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ON FINITE EXPANSION OF A HOLE IN A THIN INFINITE PLATE*

BY

P. G. HODGE, JR.t aNp R. SANKARANARAYANAN
Polytechnic Institute of Brooklyn

Summary. A complete solution for all values of applied pressure is obtained for the
expansion of a hole of zero radius in an initially uniform infinite sheet. The analysis is
compared with those of previous investigators and found to be simpler and/or more
complete. It is shown that the results are applicable to the expansion of a finite hole
in a uniform sheet and to the expansion of a hole in a tapered sheet.

1. Introduction. The problem of finite expansion of a circular hole in a thin infinite
plate has been discussed repeatedly in the literature. Taylor [3]' treated the problem
by using Tresca’s yield condition and the flow rule associated with Mises’ yield con-
dition, but he considered a rigid perfectly plastic material. Hill’s [4] extension of Taylor’s
work was also restricted to a non-strain hardening material. Prager [1] solved the problem
for a rigid strain hardening material which satisfies Tresca’s initial yield condition and
the associated flow rule, but his solution is restricted to a certain finite value of the
pressure. Alexander and Ford [5] have treated the same problem, using Mises’ yield
condition and the associated Prandti-licu:s relations.

The present paper deals with the same problem treated by Prager, but the solution
is obtained for all values of the internal pressure. As in Hill’s treatment [4] the math-
ematical analysis in the plastic regions is simplified by reducing the problem to the
solution of ordinary differential equations by means of a substitution of independent
variables.

Specifically, a hole is expanded from zero radius in a thin infinite sheet of work-
hardening material which satisfies Tresca’s yield condition and the associated flow
rule. An incompressible material is envisaged, and since finite plastic deformations
are considered, elastic deformations are neglected.

In the case of plane stress problems Tresca’s yield condition can be represented
by a hexagon in the o, , o, plane (Fig. 1). If the “stress point”’ with coordinates o, , o,
remains in the interior of the hexagon, the material is rigid. For a point on the boundary,
plastic flow may commence in accord with the plastic potential flow law [6]. According
to this law, on a side of the hexagon the strain rate vector must be the unique normal,
while at a corner it may assume any position between the limiting normals.

For a perfectly plastic material the hexagon in Fig. 1 is fixed, and the stress point
is not permitted to leave it. For the isotropic strain hardening material considered in
this paper, the yield curve maintains its shape, center and orientation, but merely
changes its size.

It has been shown [7, 8] that under certain restrictive conditions the plastic flow
laws can be explicitly integrated. These conditions, defined as a ‘‘regular progression”
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F1c. 1. Tresca hexagon for plane stress.

of the stress point, state that it must never lose contact with a side of the hexagon.
In other words, the stress point may stay on a side, stay in a corner, or move from a
side to a corner; it may not move from one side to another, from a corner to a side, or
back into the interior. 4

Prager [1] considered the enlargement of a circular hole of radius a, to 1.48a, by
the application of a gradually increasing uniform pressure p to the edge of the hole.
The stress point of any particle starts at the origin for » = 0 and moves along the straight
line O@ as p increases (Fig. 2). It first becomes plastic at G and moves along GD to D.
Next, the stress point remains a finite time at D, engaging in plastic flow. Finally, it
moves back along DC to the accompaniment of further plastic flow. However, Prager
did not consider the final stage of plastic flow, when ‘“‘non-regular progression’ of the
stress point takes place from the corner D, back to the side CD of the yield hexagon.
Therefore, as he pointed out, his solution is only valid for a/a, < 1.48. In particular,
Prager’s solution is not applicable to the expansion of a hole from zero radius.

Since the stress point progresses non-regularly in the final stage of plastic deformation,
the explicit integrated forms of the flow law cannot be used. A similar condition was
encountered in an earlier paper [2] concerned with the bending of a simply supported
annular plate. There it was found that the complete solution was built up of zones and
that appropriate initial conditions were always available from plastic zones already
formed. The analysis of the present paper reveals that a similar condition holds in the
finite expansion of a hole in an infinite sheet.

For conceptual simplicity, it is first assumed that the initial radius of the hole is
zero. Since the plate is infinite, this implies that there is no characteristic length in the
plane of the sheet. It follows that the geometric solution at all times must be similar to
itself. Therefore, rather than the solution depending upon time and space independently,
it depends only upon a conveniently chosen space-time ratio. This technique was first
used by Hill [4].

The solution for a hole expanded from a finite radius is obtained from that for ex-
panding a hole from zero radius simply by discarding the part of the solution which
is not required. This is so because it is immaterial whether the pressure at any radius
is applied by an external agency or through the displacement of an inner annulus of the
sheet. The stress and velocity in an element depend only on what happens beyond the
radius.
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The basic theory is presented in the next section. Section 3 gives the details of the
solution. The paper will conclude with a discussion of some limitations and extensions
of the analysis, as well as its relation to other investigations cited.

2. Basic theory. The state of a thin infinite sheet of initially uniform thickness is
fully defined by the principal stresses o, and o, , the radial displacement %, and the
thickness h. The stresses must satisfy the equation of radial equilibrium

dha,) , hlo, — ay) _
P ; = 0. (6))

Where the material is rigid, it may be regarded as the limiting case of an elastic
material as Young’s modulus becomes infinite. Therefore, in a rigid region the stresses
must also satisfy the compatibility equation for an incompressible material

6&__1%) 3 )=
’(ar 2ar) Tgloo—a) =0 2

A stress point in the interior of the hexagon must satisfy Eqgs. (1) and (2). The flow law
in a plastic region is expressed in terms of the plastic strain rates

€. = dv/ar, e = v/r, e, = (1/R)(0h/d1), ®3)
where v is the radial velocity. Since ih~ material is incompressible,
ov/dr + v/r + d(log h)/dt = 0. 4)

The plastic flow law assumes different forms for each side or corner of the yield
hexagon (Fig. 1). For the type of loading considered here, the relevant plastic regimes
are CD and D. On CD, the strain rate vector must be directed normal to the side, hence

e + e = —e¢, = 0. 5)
Further, the stresses must satisfy
o <0, g9 20 (6)

if the stress point is to remain on CD.
In the corner D, the stress point must always lie on the o, axis; hence

gy = 0. (7)
0.
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Fi1c. 2. The stress profile.
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The strain rate vector must lie between the values corresponding to the sides CD and
DE; hence

0<es < —¢ . 8)

It remains to consider the rate of hardening. As in Prager’s treatment [1] this will
be assumed to be proportional to the energy dissipation. Thus

do/dt = aD, 9)
where « is a constant, D the dissipation function, and
o=max[le |, |osl, |o—oasll (10)
On the side CD, as well as the corner D, Eq. (9) can be written
90/t = —avge, ,
where
o =0y — 0, . ’ (11)
At r = =, the radial stress must vanish, and at » = a, the current hole radius, it
must be in equilibrium with the applied load. Thus
at r = aq, ho, = —p; (12)
at r = o, g, = 0. (13)
Finally, at the beginning of the expansion the thickness must be equal to its initial
constant value
at t=0, h=h,.
3. Solution. When a hole is expanded from zero radius, the material at a sufficiently

large distance from the hole is rigid because it is stressed below the yield limit. Therefore,
h = hoand u = 0. At r = «, the stresses must vanish, while at the elastic-plastic bound-

ary they must satisfy

O, — Oy = —0¢ . (14)
Therefore, Egs. (1) and (2) determine the stresses to be

O, = —0y = —260-:,’_ ) (15)

2
2

where o, denotes the yield stress of the virgin material and p is the radius of the elastic
plastic interface. The solution given by Eqs. (15) is valid for r > p.

For r somewhat less than p, the stress point will be in regime CD. For this portion
Eq. (5) shows that A is still equal to &, . Since there is no thickening of the material,
there can be no straining and hence it is still rigid, even though plastic. The stresses are
now given by Egs. (1) and (14), with Eq. (15) as a boundary condition at r = p. Thus

1
oo = —elf+0e)

1
e el

(16)
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It is clear from the second Eq. (16) that the hoop stress vanishes for
r = pe V2. @17

Therefore, it follows from inequalities (6) that Eqs. (16) are valid for p < r < p, where
p and p are related by

p = ue'’. , (18)

The portion of the sheet just inside the circle r = u corresponds to the regime D.
It is evident that u will increase with the pressure, and hence it may be conveniently
taken as the time parameter. The ratio of the original radius r, of a particle to the radius
of this boundary is then taken as the space-time ratio mentioned in the Introduction.
Thus the entire solution will be a function of

T = To/ . (19a)

The equilibrium equation, the incompressibility relation, the law of strain hardening,
and the flow rule may now be expressed in terms of this parameter z. The resulting
equations will be ordinary differential equations, and the solutions will be obtained
relatively easily. It is convenient to define the following dimensionless quantities

§=r/u, 8 =o,/o0, 8 =o0s/00, s=galan, 1=nh/h, (19b)

all as function of z only. If ¢ is any function of z alone, then th= following relations are
seen to hold:

dp/0ro = (1/u)e’,
do/dn = —(1/wze’,
_wdr/w) 0 _ ‘ (20)
ar/or, = e = P = &,
— a¢/ar0 — ’ ’
do/0r = T for, = ©'/HE»

where primes denote differentiation with respect to z. Therefore, the velocity and strain
rates are

v =0r/ou =t — zt’, (21)
e, = ou/dr = —xt’’fut’, (22)
€ = v/r = (£ — z¢)/ut, (23)
o =35 = ~@n/um @

At the boundary of the plastic region £ = 1, the displacement and velocity must
vanish, the thickness must equal its initial value, and the stress point must be at D.
It follows that, at x = 1,

£=1, ¢ =1, 7 =1, s=1. (25)
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The strain hardening law and the incompressibility relation, Eqs. (10) and (5),
respectively, may now be written as

—z8’ = axt’' /¥,

—xt"/E+ 1 — 2/t — an’/n = 0. (26)
Integrals of Eqs. (26) which satisfy Eqgs. (25) are then found in the form
s/ =1, 27
&'y = x. (28)
Finally, the equilibrium equation in the corner D becomes ‘
(Ens1) /€ = 0. (29)
The solution of Egs. (27), (28) and (29) satisfying the boundary conditions (25) are
s = —s, = (x)-a/(l+a)’ $s = 0, A
£ = gas L+ (L @), (30)

_ (2 + a)xa/(li»a)
n= 1+ @1+~ ¢ ra)/(+ta)

This solution will be valid so long as Inequality (8) is satisfied. It is readily verified
that this is true for all 1/2 < ¢ < 1. Substitution of Egs. (19) into Egs. (30) yields the
results previously obtained by Prager [1].

For ¢ < 1/2, the solutions given by Eqgs. (32) to (35) predict a strain rate vector

-which points too far up, suggesting that the portion of the plate just inside the circle

¢ = 1/2, corresponds to plastic regime CD.

For the solution in the region ¢ < 1/2, Egs. (27) and (28) are still valid since Egs.
(10) and (5) hold in regimes D and CD. In addition Eq. (5) implies that

@ a/(2+a)
==l v

Here, as in the following, integration constants are determined to give continuity with
Eqgs. (30) at z = 1/2.
Because 7 is a constant, Eq. (28) is easily solved, the result being

x? 1 1/2
¢= [Z Ty a)] ’ 2
With ¢ known, Eq. (27) furnishes
1 a/2

Hence, from the equilibrium equation

f (/m)'” [ 4(11+ )](Hm dz — [2—(1—"‘;7)]”““”. (34)
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3.0

TRESCA YIELD CONDITION
MISES’ YIELD CONDITION

s =3.0 [REF. (5)]
\
s o, 1.25
-1,5
-3.0

F1c. 3. Distribution of radial and circumferential stresses.

Finally, since s, = s + s, , the value of s, is obtained by adding Eqs. (33) and (34).

It is easily verified that Inequalities (6) are always valid for 0 < ¢ < 1/2. Therefore,
the solutions represented by Eqgs. (') und (34) give the complete stress dizttibution
in the plastic region. It is further verified that s increases as the value of ¢ is decreased
from 0.5, so that the strain hardening continues.

4. Conclusions. The complete solution has been obtained for the finite expansion
of a circular hole from zero radius in a thin infinite plate of initially uniform thickness.
The material of the plate is rigid-plastic, satisfies Tresca’s yield condition and the
associated flow rule, and hardens isotropically.

As already stated, the solution for a hole expanded from a finite radius is obtained
from the present analysis simply by discarding the part of the solution around the edge
of the hole which is not required. This is a consequence of the fact that the outer annular

2.0
TRESCA YIELD CONDITION
MISES’ YIELD CONDITION
INCLUDING ELASTIC STRAIN

[ReF.(5)]
1.5 =-05
" —\
[ a=50
1.0 é‘*
0.5
o 0.25 0.50 0.75 1.00 1.25

f/‘)

Fig. 4. Thickness variation in deformed sheet.
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fibres of the plate receive radial pressure transmitted only from the inner fibres, and the
inner fibres may be equally well replaced by some externally applied pressure.

As pointed out by Alexander and Ford [5], the governing equations in the plastic
region of a plate of initially uniform thickness are identical with those of a plate which
varies in thickness proportionately with the radius. Therefore, the plastic region analysis
of the paper applies equally well to such a plate. ,

The great simplicity achieved by using Tresca’s yield condition and the associated
flow rule will be obvious by a comparison of the present analysis with that of Alexander
and Ford [5], who treated the same problem by using Mises’ yield condition and the
associated Prandtl-Reuss relations. Therefore, it is of some interest to compare the
results of the two theories. Figures (3) and (4) show the stress and thickness distri-
butions, plotted as functions of r/p, for two values a = 5.0 and a = 0.5, of the hardening.

Figures (3) and (4) show that there is fairly good agreement between the two distri-
butions of stress, though there is some discrepancy between the two distributions of
strain. Experiment alone, of course, can decide which analysis predicts the real behavior
of the material more closely. However, even if experimental evidence were to show
the Mises-type solution to be more accurate, the present treatment might still be valuable
as an approximate solution due to its much greater simplicity.
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