On Finite Groups Having Perfect Order Subsets

Ashish Kumar Das

Department of Mathematics, North-Eastern Hill University Permanent Campus, Shillong-793022, Meghalaya, India akdas@nehu.ac.in

Abstract

A finite group G is said to be a POS-group if for each x in G the cardinality of the set $\{y \in G | o(y) = o(x)\}$ is a divisor of the order of G. In this paper we study some of the properties of arbitrary POS-groups, and construct a couple of new families of nonabelian POS-groups. We also prove that the alternating group A_n , $n \ge 3$, is not a POS-group.

Mathematics Subject Classification: 20D60, 11A41, 11Z05

Keywords: finite groups, semidirect product, divisibility, primes

1 Introduction

Throughout this paper G denotes a finite group, o(x) the order of a group element x, and |X| the cardinality of a set X. Also, given a positive integer n and a prime p, $\operatorname{ord}_p n$ denotes the largest nonnegative integer k such that $p^k|n$. As in [3], the order subset (or, order class) of G determined by an element $x \in G$ is defined to be the set $\operatorname{OS}(x) = \{y \in G | o(y) = o(x)\}$. Clearly, $\forall x \in G$, $\operatorname{OS}(x)$ is a disjoint union of some of the conjugacy classes in G. The group G is said to have perfect order subsets (in short, G is called a POS-group) if $|\operatorname{OS}(x)|$ is a divisor of |G| for all $x \in G$.

The object of this paper is to study some of the properties of arbitrary POSgroups, and construct a couple of new families of nonabelian POS-groups. In the process, we re-establish the facts that there are infinitely many nonabelian POS-groups other than the symmetric group S_3 , and that if a POS-group has its order divisible by an odd prime then it is not necessary that 3 divides the order of the group (see [3], [4] and [6]). Finally, we prove that the alternating group A_n , $n \ge 3$, is not a POS-group (see [4], Conjecture 5.2).

2 Some necessary conditions

Given a positive integer n, let C_n denote the cyclic group of order n. Then, we have the following characterization for the cyclic POS-groups.

Proposition 2.1. C_n is a POS-group if and only if n = 1 or $n = 2^{\alpha}3^{\beta}$ where $\alpha \ge 1, \beta \ge 0$.

Proof. For each positive divisor d of n, C_n has exactly $\phi(d)$ elements of order d, where ϕ is the Euler's phi function. So, C_n is a POS-group if and only if $\phi(d)|n \forall d|n$, *i.e.* if and only if $\phi(n)|n$; noting that $\phi(d)|\phi(n) \forall d|n$. Elementary calculations reveal that $\phi(n)|n$ if and only if n = 1 or $n = 2^{\alpha}3^{\beta}$ where $\alpha \geq 1$, $\beta \geq 0$. Hence, the proposition follows.

The following proposition plays a very crucial role in the study of POSgroups (abelian as well as nonabelian).

Proposition 2.2. For each $x \in G$, |OS(x)| is a multiple of $\phi(o(x))$.

Proof. Define an equivalence relation \sim by setting $a \sim b$ if a and b generate the same cyclic subgroup of G. Let [a] denote the equivalence class of a in G under this relation. Then, $\forall x \in G$ and $\forall a \in OS(x)$, we have $[a] \subset OS(x)$, and $|[a]| = \phi(o(a)) = \phi(o(x))$. Hence it follows that $|OS(x)| = k \cdot \phi(o(x))$ for all $x \in G$, where k is the number of distinct equivalence classes that constitute OS(x).

As an immediate consequence we have the following generalization to the Proposition 1 and Corollary 1 of [3].

Corollary 2.3. If G is a POS-group then, for every prime divisor p of |G|, p-1 is also a divisor of |G|. In particular, every nontrivial POS-group is of even order.

Proof. By Cauchy's theorem (see [7], page 40), G has an element of order p. So, G being a POS-group, $\phi(p) = p - 1$ divides |G|.

A celebrated theorem of Frobenius asserts that if n is a positive divisor of |G| and $X = \{g \in G | g^n = 1\}$, then n divides |X| (see, for example, Theorem 9.1.2 of [5]). This result enables us to characterize the 2-groups having perfect order subsets.

Proposition 2.4. A 2-group is a POS-group if and only if it is cyclic.

Proof. By Proposition 2.1, every cyclic 2-group is a POS-group. So, let G be a POS-group with $|G| = 2^m$, $m \ge 0$. For $0 \le n \le m$, let $X_n = \{g \in G \mid g^{2^n} = 1\}$. Clearly, $X_{n-1} \subset X_n$ for $1 \le n \le m$. We use induction to show that $|X_n| = 2^n$

for all n with $0 \le n \le m$. This is equivalent to saying that G is cyclic. Now, $|x_0| = 1 = 2^0$. So, let us assume that $n \ge 1$. Since G is a POS-group, and since $X_n - X_{n-1} = \{g \in G \mid o(g) = 2^n\}$, we have, using Proposition 2.2,

$$|X_n| - |X_{n-1}| = |X_n - X_{n-1}| = 0 \text{ or } 2^t$$
(2.1)

for some t with $n-1 \leq t \leq m$. By induction hypothesis, $|X_{n-1}| = 2^{n-1}$, and, by Frobenius' theorem, 2^n divides $|X_n|$. Hence, from (2.1), it follows that $|X_n| = 2^n$. This completes the proof.

The possible odd prime factors of the order of a nontrivial POS-group are characterized as follows

Proposition 2.5. Let G be a nontrivial POS-group. Then, the odd prime factors (if any) of |G| are of the form $1 + 2^k t$, where $k \leq \operatorname{ord}_2 |G|$ and t is odd, with the smallest one being a Fermat's prime.

Proof. Let p be an odd prime factor of |G|. Then, by Corollary 2.3,

$$p-1$$
 divides $|G| \implies \operatorname{ord}_2(p-1) \le \operatorname{ord}_2|G|$

which proves the first part. In particular, if p is the smallest odd prime factor of |G| then $p - 1 = 2^k$, for some $k \leq \operatorname{ord}_2 |G|$. Thus $p = 1 + 2^k$ is a Fermat's prime; noting that k is a power of 2 as p is a prime.

We now determine, through a series of propositions, certain necessary conditions for a group to be a POS-group.

Proposition 2.6. Let G be a nontrivial POS-group with $\operatorname{ord}_2 |G| = \alpha$. If $x \in G$ then the number of distinct odd prime factors in o(x) is at the most α . In fact, the bound gets reduces by (k-1) if $\operatorname{ord}_2 o(x) = k \ge 1$.

Proof. If o(x) has r distinct odd prime factors then $2^r |\phi(o(x))\rangle$, and so $r \leq \alpha$. In addition, if $\operatorname{ord}_2 o(x) = k \geq 1$ then $2^{r+k-1} |\phi(o(x))\rangle$, and so $r \leq \alpha - (k-1)$.

Proposition 2.7. If |G| = 2k where k is an odd positive integer having at least three distinct prime factors, and if all the Sylow subgroups of G are cyclic, then G is not a POS-group.

Proof. By ([7], 10.1.10, page 290), G has the following presentation:

$$G = \langle x, y | x^m = 1 = y^n, xyx^{-1} = y^r \rangle$$

where $0 \leq r < m$, $r^n \equiv 1 \pmod{m}$, *m* is odd, gcd(m, n(r-1)) = 1, and mn = 2k. Clearly, at least one of *m* and *n* is divisible by two distinct odd primes. So, o(x) or o(y) is divisible by at least two distinct odd primes. The result now follows from Proposition 2.6.

Proposition 2.8. Let $|G| = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \dots p_k^{\alpha_k}$ where $\alpha_1, \alpha_2, \dots, \alpha_k$ are positive integers and $2 = p_1 < p_2 < \dots < p_k$ are primes such that $p_k - 1 = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \dots p_{k-1}^{\alpha_{k-1}}$, $k \ge 2$. If G is a POS-group then the Sylow p_k -subgroup of G is cyclic.

Proof. Note that G has a unique Sylow p_k -subgroup, say P, so that every element of G, of order a power of p_k , lies in P. Let m_i denote the number of elements of G of order p_k^i , $1 \le i \le \alpha_k$. Then, by Proposition 2.2, $\phi(p_k^i)|m_i$. So,

$$m_i = p_k^{i-1}(p_k - 1)x_i$$

for some integer $x_i \ge 0$. If G is a POS-group then we have

$$x_i | p_k^{\alpha_k - i + 1} \tag{2.2}$$

whenever $x_i \neq 0, 1 \leq i \leq k$. Now,

$$\sum_{i=1}^{\alpha_k} m_i = |P| - 1 = p_k^{\alpha_k} - 1$$

$$\Rightarrow \sum_{i=1}^{\alpha_k} p_k^{i-1} \times (x_i - 1) = 0$$
(2.3)

This gives

$$x_1 \equiv 1 \pmod{p_k}$$

$$\Rightarrow x_1 = 1, \quad \text{by (2.2)}.$$

But, then (2.3) becomes

$$\sum_{i=2}^{\alpha_k} p_k^{i-1} \times (x_i - 1) = 0.$$

Repeating the above process inductively, we get

$$x_1 = x_2 = \dots = x_{\alpha_k} = 1$$

$$\Rightarrow m_{\alpha_k} = p_k^{\alpha_k - 1} (p_k - 1) \neq 0.$$

This means that P is cyclic.

In view of Proposition 2.7 the following corollary is immediate.

Corollary 2.9. If $|G| = 42 \times 43^r$, $r \ge 1$, then G is not a POS-group.

Finally, we have

Proposition 2.10. Let G be a nontrivial POS-group. Then, the following assertions hold:

- (a) If $\operatorname{ord}_2 |G| = 1$ then either |G| = 2, or 3 divides |G|.
- (b) If $\operatorname{ord}_2 |G| = \operatorname{ord}_3 |G| = 1$ then either |G| = 6, or 7 divides |G|.
- (c) If $\operatorname{ord}_2 |G| = \operatorname{ord}_3 |G| = \operatorname{ord}_7 |G| = 1$ then either |G| = 42, or there exists a prime $p \ge 77659$ such that 43^2p divides |G|.

Proof. We have already noted that |G| is even. So, let

$$|G| = p_1^{\alpha_1} \times p_2^{\alpha_2} \times \cdots \times p_k^{\alpha_k}$$

where $k \ge 1, 2 = p_1 < p_2 < \cdots < p_k$ are primes, and $\alpha_1, \alpha_2, \ldots, \alpha_k$ are positive integers. Now, for all $i = 1, 2, \ldots, k$, we have $gcd(p_i, p_i - 1) = 1$. So, in view of Corollary 2.3 we have the following implications:

$$k \ge 2, \ \alpha_1 = 1 \implies (p_2 - 1)|2 \implies p_2 = 3,$$

$$k \ge 3, \ \alpha_1 = \alpha_2 = 1 \implies (p_3 - 1)|6 \implies p_3 = 7,$$

$$k \ge 4, \ \alpha_1 = \alpha_2 = \alpha_3 = 1 \implies (p_4 - 1)|42 \implies p_4 = 43.$$

However,

$$k \ge 5, \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 1 \implies (p_5 - 1)|1806$$

which is not possible for any prime $p_5 > 43$. Hence, the theorem follows from Corollary 2.9 and the fact that p = 77659 is the smallest prime greater than 43 such that p - 1 divides $2 \times 3 \times 7 \times 43^r$, r > 1.

Remark 2.11. Using Proposition 2.7 and the celebrated theorem of Frobenius one can, in fact, show that if $|G| = 42 \times 43^r \times 77659$, $r \leq 3$, then G is not a POS-group. The proof involves counting of group elements of order powers of 43.

We have enough evidence in support of the following conjecture; however, a concrete proof is still eluding.

Conjecture 2.12. If G is a POS-group such that $\operatorname{ord}_2 |G| = \operatorname{ord}_3 |G| = \operatorname{ord}_7 |G| = 1$ then |G| = 42.

3 Some examples

Recall (see [7], page 27) that if H and K are any two groups, and $\theta: H \longrightarrow Aut(K)$ is a homomorphism then the Cartesian product $H \times K$ forms a group under the binary operation

$$(h_1, k_1)(h_2, k_2) = (h_1 h_2, \theta(h_2)(k_1)k_2), \tag{3.1}$$

where $h_i \in H$, $k_i \in K$, i = 1, 2. This group is known as the *semidirect product* of H with K (with respect to θ), and is denoted by $H \ltimes_{\theta} K$. Such groups play a very significant role in the construction of nonabelian POS-groups.

The following proposition gives a partial characterization of POS-groups whose orders have exactly one distinct odd prime factor.

Proposition 3.1. Let G be a POS-group with $|G| = 2^{\alpha}p^{\beta}$ where α and β are positive integers, and p is a Fermat's prime. If $2^{\alpha} < (p-1)^3$ then G is isomorphic to a semidirect product of a group of order 2^{α} with the cyclic group $C_{p^{\beta}}$.

Proof. Since p is a Fermat's prime, $p = 2^{2^k} + 1$ where $k \ge 0$. Let $X_n = \{g \in G \mid g^{p^n} = 1\}$ where $0 \le n \le \beta$. Then, using essentially the same argument as in the proof of Proposition 2.4 together with the fact that the order of 2 modulo p is 2^{k+1} , we get $|X_n| = p^n$ for all n with $0 \le n \le \beta$. This implies that G has a unique (hence normal) Sylow p-subgroup and it is cyclic. Thus, the proposition follows.

Taking cue from the above proposition, we now construct a couple new families of nonabelian POS-groups which also serve as counter-examples to the first and the third question posed in section 4 of [3].

Theorem 3.2. Let p be a Fermat's prime. Let α , β be two positive integers such that $2^{\alpha} \geq p - 1$. Then there exists a homomorphism $\theta : C_{2^{\alpha}} \to \operatorname{Aut}(C_{p^{\beta}})$ such that the semidirect product $C_{2^{\alpha}} \ltimes_{\theta} C_{p^{\beta}}$ is a nonabelian POS-group.

Proof. Since p is a Fermat's prime, $p = 2^{2^k} + 1$ where $k \ge 0$. Also, since the group $U(C_{p^\beta})$ of units in the ring C_{p^β} is cyclic and has order $p^{\beta-1} \times 2^{2^k}$, there exists a positive integer z such that

$$z^{2^{2^k}} \equiv 1 \pmod{p^{\beta}}$$
, and $z^{2^{2^{k-1}}} \equiv -1 \pmod{p^{\beta}}$.

Moreover, we may choose z in such a way that

$$z^{2^{2^k}} \not\equiv 1 \pmod{p^{\beta+1}}$$

(for, otherwise, z may be replaced by $z + p^{\beta}$). Let the cyclic groups $C_{2^{\alpha}}$ and $C_{p^{\beta}}$ be generated by a and b respectively. Define an automorphism f: $C_{p^{\beta}} \to C_{p^{\beta}}$ by setting $f(b) = b^z$; noting that gcd(z, p) = 1. Consider now the homomorphism $\theta : C_{2^{\alpha}} \to Aut(C_{p^{\beta}})$ defined by $\theta(a) = f$. Let $(a^x, b^y) \in C_{2^{\alpha}} \ltimes C_{p^{\beta}}$. we may write $x = 2^r m, y = p^s n$, where $0 \le r \le \alpha, 0 \le s \le \beta$, $2 \nmid m$, and $p \nmid n$. It is easy to see that

$$\theta(a^x)(b^y) = b^{yz^x}.$$
(3.2)

So, in $C_{2^{\alpha}} \ltimes_{\theta} C_{p^{\beta}}$, we have, by repeated application of (3.1) and (3.2),

$$(a^x, b^y)^{2^{\alpha - r}} = (1, b^{\gamma}) \tag{3.3}$$

where

$$\gamma = y \times \frac{z^{2^{\alpha}m} - 1}{z^{2^{r}m} - 1}.$$
(3.4)

Now, put $c = \operatorname{ord}_p m$. Then, $m = p^c u$ for some positive integer u such that $p \nmid u$. Therefore, using elementary number theoretic techniques, we have, for all $r \geq 2^k$,

$$z^{2^r m} = (z^{2^{2^k}})^{2^{r-2^k} p^c u} \equiv 1 \pmod{p^{\beta+c}} \text{ but } \not\equiv 1 \pmod{p^{\beta+c+1}}.$$

On the other hand, if $r < 2^k$ then

$$z^{2^r m} \not\equiv 1 \pmod{p};$$

otherwise, since z has order 2^{2^k} modulo p, we will have

$$2^{2^k}|2^rm \implies 2^k \le r.$$

Thus, we have

$$\gamma = \begin{cases} p^{\beta + c + s} v, & \text{if } r < 2^k \\ p^s w, & \text{if } r \ge 2^k \end{cases}$$

where v and w are two positive integers both coprime to p. This, in turn, means that

$$o((a^x, b^y)^{2^{\alpha - r}}) = \begin{cases} 1, & \text{if } r < 2^k, \\ p^{\beta - s}, & \text{if } r \ge 2^k. \end{cases}$$
(3.5)

Putting $o(a^x, b^y) = t$, we have

$$(a^x, b^y)^t = (1, 1) \implies a^{tx} = 1 \implies 2^{\alpha} | 2^r tm \implies 2^{\alpha - r} | t,$$

since m is odd. Thus, $2^{\alpha-r}|o(a^x, b^y)$. hence, from 3.5, we have

$$o(a^{x}, b^{y}) = \begin{cases} 2^{\alpha - r}, & \text{if } r < 2^{k}, \\ 2^{\alpha - r} p^{\beta - s}, & \text{if } r \ge 2^{k}. \end{cases}$$
(3.6)

This enables us to count the number of elements of $C_{2^{\alpha}} \ltimes_{\theta} C_{p^{\beta}}$ having a given order, and frame the following table:

Orders of	Cardinalities of
group elements	corresponding order subsets
1	1
$2^{\alpha-r}, \ (0 \le r < 2^k)$	$2^{\alpha-r-1}p^{\beta}$
$2^{\alpha-r}, (2^k \le r < \alpha)$	$2^{\alpha-r-1}$
$p^{\beta-s}, (0 \le s < \beta)$	$p^{\beta-s-1}(p-1)$
$2^{\alpha-r}p^{\beta-s}, (2^k \le r < \alpha, \ 0 \le s < \beta)$	$2^{\alpha-r-1}p^{\beta-s-1}(p-1)$

It is now easy to see from this table that $C_{2^{\alpha}} \ltimes_{\theta} C_{p^{\beta}}$ is a nonabelian POS-group. This completes the proof.

Remark 3.3. For p = 5, taking z = -1 in the proof of the above theorem, we get another class of nonabelian POS-groups, namely, $C_{2^{\alpha}} \ltimes_{\theta} C_{5^{\beta}}$ where $\alpha \ge 2$ and $\beta \ge 1$. In this case we have the following table:

Orders of	Cardinalities of
group elements	corresponding order subsets
1	1
2^{α}	$2^{\alpha-1}5^{\beta}$
$2^{\alpha-r}, (1 \le r < \alpha)$	$2^{\alpha-r-1}$
$5^{\beta-s}, (0 \le s < \beta)$	$2^2 5^{\beta-s-1}$
$2^{\alpha-r}5^{\beta-s}, (1 \le r < \alpha, \ 0 \le s < \beta)$	$2^{\alpha-r+1}5^{\beta-s-1}$

Remark 3.4. The argument used in the above theorem also enables us to show that the semidirect product $C_6 \ltimes_{\theta} C_7$ is a nonabelian POS-group where the homomorphism $\theta : C_6 \to \operatorname{Aut}(C_7)$ is given by $(\theta(a))(b) = b^2$ (here *a* and *b* are generators of C_6 and C_7 respectively). In this case the element orders are 1, 2, 3, 6, 7, 14 and the cardinalities of the corresponding order subsets are 1, 1, 14, 14, 6, 6.

In ([3], Theorem 1), it has been proved, in particular, that if $C_{p^a} \times M$ is a POS-group then $C_{p^{a+1}} \times M$ is also a POS-group where $a \ge 1$ and p is a prime such that $p \nmid |M|$. Moreover, as mentioned in the proof of Theorem 1.3 of [4], the group M need not be abelian. This enables us to construct yet another family of nonabelian POS-groups.

Proposition 3.5. Let M be a nonabelian group of order 21. Then, $C_{2^a} \times M$ is a POS-group for each $a \ge 1$.

Proof. In view of the above discussion, it is enough to see that $C_2 \times M$ is a POSgroup. In fact, the element orders and the cardinalities of the corresponding order subsets of $C_2 \times M$ are same as those mentioned in Remark 3.4

Finally, we settle Conjecture 5.2 of [4] regarding A_n .

Proposition 3.6. For $n \geq 3$, the alternating group A_n is not a POS-group.

Proof. It has been proved in [2] and also in [1] that every positive integer, except 1, 2, 4, 6, and 9, can be written as the sum of distinct odd primes. Consider now a positive integer $n \ge 3$. It follows that either n or n-1 can be written as the sum $p_1 + p_2 + \cdots + p_k$ where p_1, p_2, \ldots, p_k are distinct odd primes $(k \ge 1)$. Clearly, for such n, the number of elements of order $p_1p_2 \ldots p_k$ in A_n is $\frac{n!}{p_1p_2 \ldots p_k}$ which does not divide $|A_n| = \frac{n!}{2}$. This completes the proof. \Box

References

- J. L. Brown, Jr., Generalization of Richert's Theorem, Amer. Math. Monthly, 83(8) (1976), 631–634.
- [2] R. E. Dressler, A Stronger Bertrand's Postulate with an Application to Partitions, Proc. Amer. Math. Soc.33(2) (1972), 226–228.
- [3] C. E. Finch and L. Jones, A curious connection between Fermat numbers and finite groups, Amer. Math. Monthly **109** (2002), 517–524.
- [4] C. E. Finch and L. Jones, Nonabelian groups with perfect order subsets, JP J. Algebra Number Theory Appl. 3(1) (2003), 13–26. See also: Corrigendum to: "Nonabelian groups with perfect order subsets" [JP J. Algebra Number Theory Appl. 3(1) (2003), 13–26], JP J. Algebra Number Theory Appl. 4(2) (2004), 413–416.
- [5] M. Hall, *Theory of Groups*, Macmillan, New York, 1959.
- [6] S. Libera and P. Tlucek, Some perfect order subset groups, Pi Mu Epsilon Journal, 11 (2003), 495–498.
- [7] D. J. S. Robinson, A course in the Theory of Groups (Second Edition), Graduate Text in Mathematics 80, Springer, New York, 1996.

Received: May, 2009