄′ such that νk̄(s) ≥ δ. Then,
we have 0 ≤ −c(xk̄+1, s) < ε/δ < δ, which implies c(xk̄+1, s) = 0 and νk̄+1(s) ≥ δ from Assumption
C(ii). We thus obtain (4.17) recursively.

We next show

lim
k→∞

∑
s∈Ek

νk+1(s)c(xk, s) = 0, lim
k→∞

Gk = 0, lim
k→∞

∑
s∈Ek

νk+1(s)Qk(s) = 0. (4.18)

We readily have limk→∞
∑

s∈Ek
νk+1(s)c(xk, s) = 0 since (4.17) implies that either νk+1(s) or c(xk, s)

is 0 for all k sufficiently large. Since limk→∞ Fk = 0, we have

lim
k→∞,k∈K

Fk = f(x+) − f(x) −∇f(x)>(x+ − x) = 0.

Hence, by Lemma 4.1, we have

lim
k→∞,k∈K

Gk = f(x) − f(x+) + ∇f(x+)>(x+ − x) = 0.

Since x and x+ are arbitrary accumulation points, the above equality implies limk→∞ Gk = 0. Also,
since limk→∞

∑
s∈Ek

νk(s)Pk(s) = 0, Pk(s) ≥ 0, sk
max ∈ E+

k , and νk(s) ≥ δ for all s ∈ E+
k , we have

0 = lim
k→∞,k∈K

Pk(sk
max) = c(x+, smax) − c(x, smax) −∇xc(x, smax)>(x+ − x).

Hence, by Lemma 4.1, we have limk→∞,k∈K Qk(sk
max) = 0. Now, by Proposition 4.4, there exists

M > 0 such that
∑

s∈E+
k

νk+1(s) ≤
∑

s∈Ek+1
νk+1(s) =

∑
s∈Ek+1

νk+1(s) ≤ M for all k. Moreover,

νk+1(s) = 0 for all s ∈ Ek \ E+
k and sufficiently large k since we have (4.17) and Ek \ E+

k ⊂ Ω0. We
thus have

0 ≤
∑
s∈Ek

νk+1(s)Qk(s) =
∑

s∈E+
k

νk+1(s)Qk(s) ≤ Qk(sk
max)

∑
s∈E+

k

νk+1(s) ≤ MQk(sk
max),

which yields limk→∞,k∈K
∑

s∈Ek
νk+1(s)Qk(s) = 0. Since x, x+ and smax are arbitrary accumulation

points, we have limk→∞
∑

s∈Ek
νk+1(s)Qk(s) = 0.

Now, choose a sufficiently small number ε > 0 arbitrarily. By Assumption C (iv) and Proposition
4.3, we have

−∇xc(xk+1, sk
new)>dk = ∇xc(xk+1, sk

new)>(xk − xk+1) ≥ δ‖xk+1 − xk‖ = δdmin > 0. (4.19)

Hence, by (4.1) and (4.3) together with (4.16), (4.18) and (4.19), we have some positive integer
L = L(ε) ≥ k̂ such that

0 ≤ (zk)>xk+1 < ε, (xk)>zk+1 >
δdmin

2
=: γ (4.20)

for all k ≥ L. Choose k ≥ L arbitrarily, and let Ik
1 and Ik

2 be defined as

Ik
1 :=

{
(i, j)

∣∣ x̂k
ij > 0

}
, Ik

2 :=
{
(i, j)

∣∣ x̂k
ij = 0

}
.
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Then, we note that Ik
1 ∪ Ik

2 = {1, 2} × {1, . . . ,m}, and

(i, j) ∈ Ik
1 ⇐⇒ x̂k

ij ≥ δ ⇐⇒ ẑk
ij = 0,

(i, j) ∈ Ik
2 ⇐⇒ x̂k

ij = 0 ⇐⇒ ẑk
ij ≥ δ

(4.21)

from Proposition 3.1(a) and Assumption C (i). Let (i′, j′) ∈ Ik
2 be chosen arbitrarily∗4. Then we have

ε >

2∑
i=1

m∑
j=1

ẑk
ij x̂

k+1
ij (êk

ij)
>êk+1

ij ≥ ẑk
i′j′ x̂

k+1
i′j′ (êk

i′j′)
>êk+1

i′j′ ≥ 1
2
x̂k+1

i′j′ δ,

where the second inequality is due to the nonnegativity of x̂k+1
ij , ẑk

ij and (êk+1
ij )>êk

ij , and the last
inequality follows from Proposition 3.1(c) and (i′, j′) ∈ Ik

2 . Since ε > 0 can be chosen arbitrarily small
and we have (4.21), the above inequality means x̂k+1

i′j′ = 0. Hence, we have Ik
2 ⊂ Ik+1

2 .
Now, by (4.20), we have

γ <

2∑
i=1

m∑
j=1

ẑk+1
ij x̂k

ij(ê
k+1
ij )>êk

ij

=
∑

(i,j)∈Ik+1
1

ẑk+1
ij x̂k

ij(ê
k+1
ij )>êk

ij +
∑

(i,j)∈Ik
2

ẑk+1
ij x̂k

ij(ê
k+1
ij )>êk

ij +
∑

(i,j)∈Ik+1
2 \Ik

2

ẑk+1
ij x̂k

ij(ê
k+1
ij )>êk

ij

=
∑

(i,j)∈Ik+1
2 \Ik

2

ẑk+1
ij x̂k

ij(ê
k+1
ij )>êk

ij ,

which implies Ik+1
2 \ Ik

2 6= ∅. Since k ≥ L can be chosen arbitrarily, it must hold

|IL
2 | < |IL+1

2 | < |IL+2
2 | < · · · .

However, this contradicts the boundedness of {|Ik
2 |}. Thus, Algorithm 1 must terminate in a finite

number of iterations.

Next, we derive another finite termination theorem for the single SOC case, i.e., K = Kn and
n ≥ 2. In this case, we can show the finite termination result without Assumption C (i).

Theorem 4.3 Suppose that K = Kn with n ≥ 2, and (ii)–(iv) of Assumption C hold. Then, Algo-
rithm 1 terminates in a finite number of iterations.

Proof. Assume that Algorithm 1 does not terminate in finitely many iterations for contradiction.
Then, Corollary 4.1 implies the existence of V∞ := limk→∞ f(xk) ≤ V ∗. Also, by Propositions 4.1 and
4.4, there exists M > 0 such that ‖xk‖ < M and ‖zk‖ < M for all k.

Choose any small ε such that

0 < ε < min
{

γ,
γ3

M4

}
, (4.22)

where γ = δdmin/2 > 0. (See (4.20) and Proposition 4.3.) Then, by using a technique similar to the
proof of Theorem 4.2, we obtain an integer L = L(ε) ≥ k̄ such that

0 ≤ (zk)>xk+1 < ε, (4.23)
γ < (zk+1)>xk (4.24)

∗4When Ik
2 = ∅, we immediately obtain the desired result Ik

2 ⊆ Ik+1
2 .
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for all k ≥ L. Now, notice that (4.24) implies xk+1 /∈ intKn for all k ≥ L since it must hold zk+1 = 0
when xk+1 ∈ intKn. Also we obviously have xk 6= 0 from (4.24). Therefore, we have xk ∈ bdKn \ {0}
for all k ≥ L + 1. Similarly, we have zk ∈ bdKn \ {0} for all k ≥ L + 1. Thus, by Proposition 3.1, we
have

xk = x̂k
ik

êk
ik

= ‖xk‖êk
ik

and zk = ẑk
3−ik

êk
3−ik

= ‖zk‖êk
3−ik

(4.25)

for some ik ∈ {1, 2}, where x̂k
ik

, ẑk
ik

and êk
ik

are the scalars and the vector defined by (3.6)–(3.7).
(Notice that the subscript j can be omitted without confusion since we have only one SOC.) Now,
choose a positive integer r ≥ L + 2 arbitrarily. Then (4.23)–(4.25) hold for k = r − 1, r and r + 1.

Since (4.24) implies ‖zr‖‖xr−1‖ > γ and ‖zr+2‖‖xr+1‖ > γ, we have

‖zr‖ >
γ

‖xr−1‖
>

γ

M
, ‖xr+1‖ >

γ

‖zr+2‖
>

γ

M
. (4.26)

Moreover, (4.24) together with (4.25) yields

γ

M2
<

(zr+1)>xr

‖zr+1‖ ‖xr‖
= (êr+1

3−ir+1
)>êr

ir . (4.27)

Also, by the definitions of êk
1 and êk

2, we have

(êr
3−ir)

>êr+1
ir+1

− (êr+1
3−ir+1

)>êr
ir =

(
êr
3−ir

+ êr
ir

)>
êr+1
ir+1

−
(
êr+1
3−ir+1

+ êr+1
ir+1

)>
êr
ir

=
(√

2
0

)>
êr+1
ir+1

−
(√

2
0

)>
êr
ir

= 1 − 1 = 0. (4.28)

Thus, we have

(zr)>xr+1 = ‖zr‖‖xr+1‖(êr
3−ir)

>êr+1
ir+1

= ‖zr‖‖xr+1‖(êr+1
3−ir+1

)>êr
ir >

γ3

M4
,

where the first equality follows from (4.25) with k = r, the second equality is due to (4.28), and
the inequality follows from (4.26) and (4.27). However, this contradicts (4.22) and (4.23). Hence,
Algorithm 1 must terminate in a finite number of iterations.

4.4 Approximation analysis for obtained solution

So far, we have shown the finite termination property of Algorithm 1 via the aforementioned theorems.
Nevertheless, these theorems would be meaningless if the obtained solution is far from the optimum
of SOCCSIP (1.1). The following theorem guarantees that if η > 0 is sufficiently close to 0, then the
last output of Algorithm 1 is also close to the optimal solution of SOCCSIP (1.1).

Theorem 4.4 Suppose that Algorithm 1 terminates in a finite number of iterations. Let k∗(η) be the
number of iterations in which Algorithm 1 terminates. Then, limη→0 dist(xk∗(η),S) = 0.

Proof. Let h : Rn → R, X ⊂ Rn, and Sη ⊂ Rn be defined by

h(x) := max
s∈Ω

c(x, s), X := K ∩
{

x
∣∣∣ f(x) ≤ V ∗

}
, Sη := X ∩

{
x

∣∣∣ h(x) ≤ η
}

.

Then, h is continuous and convex, X is closed and convex, and S0 coincides with the solution set of
SOCCSIP (1.1). Moreover, since f(k∗(η)) ≤ V ∗, it follows xk∗(η) ∈ Sη for any η > 0. We can show
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the remainder of the proof in a way analogous to [13, Theorem 3.2].

Remark In Step 1 of Algorithm 1, we may also choose l (≥ 2) different points {sk
1, . . . , s

k
l } such that

c(xk, sk
i ) > η for i = 1, . . . , l with Ek+1 := Ek ∪ {sk

1, . . . , s
k
l }. For such a multiple explicit exchange

method, Theorems 4.2–4.4 can be shown by using analogous techniques.

5 Numerical results

In this section, we report some numerical results. We implement Algorithm 1 by Matlab 7.10.0
(R2010a) and run the experiments on a computer with Pentium (R) CPUs 3.19GHz and 3.20GHz with
0.99MB RAM. Throughout the experiments, we set η := 10−6 and E0 := Ω0. In Step 1, we find
an sk

new ∈ Ω with c(xk, sk
new) > η as follows. We first test N (≈ 100) grid points∗5 s̃1, . . . , s̃N ∈ Ω

to find sk := argmaxi=1,2,...,N c(xk, s̃i). If c(xk, sk) > η, then we set sk
new := sk. Otherwise, we

solve the constrained maximization problem: “Maximize c(xk, s) subject to s ∈ Ω” by means of
fmincon solver with the initial point sk. In Step 2, we solve CSOCP(Ek+1) by using the SOCCP
reformulation technique together with the regularized smoothing Newton method [15]. In Step 3,
we relax the criterion νk+1(s) > 0 to νk+1(s) > 10−6. We stop the iteration of Algorithm 1 when
max{c(xk, s)|s ∈ Ω} ≤ η.

Experiment 1 (Solving SOCCSIPs with various choices of parameters)

Let p : R2 → R, q : R2 → Rn and r : R2 → R be defined as

p(s) := 0.1 s2
1(1 + sin s2), q(s) :=

(
cos (−1)j(s1s2 + 0.5π)

)n

j=1
+ e,

r(s) := −(5 + sin s1 + log(s2 + 10)),

where e ∈ Rn denotes the identity element with respect to K. (For example, e = (1, 0, 0, 0, 1, 0, 0)>

when K = K4 ×K3.) Then, we solve the following SOCCSIP:

Minimize f(x) := log(1 + exp(x>Ax)) + b>x

subject to c(x, s) := p(s)(x>Mx)1.5 + q(s)>x + r(s) ≤ 0 ∀s ∈ Ω := [−βπ, βπ]2 (5.1)
x ∈ K,

where β > 0 is a given constant, and A ∈ Rn×n and M ∈ Rn×n are positive semidefinite symmetric
matrices. Function f is convex, but is not strictly convex when rank(A) < n. Also c is convex with
respect to x, but is not strictly convex when rank(M) < n. Matrices A and M are defined as A := PP>

and M := QQ>, where P and Q are respectively (n× na)- and (n× nm)-dimensional matrices whose
components are randomly chosen from [−1, 1]. Since P and Q are randomly generated, we almost
always have rank(A) = min(n, na) and rank(M) = min(n, nm). Also, each component of vector b is
randomly chosen from [−1, 1]. In applying Algorithm 1, we set Ω0 := {0} since K∩{x | c(x, 0) ≤ 0} is
compact. SOCCSIP (5.1) has a Slater point since c(0, s) = r(s) < 0 for all s ∈ Ω.

First, we solve SOCCSIP (5.1) with various choices of constant β > 0. We solve 12 problem
instances, each of which has different values of A, M and b. For all instances, we set K = K10, ra = 6
and rm = 8. Since A and M are rank-deficient, functions f and c(·, s) are not strictly convex. We show
the obtained results in Table 1, in which λ1 and λ2 denote the spectral values defined by (2.2) of the
obtained solutions x∗, ]ite denotes the number of iterations, cpu(s) denotes the CPU time in seconds,
and Efinal

k \Ω0 denotes the final output of Ek except Ω0. Notice that the number of ]ite does not count
∗5When Ω = [ls, us] ⊂ R, we test the 101 points ls + i(us − ls)/100 with i = 0, 1, . . . , 100. When Ω = [ls, us]

2 ⊂ R2, we
test the 121 points (ls + i(us − ls)/10, ls + j(us − ls)/10)> with i = 0, 1, . . . , 10 and j = 0, 1, . . . , 10.
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the first subproblem CSOCP(E0). Therefore, Algorithm 1 actually solves ]ite + 1 CSOCPs for each
instance. The rows with ]ite = 0 (Problems 4 and 9) imply that Algorithm 1 finds the SOCCSIP
optimum x∗(= x0) in Step 0, and there exists no s0

new ∈ Ω with c(x0, s0
new) > η. In other words, the

convex constraint corresponding to s = (0, 0)> is active at the solution x∗. We can also see that, when
β = 0.1 (Problems 1–3), the algorithm finds the solution x∗ with k = 1, and the final active index
is s = (−0.1π, 0.1π)>. Notice that Ω is expressed as a two-dimensional square, and (−0.1π, 0.1π)> is
one of its vertices. Since Algorithm 1 checks the values of c(xk, s) at all the vertices in Step 1, we will
find the SOCCSIP optimum very soon if the final active index is located at the vertex of Ω. On the
contrary, for Problems 5–8 and 10–12, the final active indices are not located at the vertices of Ω.∗6

This may be the main reason why Problems 5–8 and 10–12 need more iterations and cpu time than
Problems 1–3. This tendency seems to be more noticeable as β becomes larger.

Next, we solve SOCCSIP (5.1) with various choices of the Cartesian structure K. We consider 9
different Cartesian structures, and solve 100 problems for each K. We therefore solve 900 problems
in total. For all problems, we set ra = rm = 0.8n and β = 1. Since A and M are rank-deficient,
functions f and c(·, s) are not strictly convex. We give the obtained results in Table 2, in which
λmin

i and λmax
i (i = 1, 2) denote the maximum and minimum of the spectral values (2.2) among all

Cartesian subvectors x∗
1, . . . , x

∗
m in 100 problems for each K.∗7 (In case of K = (K1)10 = R10

+ , we only
give the values for λ1.) Also, λzero

i denotes the frequency that the spectral values become 0, and ]ite
and cpu(s) are the average values among the 100 trials for each K. From the table, we can observe
that the number of iterations does not change so much even when the dimension n of the variables or
the number m of sub-SOCs increases. However, CPU time increases quite a bit as n becomes larger.
This implies that the computational cost for solving each subproblem (CSOCPs solved in Steps 0
and 2) becomes more expensive as n increases. Also, we can see that the spectral value λ1 often
becomes 0, which implies that each subvector x∗

j is located on the boundary of the SOC Knj . When
K = (K1)10 = R10

+ , approximately 50% of obtained λ1s are greater than 0, but it is not surprising since,
in this case, each subvector x∗

j coincides with the j-th scalar component of vector x∗, and λ1(x∗
j ) > 0

implies x∗
j > 0. When K = (K2)5, we still have more than 20% positive λ1s. It is also convincing since

the dimension of each SOC is small (= 2) and the problems are generated randomly. In other seven
cases with K = K10, (K20)5, . . . ,K200, we always have λ1(x∗

j ) = 0 and λ2(x∗
j ) > 0, which means that

all the subvectors of x∗ are located on the boundary of SOCs.
Finally, we solve SOCCSIP (5.1) with various degrees of rank deficiency of matrices A and M . For

all problems, we set K = K20 × K30, β = 1, and r := ra = rm, and choose 7 different values for r.
We solve 100 problems for each r, and hence solve 700 problems in total. Note that we usually have
rank(A) = rank(M) = min(50, r). Therefore, f and c(·, s) are not strictly convex when r < 50, and
are (almost always) strictly convex when r ≥ 50. We give the obtained results in Table 3, in which
λmin

i , λmax
i and λzero

i are defined analogously to the previous experiment, and ]ite and cpu(s) are the
average of 100 problems for each r. As the table shows, we need a large number of iterations when
r is small, i.e., matrices A and M have high rank-deficiency. On the other hand, when r = 50 and
100, i.e., f and c(·, s) are strictly convex, we obtain the solution in a very small number of iterations.
Especially, when r = 100, we often obtain the SOCCSIP optimum in the initial step with k = 0.
Also we can observe that, when r is small, the value of λ2 sometimes becomes 0, which implies that
the optimal solution of SOCCSIP (5.1) is x∗ = 0. Actually, the above-mentioned features generally
depend on the structure of each problem, but in many cases the ill-posedness of a problem seems to
be relevant to the rank deficiency of certain matrices involved in the problem.

∗6For Problem 7, the final active index is located in the interior of Ω, and for other six problems (5, 6, 8, 10, 11, 12),
they are located on the non-vertex boundary.

∗7For example, when K = (K`)m, we have m subvectors x∗
1, . . . , x

∗
m ∈ R` for the optimum x∗. Therefore, if the obtained

solutions of the 100 problems are x∗,1, x∗,2, . . . , x∗,100, then we have λmax
i := max

˘

λi(x
∗,p
j )

˛

˛ (j, p) ∈ {1, 2, . . . , m} ×
{1, 2, . . . , 100}

¯

and λmin
i := min

˘

λi(x
∗,p
j )

˛

˛ (j, p) ∈ {1, 2, . . . , m} × {1, 2, . . . , 100}
¯

for each i = 1, 2.
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Table 1: Obtained results for SOCCSIP (5.1) with various choices of β

Problem β
Output (K = K10, rm = 8, ra = 6)

λ1 λ2 ]ite cpu(s) Efinal
k \ Ω0

Problem1 0.1 0 5.97 1 0.39 (−0.1π, 0.1π)>

Problem2 0.1 0 8.29 1 0.51 (−0.1π, 0.1π)>

Problem3 0.1 0 8.13 1 0.89 (−0.1π, 0.1π)>

Problem4 1 0 0.95 0 0.10 ∅
Problem5 1 0 1.41 5 3.03 (−π, 0.492π)>, (π, 0.492π)>

Problem6 1 0 1.63 2 0.57 (π, 0.483π)>

Problem7 1.6 0 1.37 4 4.84 (1.592π,−1.305π)>

Problem8 1.6 0 1.39 6 6.85 (1.6π,−1.550π)>

Problem9 1.6 0 0.54 0 0.09 ∅
Problem 10 2 0 1.42 8 6.93 (−2π,−1.567π)>

Problem 11 2 0 1.08 5 6.21 (2π,−1.636π)>

Problem 12 2 0 2.06 4 1.35 (2π,−1.652π)>

Table 2: Obtained results for SOCCSIP (5.1) with various choices of K

n K
Output (rm = ra = 0.8n, β = 1)

λmin
1 λmax

1 λzero
1 (%) λmin

2 λmax
2 λzero

2 (%) ]ite cpu(s)
10 (K1)10 0 0.98 51.2 — — — 1.70 1.39
10 (K2)5 0 0.91 79.2 0 1.46 27.0 1.37 0.99
10 K10 0 0 100 0.12 2.36 0 1.44 0.84
100 (K20)5 0 0 100 0.06 0.32 0 2.12 2.66
100 (K50)2 0 0 100 0.17 0.45 0 2.12 2.63
100 K100 0 0 100 0.27 0.63 0 2.24 2.97
200 (K20)10 0 0 100 0.02 0.17 0 2.37 11.63
200 (K50)4 0 0 100 0.07 0.24 0 2.10 10.80
200 K200 0 0 100 0.27 0.38 0 2.05 13.86

Experiment 2 (Application to robust optimization)

The robust optimization [2] is one of distribution-free methodologies for handling problems with un-
certain data. We usually assume that the uncertain data belong to some set, and try to solve another
optimization problem called robust counterpart (RC), which is composed with taking the worst pos-
sible case into consideration.

Algorithm 1 is also applicable to the robust optimization for convex semi-infinite programs (CSIPs).
Consider the following uncertain CSIP:

Minimize b̂>x

subject to c(x, s) ≤ 0 ∀s ∈ Ω, (5.2)

where Ω := [−1, 1] and c(x, s) := x>Ξ(s)x + η(s)>x + ζ(s) with

Ξ(s) :=


19 3 −6 −7 5
3 18 −5 2 −4

−6 −5 15 4 −5
−7 2 4 10 −2

5 −4 −5 −2 16

 + diag
(
sin(αs)

)5

α=1

η(s) := (4, −3, 1, −2, 4)> +
(
cos 1.3αs

)5

α=1
, ζ(s) := −10 + (5 + s)−1.
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Table 3: Obtained results for SOCCSIP (5.1) with various choices of r := ra = rm

r
Output (K = K20 ×K30, β = 1)

λmin
1 λmax

1 λzero
1 (%) λmin

2 λmax
2 λzero

2 (%) ]ite cpu(s)
1 0 0 100 0 12.03 30.0 12.57 12.17
2 0 0 100 0 12.03 19.0 13.01 11.67
5 0 0 100 0 11.99 2.0 13.20 10.26
10 0 0 100 0.859 8.91 0 8.80 7.07
20 0 0 100 0.181 4.50 0 2.88 2.69
50 0 0 100 0.085 0.56 0 1.16 0.94
100 0 0 100 0.031 0.27 0 0.03 0.22

Moreover, b̂ ∈ Rn is an uncertain vector such that b̂ = b + δb, where b = (−3, 4, 2, −4, 1)> is the
nominal value of b̂, and δb is the error term belonging to a certain set B. Then, the RC of CSIP (5.2)
is written as

Minimize max
δb∈B

(b + δb)>x

subject to c(x, s) ≤ 0 ∀s ∈ Ω. (5.3)

Now, suppose that B is a closed sphere with radius ρ, that is, B := {δb | ‖δb‖ ≤ ρ}. Then, the objective
function of RC (5.3) can be calculated as maxδb∈B(b+δb)>x = b>x+max{δ>b x |‖δb‖ ≤ ρ} = b>x+ρ‖x‖.
Therefore, by introducing an auxiliary variable u ∈ R, RC (5.3) can be rewritten equivalently as

Minimize
x,u

b>x + ρu

subject to ‖x‖ ≤ u, c(x, s) ≤ 0 ∀s ∈ Ω, (5.4)

which is of the form SOCCSIP (1.1) with x :=
(
u
x

)
and K := Kn+1.

Table 4 shows the obtained results on SOCCSIP (5.4) with various choices of ρ. In the table, u∗,ρ

and x∗,ρ are the solutions of SOCCSIP (5.4), λ1 and λ2 are the spectral values for
(
u∗,ρ

x∗,ρ

)
, and ]ite and

cpu(s) denote the number of iterations and CPU time in seconds for Algorithm 1, respectively. As
the table shows, the solution of RC (5.3) moves continuously as the radius ρ of B varies. Also, for all
cases, we have λ1 = 0, i.e., u∗,ρ = ‖x∗,ρ‖, and the algorithm finds the solution in a small number of
iterations and CPU time.

Next, we investigate the distribution of the functional values to observe the actual effect of the
robust optimization. We generate 10,000 sample vectors δ1

b , δ
2
b , . . . , δ

10000
b ∈ R5 for the error term δb.

Each δi
b is defined as δi

b := γiv
i/‖vi‖, where γi ∈ R and each component of vi ∈ R5 independently follow

the normal distribution with mean 0 and deviation 1.5. Since the normal distribution contains 95% of
the values within 2 standard deviations of the mean, we will have ‖δi

b‖ ≤ 3 with 95% probability. To
make the functional values more intuitive, we add a positive constant (= 18) to the objective function,
that is, we check the value of fi(x∗,ρ) := (b + δi

b)
>x∗,ρ + 18 for each i and ρ. The obtained results

are summarized in Table 5, where the columns of ‘best’, ‘mean’ and ‘worst’ denote the minimum,
average, and maximum of fi(x∗,ρ) among i = 1, 2, . . . , 10, 000 for each ρ, respectively. The column of
[6.5, 7) denotes the number of times that we had 6.5 ≤ fi(x∗,ρ) < 7 among 10, 000 sample vectors of
δi
b. (Other columns are similar.) From the table, we can see that the values of ‘worst’ is smaller as ρ

becomes larger, though it is opposite in the columns of ‘best’ and ‘mean’. This means that the robust
optimization may have disadvantage under average or lucky situations, but the serious damage can be
avoided or reduced even when an unlucky situation occurs. Since we applied the normal distribution to
generate the sample error vectors, we seldom encountered the unlucky situations such as fi(x∗,ρ) > 8.5.
However, if we apply another type of distribution, we may encounter such an undesirable situation
more often, and the robust optimization can be more important.
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Table 4: Obtained results for SOCCSIP (5.4) with various choices of ρ

ρ
Output (b = (4, 9,−6, 8,−5)>, K = K6)

u∗,ρ x∗,ρ λ1 λ2 ]ite cpu(s)
0 1.167 (−0.567, −0.076, 0.394, −0.875, 0.336)> 0 2.334 2 1.768

0.5 1.147 (−0.555, −0.054, 0.391, −0.861, 0.331)> 0 2.295 2 2.089
1 1.126 (−0.542, −0.031, 0.388, −0.845, 0.326)> 0 2.252 3 3.485

1.5 1.103 (−0.529, −0.008, 0.384, −0.828, 0.321)> 0 2.207 4 1.748
2 1.079 (−0.514, −0.015, 0.380, −0.810, 0.315)> 0 2.159 3 1.625

2.5 1.054 (−0.499, −0.040, 0.376, −0.790, 0.310)> 0 2.109 2 1.268
3 1.028 (−0.483, −0.065, 0.371, −0.768, 0.303)> 0 2.057 2 1.014

Table 5: Perturbed functional values of uncertain CSIP (5.2)

ρ
Output (fi(x∗,ρ) = (b + δi

b)
>x∗,ρ + 18)

best mean worst [6.5, 7) [7, 7.5) [7.5, 8) [8, 8.5) [8.5, 9) [9,+∞)

0 0.464 5.358 9.967 342 162 87 45 12 4
0.5 0.581 5.363 9.864 331 162 86 39 10 4
1 0.717 5.379 9.763 337 160 83 37 9 4

1.5 0.770 5.408 9.666 348 155 87 34 8 4
2 0.813 5.450 9.574 357 163 86 36 6 4

2.5 0.877 5.506 9.488 382 173 89 34 7 3
3 0.961 5.578 9.410 438 182 91 38 7 2
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