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Abstract

A finite group G is said to be a POS-group if for each x in G the
cardinality of the set {y € G|o(y) = o(z)} is a divisor of the order of G.
In this paper we study some of the properties of arbitrary POS-groups,
and construct a couple of new families of nonabelian POS-groups. We
also prove that the alternating group A,, n > 3, is not a POS-group.
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1 Introduction

Throughout this paper G denotes a finite group, o(z) the order of a group
element x, and | X| the cardinality of a set X. Also, given a positive integer n
and a prime p, ord, n denotes the largest nonnegative integer k such that p*|n.
As in [3], the order subset (or, order class) of G determined by an element
x € G is defined to be the set OS(x) = {y € Glo(y) = o(x)}. Clearly, Vz € G,
OS(x) is a disjoint union of some of the conjugacy classes in G. The group
G is said to have perfect order subsets (in short, G is called a POS-group) if
| OS(x)| is a divisor of |G| for all x € G.

The object of this paper is to study some of the properties of arbitrary POS-
groups, and construct a couple of new families of nonabelian POS-groups. In
the process, we re-establish the facts that there are infinitely many nonabelian
POS-groups other than the symmetric group S3, and that if a POS-group has
its order divisible by an odd prime then it is not necessary that 3 divides the
order of the group (see [3], [4] and [6]). Finally, we prove that the alternating
group A,, n > 3, is not a POS-group (see [4], Conjecture 5.2).
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2 Some necessary conditions

Given a positive integer n, let C), denote the cyclic group of order n. Then,
we have the following characterization for the cyclic POS-groups.

Proposition 2.1. C,, is a POS-group if and only if n =1 or n = 2°3° where
a>1, 3>0.

Proof. For each positive divisor d of n, C,, has exactly ¢(d) elements of order
d, where ¢ is the Euler’s phi function. So, C), is a POS-group if and only if
o(d)|n ¥ d|n, i.e. if and only if ¢(n)|n; noting that ¢(d)|¢(n) ¥ d|n. Elementary
calculations reveal that ¢(n)|n if and only if n = 1 or n = 2*37 where o >
1, B > 0. Hence, the proposition follows. O

The following proposition plays a very crucial role in the study of POS-
groups (abelian as well as nonabelian).

Proposition 2.2. For each x € G, | OS(z)| is a multiple of ¢(o(x)).

Proof. Define an equivalence relation ~ by setting a ~ b if a and b generate
the same cyclic subgroup of G. Let [a] denote the equivalence class of a in G
under this relation. Then, Vo € G and Va € OS(z), we have [a] C OS(z), and
[[a]| = ¢(o(a)) = ¢(o(z)). Hence it follows that | OS(x)| = k- ¢(o(x)) for all
r € G, where k is the number of distinct equivalence classes that constitute
OS(x). O

As an immediate consequence we have the following generalization to the
Proposition 1 and Corollary 1 of [3].

Corollary 2.3. If G is a POS-group then, for every prime divisor p of |G|,
p — 1 s also a divisor of |G|. In particular, every nontrivial POS-group is of
even order.

Proof. By Cauchy’s theorem (see [7], page 40), G has an element of order p.
So, G being a POS-group, ¢(p) = p — 1 divides |G]|. a

A celebrated theorem of Frobenius asserts that if n is a positive divisor of
|G| and X = {g € G|g" = 1}, then n divides | X| (see, for example, Theorem
9.1.2 of [5]). This result enables us to characterize the 2-groups having perfect
order subsets.

Proposition 2.4. A 2-group is a POS-group if and only if it is cyclic.

Proof. By Proposition 2.1, every cyclic 2-group is a POS-group. So, let G be a
POS-group with |G| = 2™, m > 0. For0 <n <m,let X,, = {g € G|¢* = 1}.
Clearly, X,,_1 C X,, for 1 <n < m. We use inductuion to show that | X,| = 2"
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for all n with 0 < n < m. This is equivalent to saying that G is cyclic. Now,
lzo| = 1 = 2° So, let us assume that n > 1. Since G is a POS-group, and
since X,, — X,,-1 = {g € G|o(g) = 2"}, we have, using Proposition 2.2,

| Xo| = [ Xn—1| = |Xp = Xppa| =0 0r 2° (2.1)

for some ¢t with n — 1 < ¢ < m. By induction hypothesis, |X,_;| = 2"}
and, by Frobenius’ theorem, 2" divides | X,|. Hence, from (2.1), it follows that
| X,,| = 2". This completes the proof. O

The possible odd prime factors of the order of a nontrivial POS-group are
characterized as follows

Proposition 2.5. Let G be a nontrivial POS-group. Then, the odd prime
factors (if any) of |G| are of the form 1+ 2%, where k < ordy |G| and t is odd,
with the smallest one being a Fermat’s prime.

Proof. Let p be an odd prime factor of |G|. Then, by Corollary 2.3,
p — 1 divides |G| = ords(p — 1) < ords |G|,

which proves the first part. In particular, if p is the smallest odd prime factor
of |G| then p — 1 = 2%, for some k < ord, |G|. Thus p = 1 + 2* is a Fermat’s
prime; noting that k is a power of 2 as p is a prime. O

We now determine, through a series of propositions, certain necessary con-
ditions for a group to be a POS-group.

Proposition 2.6. Let G be a nontrivial POS-group with ordy |G| = «. If
x € G then the number of distinct odd prime factors in o(x) is at the most «.
In fact, the bound gets reduces by (k — 1) if ordgo(z) =k > 1.

Proof. If o(x) has r distinct odd prime factors then 27|¢p(o(x)), and sor < a. In
addition, if ords o(z) = k > 1 then 2"7*~1p(o(z)), and sor < a—(k—1). O

Proposition 2.7. If|G| = 2k where k is an odd positive integer having at least
three distinct prime factors, and if all the Sylow subgroups of G are cyclic, then
G s not a POS-group.

Proof. By ([7], 10.1.10, page 290 ), G has the following presentation:

G=(r,yla™ =1=y", oyz~' =y")

where 0 < r < m, r* = 1 (mod m), m is odd, ged(m,n(r — 1)) = 1, and
mn = 2k. Clearly, at least one of m and n is divisible by two distinct odd
primes. So, o(x) or o(y) is divisible by at least two distinct odd primes. The

result now follows from Proposition 2.6. O
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Proposition 2.8. Let |G| = p1®' pa®?p3® ... pp® where ay, ag, . .., ay are pos-
itiwe integers and 2 = p; < py < --- < pg are primes such that ppy — 1 =
P12 p3® L pp Y k> 2. If G is a POS-group then the Sylow py-
subgroup of G is cyclic.

Proof. Note that G has a unique Sylow pg-subgroup, say P, so that every
element of GG, of order a power of pg, lies in P. Let m; denote the number of
elements of G of order p;’, 1 < i < ag. Then, by Proposition 2.2, ¢(pi)|m;.
So,

m; =pi' " (pe — D

for some integer z; > 0. If G is a POS-group then we have

x| pp e (2.2)

whenever z; # 0, 1 <i < k. Now,

= Zp;f’l X (z; —1)=0 (2.3)

This gives

ry =1 (mod py)

But, then (2.3) becomes
(677 ‘
Zpszl X (l‘z — 1) =0.
=2

Repeating the above process inductively, we get

T1 =Ty ="++=1Tqo =1

= Mg, = pr™ (e — 1) # 0.
This means that P is cyclic. O
In view of Proposition 2.7 the following corollary is immediate.

Corollary 2.9. If |G| =42 x 43", r > 1, then G is not a POS-group.
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Finally, we have

Proposition 2.10. Let G be a nontrivial POS-group. Then, the following
assertions hold:

(a) Ifords |G| =1 then either |G| =2, or 3 divides |G|.
(b) Ifordy |G| = ords |G| =1 then either |G| = 6, or 7 divides |G]|.

(c¢) Ifords |G| =ords |G| = ord; |G| =1 then either |G| = 42, or there exists
a prime p > T7659 such that 43%*p divides |G].

Proof. We have already noted that |G| is even. So, let

ap

|G| = p1™ X pa% X -+ py

where k > 1,2 =p; < py < --- < p are primes, and aq, s, . . ., o are positive
integers. Now, for all i = 1,2,...,k, we have ged(p;,p; — 1) = 1. So, in view
of Corollary 2.3 we have the following implications:

k22,041:1:>(p2—1)’2:>p2:3,
23 ama=1 — (- D6 = p=T,
k247a1:a2:a3:1:>(p4_1)|42:>p4:43

However,
kE>b5a=ay=a3=as=1 = (p; — 1)|1806

which is not possible for any prime p5 > 43. Hence, the theorem follows from
Corollary 2.9 and the fact that p = 77659 is the smallest prime greater than
43 such that p — 1 divides 2 x 3 X 7 x 43", r > 1. O

Remark 2.11. Using Proposition 2.7 and the celebrated theorem of Frobenius
one can, in fact, show that if |G| = 42 x 43" x 77659, r < 3, then G is not a
POS-group. The proof involves counting of group elements of order powers of
43.

We have enough evidence in support of the following conjecture; however,
a concrete proof is still eluding.

Conjecture 2.12. IfG is a POS-group such that ords |G| = ords |G| = ord; |G|
=1 then |G| = 42.
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3 Some examples

Recall (see [7], page 27) that if H and K are any two groups, and 0 : H —
Aut(K) is a homomorphism then the Cartesian product H x K forms a group
under the binary operation

(hl,kl)(hg,k2> - (hlhg,e(hg)(kl)k2>, (31)

where h; € H, k; € K, 1 =1,2. This group is known as the semidirect product
of H with K (with respect to 6 ), and is denoted by H x4 K. Such groups
play a very significant role in the construction of nonabelian POS-groups.

The following proposition gives a partial characterization of POS-groups
whose orders have exactly one distinct odd prime factor.

Proposition 3.1. Let G be a POS-group with |G| = 2°p® where a and 3
are positive integers, and p is a Fermat’s prime. If 2% < (p — 1)3 then G is
1somorphic to a semidirect product of a group of order 2% with the cyclic group
Cps.

p

Proof. Since p is a Fermat’s prime, p = 22" + 1 where k > 0. Let X, = {g €
G| g"" = 1} where 0 < n < 3. Then, using essentially the same argument
as in the proof of Proposition 2.4 together with the fact that the order of 2
modulo p is 2¥F1 we get | X,,| = p” for all n with 0 < n < 3. This implies that
G has a unique (hence normal) Sylow p-subgroup and it is cyclic. Thus, the
proposition follows. O

Taking cue from the above proposition, we now construct a couple new
families of nonabelian POS-groups which also serve as counter-examples to
the first and the third question posed in section 4 of [3].

Theorem 3.2. Let p be a Fermat’s prime. Let o, 8 be two positive integers
such that 2% > p — 1. Then there exists a homomorphism 6 : Coa — Aut(Cps)
such that the semidirect product Cya g Cps 1s a nonabelian POS-group.

Proof. Since p is a Fermat’s prime, p = 22" 41 where k > 0. Also, since the
group U(C,s) of units in the ring Cs is cyclic and has order p”~! x 22° there
exists a positive integer z such that

k

2 =1 (modp?), and 2

92k -1

=—1 (mod p?).
Moreover, we may choose z in such a way that
92k (41
z¥ #1 (mod p”™)

(for, otherwise,  may be replaced by z + p”). Let the cyclic groups Caa
and Cps be generated by a and b respectively. Define an automorphism f :
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Cys — Cps by setting f(b) = b%; noting that ged(z,p) = 1. Consider now
the homomorphism 6 : Cya — Aut(C,s) defined by 6(a) = f. Let (a”,bY) €
Cha X Cps. we may write x = 2"m, y = p°n, where 0 <r <, 0 < 5 < f3,

2t m, and ptn. It is easy to see that

0(a®)(b¥) = bv*". (3.2)
So, in Cha Xg Cps, we have, by repeated application of (3.1) and (3.2),
(a®,b)* " = (1,b7) (3.3)
where
22m 1
= _ 3.4
TEYX (3.4)

Now, put ¢ = ord, m. Then, m = p°u for some positive integer u such that
p t u. Therefore, using elementary number theoretic techniques, we have, for
all r > 2k,

22 = (z22k)2T72kpC“ =1 (modp”™) but #1 (mod p?+eth).
On the other hand, if r < 2* then
M #£1 (mod p);
otherwise, since z has order 22" modulo p, we will have
2" |2'm — 2F <.

Thus, we have

plretsy, if r < 2K,
piw, if r > 2%,

where v and w are two positive integers both coprime to p. This, in turn,
means that

1, if r < 2k

3.5
pB=s if r > 2k (3:5)

o((a”, b)) = {

Putting o(a”,b¥) = t, we have
(@@ W) = (1,1) = a" =1 = 2°2"tm = 2°7"|t,
since m is odd. Thus, 2*7"|o(a”,b). hence, from 3.5, we have
207" if r < 2k
o(a®,b¥) = ’ ’ 3.6
( ) {QWpﬂ—S, if r > 2k, (36)

This enables us to count the number of elements of Caa g Cs having a given
order, and frame the following table:
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Orders of Cardinalities of
group elements corresponding order subsets
1 1
207 (0 <1 < 2F) 20— =1y
2077 (28 <r < «) 2a-r=1
P, (0<5<5) P —1)
207 (2F <r<a, 0<s <) 2o r=lpf=s=l(p — 1)

It is now easy to see from this table that Csa X9 C)s is a nonabelian POS-group.
This completes the proof. O

Remark 3.3. For p = 5, taking z = —1 in the proof of the above theorem, we
get another class of nonabelian POS-groups, namely, Coa Xy Cys where v > 2
and 4 > 1. In this case we have the following table:

Orders of Cardinalities of
group elements corresponding order subsets
1 1
2¢ 207150
2077 (1< r<a) 20-r=1
5075 (0< s < ) 2250-s-1
2077505 (1 <r<a, 0<s<f3) Qo rFl5f=s—1

Remark 3.4. The argument used in the above theorem also enables us to
show that the semidirect product Cg xg C7 is a nonabelian POS-group where
the homomorphism 6 : Cs — Aut(C7) is given by (6(a))(b) = b* (here a and
b are generators of Cy and C; respectively). In this case the element orders
are 1,2,3,6,7,14 and the cardinalities of the corresponding order subsets are
1,1,14,14,6,6.

In ([3], Theorem 1), it has been proved, in particular, that if Cje x M is a
POS-group then Cpatr X M is also a POS-group where a > 1 and p is a prime
such that p{ |M|. Moreover, as mentioned in the proof of Theorem 1.3 of [4],
the group M need not be abelian. This enables us to construct yet another
family of nonabelian POS-groups.

Proposition 3.5. Let M be a nonabelian group of order 21. Then, Coa X M
1s a POS-group for each a > 1.

Proof. In view of the above discussion, it is enough to see that Cy x M is a POS-
group. In fact, the element orders and the cardinalities of the corresponding
order subsets of 'y x M are same as those mentioned in Remark 3.4 O

Finally, we settle Conjecture 5.2 of [4] regarding A,,.
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Proposition 3.6. For n > 3, the alternating group A,, is not a POS-group.

Proof. Tt has been proved in [2] and also in [1] that every positive integer,
except 1,2,4,6, and 9, can be written as the sum of distinct odd primes.
Consider now a positive integer n > 3. It follows that either n or n — 1 can be
written as the sum p;+py+- - -+ pr where py, po, ..., pr are distinct odd primes

(k > 1). Clearly, for such n, the number of elements of order pips...py in A,
n!

|
is ————— which does not divide |A,,| = " This completes the proof. [
Pip2 - - - Pk 2
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