
On Finite Element Error Estimates for Optimal
Control Problems with Elliptic PDEs

Fredi Tröltzsch

Technische Universität Berlin, Institut für Mathematik
10623 Berlin, Str. d. 17. Juni 136, Sekr. MA 4-5, Germany

Abstract. Discretizations of optimal control problems for elliptic equa-
tions by finite element methods are considered. The problems are sub-
ject to constraints on the control and may also contain pointwise state
constraints. Some techniques are surveyed to estimate the distance be-
tween the exact optimal control and the associated optimal control of
the discretized problem. As a particular example, an error estimate for a
nonlinear optimal control problem with finitely many control values and
state constraints in finitely many points of the spatial domain is derived.

1 Introduction

In this paper, we consider optimal control problems of the type

min J(y, u) :=
1
2
‖y − yd‖2 +

λ

2
‖u‖2 (1)

subject to
−∆y = u in Ω

y = 0 on Γ,
(2)

where also further constraints u ∈ Uad (control constraints) and y ∈ Yad (state
constraints) may be given. In this setting, Ω ⊂ IR2 is a convex, bounded and
polygonal domain, yd ∈ L2(Ω) a given desired state, and λ > 0 is a fixed
regularization parameter. By ‖ · ‖, the natural norm of L2(Ω) is denoted. In the
last section, B(u, ρ) ⊂ IRm is the open ball of radius ρ around u. In the paper,
c is a generic constant that is more or less arbitrarily adapted.

Our main issue is to estimate the error arising from a finite element dis-
cretization of such problems. First, we consider the problem without control and
state constraints. Next, we explain how the error can be estimated, if control
constraints are given. We briefly survey recent results on probems with state
constraints and discuss finally a problem with finite-dimensional control space
and state constraints given in finitely many points of the spatial domain.

2 Optimal control problem with control constraints

2.1 The unconstrained optimal control problem

The problem Let us start the tour through error estimates by a quite simple
approach for the unconstrained problem (1), (2), where no further constraint on
u or y are given, i.e. Uad = L2(Ω) and Yad = L2(Ω).



For all u ∈ L2(Ω), there is exactly one state y = y(u) ∈ H2(Ω)∩H1
0 (Ω) and

the mapping Λ : L2(Ω) → H2(Ω) ∩ H1
0 (Ω), Λ : u 7→ y(u), is continuous. We

consider Λ also with range in L2(Ω) and denote this ”solution operator” by S,
i.e. S = EH2→L2Λ, where EH2→L2 denotes the continuous injection of H2(Ω) in
L2(Ω).

By S, we are able to formally eliminate the PDE and to transform the prob-
lem to the control reduced quadratic optimization problem

(P ) min
u∈L2(Ω)

f(u) := J(Su, u) =
1
2
‖Su− yd‖2 +

λ

2
‖u‖2.

The existence of a unique (optimal) solution of this problem is a standard result.
In all what follows, we denote by ū the unique optimal control and by ȳ = y(ū)
the associated optimal state.

All further results on the necessary optimality conditions for (P) and its
version with additional control constraints are stated without proofs. They are
discussed extensively in the forthcoming textbook [1].

Necessary and sufficient optimality condition It is clear that f ′(ū) = 0 is
necessary for the optimality of ū, hence

f ′(ū) = S∗(Sū− yd) + λū = 0

must hold, where S∗ denotes the adjoint operator of S. It is very useful to
introduce an auxiliary function p by p̄ := S∗(Sū− yd). This function p̄ is called
adjoint state associated with ū. Therefore, we have

p̄+ λū = 0. (3)

The adjoint state p̄ is the solution of the adjoint equation

−∆p = ȳ − yd in Ω
p = 0 on Γ.

(4)

To determine the unknown triplet (ȳ, ū, p̄), we have to solve the optimality system
(2), (4), (3). Invoking (3), i.e. inserting u = −λ−1p in the state equation, the
optimality system

−∆y + λ−1p = 0
y = 0,

−∆p− y = −yd in Ω
p = 0 on Γ

(5)

is obtained. Having solved this, we obtain the optimal control by ū := −λ−1p .



Discretized problem and error estimate We assume a regular triangulation
T of Ω with mesh size h, triangles Ti, and piecewise linear and continuous
ansatz functions Φi, i = 1, . . . , n, which generate the finite-dimensional subspace
Vh = span {Φ1, . . . , Φn} ⊂ H1

0 (Ω). We do not explain the standard notion of
regularity of the triangulation. Instead, we just assume that the standard finite
element error estimate (7) below is satisfied.

In the discretized problem, the state yh associated with u is determined by
yh ∈ Vh and ∫

Ω

∇yh · ∇Φi dx =
∫
Ω

u Φi dx ∀i = 1, . . . , n. (6)

To each u ∈ L2(Ω), there exists exactly one solution yh ∈ H1
0 (Ω) of (6) denoted

by yh(u). From the finite element analysis for regular grids, the error estimate

h ‖yh(u)− y(u)‖H1(Ω) + ‖yh(u)− y(u)‖ ≤ c h2‖u‖ (7)

is known for all sufficiently small h > 0, where the constant c does not depend
on u or h. Let us introduce the mapping Sh : L2(Ω) → L2(Ω), Sh : u 7→ yh(u).
In terms of S and Sh, (7) is equivalent to

‖S − Sh‖L2(Ω)→L2(Ω) ≤ c h2. (8)

Analogously to the former section, the discretized optimal control problem can
be formulated in control reduced form as

(Ph) min fh(u) :=
1
2
‖Shu− yd‖2 +

λ

2
‖u‖2.

This discretized problem has a unique optimal control denoted by ūh with as-
sociated state ȳh. The reader might be surprised that the control u in (Ph) is
not discretized. In fact, we do not need this here, since the optimality conditions
will automatically imply uh ∈ Vh.

It is easy to estimate the error ‖ūh − ū‖. We write down the necessary opti-
mality conditions for both optimal controls,

S∗(Sū− yd) + λū = 0

S∗h(Shūh − yd) + λūh = 0,

multiply them scalarly by ū− ūh, subtract the results and re-order. This yields

‖Sh(ū− ūh)‖2 + λ‖ū− ūh‖2 ≤ | (yd , (S − Sh)(ū− ūh)) |
≤ ‖yd‖ c h2 ‖ū− ūh‖,

where (· , ·) denotes the natural inner product of L2(Ω). Consequently, we have
the L2 error estimate

‖ū− ūh‖ ≤ c λ−1 h2 ‖yd‖. (9)

This was easy, since we considered the unconstrained case that is not really
interesting in optimization. Let us include also constraints on the control.



2.2 Constraints on the control

Optimality conditions Let ua < ub be two real numbers. Consider the control-
constrained problem

(PC) min
u∈Uad

f(u) =
1
2
‖Su− yd‖2 +

λ

2
‖u‖2

with

Uad = {u ∈ L2(Ω) : ua ≤ u(x) ≤ ub a.e. in Ω}.

Again, the problem has a unique optimal control ū. However, due to the con-
straints, we cannot expect that f ′(ū) = 0. Instead, the variational inequality

f ′(ū)(u− ū) ≥ 0 ∀u ∈ Uad

is necessary and sufficient for optimality of ū. It expresses the intuitively clear
observation that, in a minimum, the function f cannot decrease in any feasible
direction. In terms of S, this means

(S∗(Sū− yd) + λū , u− ū) ≥ 0 ∀u ∈ Uad (10)

or equivalently∫
Ω

(
p(x) + λū(x)

)
(u(x)− ū(x)) dx ≥ 0 ∀u(·) ∈ Uad.

A simple pointwise discussion of this inequality reveals that almost everywhere

ū(x) =
{
ua if p(x) + λū(x) > 0
ub if p(x) + λū(x) < 0 (11)

and we have, of course, ū(x) = −λ−1p(x) if p(x) + λū(x) = 0. From this, one
derives with some effort the well-known projection formula

ū(x) = IP[ua,ub]

{
− 1
λ
p(x)

}
a.e. in Ω, (12)

where IP[ua,ub] : IR → [ua, ub] denotes projection onto [a, b]. This projection
formula shows that, although we have p ∈ H2(Ω), ū can exhibit corners in the
points, where the bounds ua and ub are reached. Hence in general we can only
expect u ∈ H1(Ω). Moreover, (ȳ, ū, p̄) cannot be obtained from a smooth coupled
system of PDEs as (5). Therefore, error estimates are more difficult. They also
depend on the way how the control function u is discretized.



Discretization by piecewise constant controls The most common way of
control discretization is working with piecewise constant controls. Here, the set
of admissible discretized controls is defined by

Uhad = {ua ≤ u(·) ≤ ub : u is constant on each triangle Ti}

and the associated discretized problem is

(PCh) min
uh∈Uh

ad

fh(uh),

where fh and yh are defined as in the last section. The difference to (Ph) consists
in the appearance of Uhad. Let ūh denote the unique optimal control of (PCh)
and let ȳh be the associated (discretized) state. Then a discrete counterpart to
the variational inequality (10) must be satisfied,

(S∗h(Shūh − yd) + λūh , uh − ūh) ≥ 0 ∀uh ∈ Uhad. (13)

By the discrete adjoint state ph := S∗h(Shūh − yd), this is equivalent to

ū(x) = IP[ua,ub]

{
− 1
λ |Ti|

∫
Ti

ph(x) dx
}
∀x ∈ Ti, ∀ i = 1, . . . ,M, (14)

where |Ti| is the area of the triangle Ti. Now we cannot derive an error estimate
in the same way as before. First, ū cannot be inserted in (14), as ūh is not
piecewise constant. As a substitute, we use the interpolant Πhū defined by

(Πhū)(x) := − 1
|Ti|

∫
Ti

ū(x) dx ∀x ∈ Ti. (15)

It holds that Πhū ∈ Uhad and, with some c > 0 not depending on h,

‖ū−Πhū‖ ≤ c h. (16)

Now, we might insert ūh in (10), Πhū in (13), add the two inequalities obtained
and resolve for ‖ū− ūh‖ to estimate the error. This procedure only yields a non-
optimal estimate of the order

√
h. Some further tricks avoid the square root, cf.

[2] or the early papers [3], [4].
Below, we explain a perturbation approach. Its main idea goes back to [5] and

was applied in [6] to nonlinear elliptic problems.
The function Πhū will only fulfill the variational inequality (13) if it is opti-

mal for (PCh) by chance. However, it satisfies the variational inequality for the
perturbed control problem

(PCζh
) min

uh∈Uh
ad

{
fh(uh) +

∫
Ω

ζh(x)uh(x) dx
}
,

if ζh(x) is defined such that Πhū satisfies the associated projection formula

Πhū(x) = IP[ua,ub]

{
− 1
λ |Ti|

∫
Ti

(ph(x) + ζh(x)) dx
}
∀x ∈ Ti, ∀ i = 1, . . . ,M.



Notice that the derivative of the perturbed functional at a function u is equal
to S∗h(Shu − yd) + ζh + λu = ph + ζh + λu so that ph + ζh plays the role of
the former ph. How the function ζh must be constructed? If ua < Πhū(x) < ub
holds in a triangle Ti, then λ|Ti|Πhū(x) +

∫
Ti

(ph + ζh) dx = 0 must hold on Ti.
This follows from (14), applied to Πhū and (PCζh

). Therefore, we define ζh by

ζh(x) ≡ −Πhū(x) +
1

λ |Ti|

∫
Ti

ph dx on Ti.

If, on Ti, Πhū(x) ≡ ua, then λ|Ti|Πhū(x) +
∫
Ti

(ph + ζh) dx ≥ 0 must hold on Ti
(adapt (11) to (PCζh

)). To compensate negative values, we define ζh by

ζh(x) ≡
[
Πhū(x) +

1
λ |Ti|

∫
Ti

ph dx
]
−

on Ti,

where a− = (|a| − a)/2 ≥ 0 denotes the negative part of a real number. Analo-
gously, we define ζh := −[. . .]+ via the associated positive part to compensate a
positive value, if Πhū(x) ≡ ub. It is not difficult to show that

‖ζh‖ ≤ c ‖ū−Πhū‖ ≤ c̃ h.

Now we proceed similarly as in the last section. We insert Πhū in the variational
inequality (13) for ūh and insert ūh in the perturbed variational inequality for
Πhū to obtain

(S∗h(Shūh − yd) + λūh , Πhū− ūh) ≥ 0,
(S∗h(ShΠhū− yd) + ζh + λΠhū , ūh −Πhū) ≥ 0.

Adding both inequalities, we obtain after some re-ordering and ignoring the term
‖Sh(ūh −Πhū)‖2

‖ūh −Πhū‖2 ≤ λ−1 (ζh , ūh −Πhū) ≤ λ−1 ‖ζh‖ ‖ūh −Πhū‖.

In view of (16), an obvious application of the triangle inequality yields finally

‖ūh − ū‖ ≤ c h (17)

with some c > 0 not depending on h. This is the optimal error estimate for
piecewise constant approximations of ū.

The same order of the error can be derived for problems with semilinear
elliptic equations, both for distributed and boundary controls, [6], [7]. However,
thanks to non-convexity, the situation is more delicate. Different locally optimal
controls might appear. They should satisfy a second-order sufficient optimality
condition to have a unique approximating locally optimal control in a certain
neighborhood, cf. also the discussion in the last section.

The error analysis for piecewise linear controls is more difficult. We refer
only to [8] for Neumann and to [9], [10], and [11] for Dirichlet boundary control
problems. In the Neumann case, the order h3/2 can be expected for the error.



Variational discretization The situation is easier, if the control functions are
(formally) not discretized, i.e. if we consider the discretized problem

(Ph) min
u∈Uad

fh(u).

At first glance, this consideration seems to be useless. How should one be able to
compute the optimal control without any kind of discretization? However, take
a look at the finite element approximation of the optimality system

−∆y = IP[ua,ub]

{
− λ−1p

}
y = 0,

−∆p− y = −yd in Ω
p = 0 on Γ,

(18)

where u is eliminated by the projection formula (12). This nonsmooth nonlinear
system can be solved numerically to obtain the (discrete) state yh and adjoint
state ph, [12]. Then ūh is found by ūh = IP[ua,ub]{−λ−1ph}. It is piecewise linear
but does not in general belong to Vh. This approach of variational discretization
is also useful in iterative methods of optimization, cf. [13].

For this variational discretization, an error estimate of the order h2 is easily
derived: We repeat a similar procedure as before and insert ūh in the variational
inequality for ū, ū in the variational inequality for ūh (all u ∈ Uad are now
admitted!),

(S∗(Sū− yd) + λū , ūh − ū) ≥ 0,
(S∗h(Shūh − yd) + λūh , ū− ūh) ≥ 0.

Next, we add both inequalities and re-order as we proceeded to derive (9),

‖Sh(ū− ūh)‖2 + λ‖ū− ūh‖2 ≤ | (yd , (S − Sh)(ū− ūh)) | ≤ ‖yd‖ c h2 ‖ū− ūh‖.

Consequently, we have the optimal L2-estimate

‖ū− ūh‖L2(Ω) ≤ c λ−1 h2 ‖yd‖.

The same optimal order can be obtained under natural assumptions with piece-
wise constant controls by one smoothing step, cf. [14].

3 Problems with state constraints

3.1 Available error estimates

Here, we admit also state constraints. Now the error analysis is more difficult.
Currently, this is a very active field of research. A detailed survey on relevant
contributions would go beyond the scope of this paper. We mention first results
for problems with finitely many state constraints in [15] and the convergence
of discretizations for pointwise state constraints of the type y(x) ≤ c a.e. in
Ω in [16]. To have a comparison with the results of the next section, we state
also recent results for elliptic problems with pointwise state constraints: In [17],
for ‖ū − ūh‖ the order h1−ε was derived in Ω ⊂ IR2 and h1/2−ε for Ω ⊂ IR3.
Recently, this was improved in [18] to h| log h| for 2D and h1/2 for 3D domains.



3.2 Control in IRm and state constraints in finitely many points

Let us discuss a simpler problem with semilinear elliptic equation, controls in
IRm and state constraints in finitely many points x1, . . . , x` of Ω:

(PS)


min
u∈Uad

J(yu, u) =
1
2
‖yu − yd‖2 +

λ

2
|u|2

subject to

gi(yu(xi)) = 0, for all i = 1, . . . , k,
gi(yu(xi)) ≤ 0, for all i = k + 1, . . . , `,

where yu is the solution to the state equation

−∆y(x) + d(y(x), u) = 0 in Ω
y(x) = 0 on Γ (19)

and Uad = {u ∈ IRm : ua ≤ u ≤ ub} with given ua ≤ ub of IRm. We assume
l ≥ 1 and set k = 0, if only inequality constraints are given and k = l, if only
equality constraints are given.

We assume for short that d : IR2 → IR and gi : IR → IR, i = 1, . . . , `, are
twice differentiable with locally Lipschitz second-order derivatives and that d is
monotone non-decreasing with respect to y. In [19], the problem is considered in
a slightly more general setting. Thanks to our assumptions, the mapping u 7→ yu
is continuous from IRm toH1

0 (Ω)∩C(Ω̄), hence the values yu(xi) are well defined.
Therefore, we consider S : u 7→ yu as mapping from IRm to H1

0 (Ω) ∩ C(Ω̄).
To convert (PS) into a finite-dimensional nonlinear programming problem,

we define again f : IRm 7→ IR of class C2,1 by f(u) = J(yu, u) = J(S(u), u).
Thanks to our assumptions, in particular the Lipschitz properties of the second
derivatives of d and the gi, the mapping S has a locally Lipschitz continuous
second-order derivative S′′. Moreover, we define G : IRm → IR` by

G(u) := [g1(yu(x1)), . . . , g`(yu(x`))]>. (20)

To cover the equality and inequality constraints in a unified way, we introduce
the convex cone K = {z ∈ IR` : zi = 0, i = 1, . . . , k, zi ≤ 0, i = k + 1, . . . , `}
and write z ≤K 0 iff z ∈ K. By these definitions, (PS) becomes equivalent to
the nonlinear programming problem

(N)

{
min f(u)

G(u) ≤K 0, u ∈ Uad.
(21)

The discretized optimal control problem (PSh) is defined on substituting yu
by its finite-element approximation yh,u, obtained from∫

Ω

∇yh · ∇vh dx+
∫
Ω

d(yh, u) vh dx = 0 ∀vh ∈ Vh.



Introducing Gh(u) := [g1(yh,u(x1)), . . . , g`(yh,u(x`))]> we express this problem
as finite-dimensional nonlinear programming problem

(Nh)

{
min fh(u)

Gh(u) ≤K 0, u ∈ Uad.
(22)

Let Ω0 and Ω1 be open sets such that {x1, . . . , x`} ⊂ Ω0 and Ω̄0 ⊂ Ω1 ⊂ Ω̄1 ⊂ Ω.
Then there exists a constant c > 0, independent of h and u ∈ Uad, such that

‖yu − yh,u‖L∞(Ω0) ≤ c
(
h2| log h| ‖yu‖W 2,∞(Ω1) + h2 ‖yu‖H2(Ω)

)
, (23)

cf. [19]. Thanks to this estimate and to our assumptions, it holds

|f(u)− fh(u)|+ |f ′(u)− f ′h(u)|+ |f ′′(u)− f ′′h (u)| ≤ c h2

|G(u)−Gh(u)|+ |G′(u)−G′h(u)|+ |G′′(u)−G′′h(u)| ≤ c h2| log h|
(24)

for all u ∈ Uad, with some constant c not depending on h and u, [19].
In all what follows, ū is a locally optimal reference solution of (PS), hence

also of (N). We show the existence of an associated locally optimal solution ūh of
(PSh), (or (Nh)) converging to ū as h ↓ 0. Our main aim is to estimate |ū− ūh|.
For short, we use the abbreviation α(h) = h2| log h|.

Our error analysis is based on 3 main assumptions. To formulate them, we
need some standard definitions of nonlinear programming which are explained
below.

We first extend the vector G(u) ∈ IR` to Ĝ(u) ∈ IR`+2m by including the
box constraints defining Uad. We add the 2m further components

G`+i(u) = ua,i − ui, for i = 1, . . . ,m

G`+m+i(u) = ui − ub,i, for i = 1, . . . ,m,

and put Ĝ(u) := (Gi(u))i=1,...,`+2m. Then all constraints of the problem can
be unified by Ĝ(u) ≤K 0, where K is re-defined accordingly. We define the
Lagrangian function L : IRm × IR`+2m by

L(u, ν) = f(u) +
`+2m∑
i=1

νiGi(u).

The index set A(ū) of active constraints at ū is defined by

A(ū) = {i ∈ {1, . . . , `+ 2m} : Gi(ū) = 0} .

We now formulate the main assumptions:
Robinson regularity condition: At ū, it holds that

0 ∈ int {G(ū) +G′(ū)(Uad − ū) +K},

where the set in braces is defined as ∪{G(ū)+G′(ū)(u− ū)+k |u ∈ Uad, k ∈ K}.



It is known that this regularity assumption is sufficient for the existence of
a Lagrange multiplier ν̄ associated with the (locally) optimal solution ū.

Strong second-order sufficient optimality condition: For the pair (ū, ν̄),
it holds

v>
∂2L(ū, ν̄)
∂u2

v > 0 ∀v ∈ Cū, v 6= 0,

where Cū ⊂ IRm is defined by

Cū = {v |G′i(ū)v = 0 ∀i ∈ {1, . . . , k} ∪ {i ∈ {k + 1, . . . , `+ 2m} : ν̄i > 0}} .

Linear independence condition of active gradients: This condition is
satisfied if all vectors of the set {∇Gi(ū) | i ∈ A(ū)} are linearly independent.

Theorem 1. Under the three assumptions stated above, there exists a constant
c > 0 not depending on h such that, for all sufficiently small h > 0, a unique
locally optimal control ūh exists in a neighborhood of ū and it holds

|ū− ūh| ≤ c h2 | log h|.

We do not entirely show this result here. Instead, we show an estimate of the
order h

√
| log h|. In this way, we prepare the proof of the full order in [19]. First,

we approximate admissible vectors for (N) by admissible ones for (Nh) with the
order α(h) and vice versa.

Lemma 2. Suppose that ū is feasible for (N) and satisfies the Robinson regu-
larity condition. Then there are c > 0 independent of h and h0 > 0 such that,
for each h ∈ (0, h0) an admissible uh for problem (Ph) exists with

|ū− uh| ≤ c α(h). (25)

Proof. To be consistent with the notation of [20], we write

G(h, u) =

Gh(u), if u ∈ Uad and h > 0,
G(u), if u ∈ Uad and h = 0,
∅, if u /∈ Uad.

Thanks to (24), G and ∂G/∂u are continuous at the point (h, u) = (0, ū). More-
over, we have G(0, ū) ≤K 0. In view of the Robinson regularity condition, the
assumptions of the generalized implicit function in [20] are fulfilled. We obtain
the existence of neighborhoods N of h = 0 and O of ū such that, for all h ∈ N ,
the inequality G(h, u) ≤K 0 has a solution u ∈ O, and it holds

dist[v,Σ(h)] ≤ c |G(h, v)+|, ∀h ∈ N , ∀v ∈ O, (26)

where Σ(h) = {u ∈ Uad | G(h, u) ≤K 0} is the solution set of the inequality and
dist denotes the Euclidean distance of a point to a set. The value |G(h, v)+| is
the distance of the set G(h, v) +K to the origin and measures the residual of v
with respect to the inequality G(h, v) ≤K 0, cf. [20], p. 498. Inserting v = ū in
(26), we deduce

dist[ū, Σ(h)] ≤ c |G(h, ū)+| ≤ c(|G(0, ū)+|+ |G(h, ū)+ − G(0, ū)+|) ≤ 0 + c α(h).

Hence, there exists uh ∈ Σ(h) with |ū− uh| ≤ c α(h). The statement is shown.



Lemma 3. Let the reference solution ū satisfy the linear independence condition.
Then, for all given ρ > 0 and all sufficiently small h > 0, the auxiliary problem

(Nh,ρ)

min fh(u)
Gh(u) ≤K 0,
u ∈ Uad ∩ cl B(ū, ρ)

(27)

is solvable. If ūh is any optimal solution to this problem, then an admissible
element vh for (N) exists satisfying with some c > 0 independent of h

|ūh − vh| ≤ c α(h). (28)

Proof. (i) Solvability of (Nh,ρ) : For a positive h0 and all h ∈ (0, h0), the admis-
sible set of (Nh,ρ) is not empty, because uh constructed in Lemma 2 satisfies all
constraints. The existence of an optimal ūh follows immediately. We have to find
vh in Uad with G(vh) ≤K 0 and |vh− ūh| ≤ c α(h). Below, we cover the inequal-
ity constraints of Uad by the extended vector function Ĝ(u) : IRm → IR`+2m

introduced 2 pages before. Let us set in this proof G := Ĝ and ` := ` + 2m to
avoid an extensive use of the hat sign. Hence we have to construct vh such that

Gi(vh) = 0, i = 1, . . . , k, Gi(vh) ≤ 0, i = k + 1, . . . , `.

(ii) Construction of an equation for vh: Notice that ūh ∈ cl B(ū, ρ) for all h ≤ h0.
Therefore, if ρ is taken small enough, all inactive components Gi(ū) are inactive
for ūh as well and there exists ε > 0 such that

Gi(ūh) ≤ −ε < 0 ∀i ∈ I, ∀h ≤ h0, (29)

where I is the set of all inactive indices i of ū in {k + 1, . . . , `}.
Suppose that r constraints are active at ū, k ≤ r ≤ m. After renumber-

ing, if necessary, we can assume that those with the numbers 1 ≤ i ≤ r
are active, hence G1(ū) = . . . = Gr(ū) = 0. By the independence condi-
tion, the associated gradients ∇Gi(ū) are linearly independent. If ρ is small
enough, also ∇G1(ūh), . . . ,∇Gr(ūh) are linearly independent. Consider the ma-
trix Bh = [∇G1(ūh), . . . ,∇Gr(ūh)]> . Since Bh has full rank r, we find an in-
vertible submatrix Dh such that (after renumbering of the components of u, if
necessary) Bh = [Dh, Eh] holds with some matrix Eh. Define Fh : IRr → IRr by

Fh,i(w) := Gi(w, ūh,r+1, . . . , ūh,m)−Gh,i(ūh), i = 1, . . . , r.

To find vh, we fix its m − r last components by vh,i := ūh,i, i = r + 1, . . . ,m,
and determine the first r components as the solution w of the system

Fh(w) = 0, (30)

i.e. we set vh,i := wi, i = 1, . . . , r.
(iii) Solvability of (30): In this part of the proof, we follow a technique used

by Allgöwer et al. [21]. We define for convenience w̄h := (ūh,1, . . . , ūh,r)>, w̄ :=
(ū1, . . . , ūr)> and have

|Fh(w̄h)| ≤ c α(h), (31)



since |Gi(ūh)−Gh,i(ūh)| ≤ c α(h) holds for all 1 ≤ i ≤ r.
Thanks to (24) and the Lipschitz assumptions, there exist γ > 0, β > 0 with

‖F ′h(w1)− F ′h(w2)‖ ≤ γ |w1 − w2| ∀wi ∈ B(w̄, ρ),

‖(F ′h(w))−1‖ ≤ β ∀w ∈ B(w̄, ρ)

for all 0 ≤ h ≤ h0, if ρ is taken sufficiently small. Notice that ∂G(w)/∂w is
then close to ∂G(w̄)/∂w, and this matrix is invertible. Define η > 0 by η :=
β|Fh(w̄h)|. Then (31) implies β γ η/2 ≤ 1 for all 0 < h < h0, if h0 is sufficiently
small. Proceeding as in [21], the Mysovskij theorem, cf. Ortega and Rheinboldt
[22], p. 412, ensures that the Newton method starting at w0 := w̄h generates a
solution w of (30) in the ball cl B(w̄h, c0 η), where c0 is a certain constant. It
follows from our construction that

Gi(vh) = Gh,i(ūh)
{

= 0, i = 1, . . . , k,
≤ 0, i = k + 1, . . . , r.

Moreover, if h is small, Gi(vh) < 0 holds for r < i ≤ `. Therefore, we have that
G(vh) ≤K 0 and vh ∈ Uad. From w ∈ cl B(w̄h, c0 η) it follows |w − w̄h| ≤ c0 η ≤
c α(h), hence also |vh − ūh| ≤ c α(h).

Lemma 4. If ρ > 0 is taken sufficiently small and h ∈ (0, h0(ρ)), then all
solutions ūh of the auxiliary problem (Nh,ρ) belong to B(ū, ρ). Therefore, they
are also locally optimal for the problem (Nh).

Proof. First, we compare the solution ūh of (Nh,ρ) defined in Lemma 2 with uh
that is admissible for (Nh,ρ) and approximates ū with the order α(h). We get

fh(ūh) ≤ fh(uh) ≤ |fh(uh)− fh(ū)|+ |fh(ū)− f(ū)|+ f(ū).

By
|fh(ū)− f(ū)|+ |uh − ū|+ |fh(ūh)− f(ūh)| ≤ c α(h)

and by the uniform Lipschitz property of fh, we find

f(ūh) ≤ f(ū) + c1 α(h). (32)

Next, we compare ū with vh taken from Lemma 3. The assumed second-order
sufficient optimality condition implies a quadratic growth condition. Inserting
vh in this condition, we obtain for small h

f(vh) ≥ f(ū) + ω |ū− vh|2.

From |ūh − vh| ≤ c α(h) we deduce

f(ūh) + c2α(h) ≥ f(ū) + ω |ū− ūh|2. (33)

Combining the inequalities (32)–(33), it follows that

f(ū) + c1 α(h) ≥ f(ū) + ω |ū− ūh|2 − c2α(h)



and hence we obtain the stated auxiliary error estimate

|ū− ūh| ≤ c
√
α(h). (34)

For all sufficiently small h, this estimate implies |ū− ūh| < ρ so that ūh does not
touch the boundary of B(ū, ρ). In view of this, ūh is locally optimal for (Nh).

The error estimate (34) is not optimal. We can get rid of the square root. More-
over, we are able to show the stated local uniqueness of ūh, i.e. uniqueness of
local optima of (Nh) in a neighborhood of ū. Both tasks can be accomplished
by the stability theory for optimality systems written as generalized equations.
This would go beyond the scope of this paper and we refer the reader to the
detailed presentation in [19], where we complete the proof of the optimal error
estimate stated in the theorem. Moreover, we mention the recent monography
[23], where the theory of generalized equations and associated applications are
discussed extensively. The same estimate can also be shown for the associated
Lagrange multipliers.
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