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Abstract

A finite group G is said to be a POS-group if for each x in G the
cardinality of the set {y ∈ G|o(y) = o(x)} is a divisor of the order of G.
In this paper we study some of the properties of arbitrary POS-groups,
and construct a couple of new families of nonabelian POS-groups. We
also prove that the alternating group An, n ≥ 3, is not a POS-group.
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1 Introduction

Throughout this paper G denotes a finite group, o(x) the order of a group
element x, and |X | the cardinality of a set X. Also, given a positive integer n
and a prime p, ordp n denotes the largest nonnegative integer k such that pk|n.
As in [3], the order subset (or, order class) of G determined by an element
x ∈ G is defined to be the set OS(x) = {y ∈ G|o(y) = o(x)}. Clearly, ∀x ∈ G,
OS(x) is a disjoint union of some of the conjugacy classes in G. The group
G is said to have perfect order subsets (in short, G is called a POS-group) if
|OS(x)| is a divisor of |G| for all x ∈ G.

The object of this paper is to study some of the properties of arbitrary POS-
groups, and construct a couple of new families of nonabelian POS-groups. In
the process, we re-establish the facts that there are infinitely many nonabelian
POS-groups other than the symmetric group S3, and that if a POS-group has
its order divisible by an odd prime then it is not necessary that 3 divides the
order of the group (see [3], [4] and [6]). Finally, we prove that the alternating
group An, n ≥ 3, is not a POS-group (see [4], Conjecture 5.2).
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2 Some necessary conditions

Given a positive integer n, let Cn denote the cyclic group of order n. Then,
we have the following characterization for the cyclic POS-groups.

Proposition 2.1. Cn is a POS-group if and only if n = 1 or n = 2α3β where
α ≥ 1, β ≥ 0.

Proof. For each positive divisor d of n, Cn has exactly φ(d) elements of order
d, where φ is the Euler’s phi function. So, Cn is a POS-group if and only if
φ(d)|n ∀ d|n, i.e. if and only if φ(n)|n; noting that φ(d)|φ(n) ∀ d|n. Elementary
calculations reveal that φ(n)|n if and only if n = 1 or n = 2α3β where α ≥
1, β ≥ 0. Hence, the proposition follows.

The following proposition plays a very crucial role in the study of POS-
groups (abelian as well as nonabelian).

Proposition 2.2. For each x ∈ G, |OS(x)| is a multiple of φ(o(x)).

Proof. Define an equivalence relation ∼ by setting a ∼ b if a and b generate
the same cyclic subgroup of G. Let [a] denote the equivalence class of a in G
under this relation. Then, ∀x ∈ G and ∀a ∈ OS(x), we have [a] ⊂ OS(x), and
|[a]| = φ(o(a)) = φ(o(x)). Hence it follows that |OS(x)| = k · φ(o(x)) for all
x ∈ G, where k is the number of distinct equivalence classes that constitute
OS(x).

As an immediate consequence we have the following generalization to the
Proposition 1 and Corollary 1 of [3].

Corollary 2.3. If G is a POS-group then, for every prime divisor p of |G|,
p − 1 is also a divisor of |G|. In particular, every nontrivial POS-group is of
even order.

Proof. By Cauchy’s theorem (see [7], page 40), G has an element of order p.
So, G being a POS-group, φ(p) = p − 1 divides |G|.

A celebrated theorem of Frobenius asserts that if n is a positive divisor of
|G| and X = {g ∈ G|gn = 1}, then n divides |X | (see, for example, Theorem
9.1.2 of [5]). This result enables us to characterize the 2-groups having perfect
order subsets.

Proposition 2.4. A 2-group is a POS-group if and only if it is cyclic.

Proof. By Proposition 2.1, every cyclic 2-group is a POS-group. So, let G be a
POS-group with |G| = 2m, m ≥ 0. For 0 ≤ n ≤ m, let Xn = {g ∈ G | g2n

= 1}.
Clearly, Xn−1 ⊂ Xn for 1 ≤ n ≤ m. We use inductuion to show that |Xn| = 2n
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for all n with 0 ≤ n ≤ m. This is equivalent to saying that G is cyclic. Now,
|x0| = 1 = 20. So, let us assume that n ≥ 1. Since G is a POS-group, and
since Xn − Xn−1 = {g ∈ G | o(g) = 2n}, we have, using Proposition 2.2,

|Xn| − |Xn−1| = |Xn − Xn−1| = 0 or 2t (2.1)

for some t with n − 1 ≤ t ≤ m. By induction hypothesis, |Xn−1| = 2n−1,
and, by Frobenius’ theorem, 2n divides |Xn|. Hence, from (2.1), it follows that
|Xn| = 2n. This completes the proof.

The possible odd prime factors of the order of a nontrivial POS-group are
characterized as follows

Proposition 2.5. Let G be a nontrivial POS-group. Then, the odd prime
factors (if any) of |G| are of the form 1+2kt, where k ≤ ord2 |G| and t is odd,
with the smallest one being a Fermat’s prime.

Proof. Let p be an odd prime factor of |G|. Then, by Corollary 2.3,

p − 1 divides |G| =⇒ ord2(p − 1) ≤ ord2 |G|,
which proves the first part. In particular, if p is the smallest odd prime factor
of |G| then p − 1 = 2k, for some k ≤ ord2 |G|. Thus p = 1 + 2k is a Fermat’s
prime; noting that k is a power of 2 as p is a prime.

We now determine, through a series of propositions, certain necessary con-
ditions for a group to be a POS-group.

Proposition 2.6. Let G be a nontrivial POS-group with ord2 |G| = α. If
x ∈ G then the number of distinct odd prime factors in o(x) is at the most α.
In fact, the bound gets reduces by (k − 1) if ord2 o(x) = k ≥ 1.

Proof. If o(x) has r distinct odd prime factors then 2r|φ(o(x)), and so r ≤ α. In
addition, if ord2 o(x) = k ≥ 1 then 2r+k−1|φ(o(x)), and so r ≤ α− (k− 1).

Proposition 2.7. If |G| = 2k where k is an odd positive integer having at least
three distinct prime factors, and if all the Sylow subgroups of G are cyclic, then
G is not a POS-group.

Proof. By ([7], 10.1.10, page 290 ), G has the following presentation:

G = 〈x, y|xm = 1 = yn, xyx−1 = yr〉
where 0 ≤ r < m, rn ≡ 1 (mod m), m is odd, gcd(m,n(r − 1)) = 1, and
mn = 2k. Clearly, at least one of m and n is divisible by two distinct odd
primes. So, o(x) or o(y) is divisible by at least two distinct odd primes. The
result now follows from Proposition 2.6.
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Proposition 2.8. Let |G| = p1
α1p2

α2p3
α3 . . . pk

αk where α1, α2, . . . , αk are pos-
itive integers and 2 = p1 < p2 < · · · < pk are primes such that pk − 1 =
p1

α1p2
α2p3

α3 . . . pk−1
αk−1, k ≥ 2. If G is a POS-group then the Sylow pk-

subgroup of G is cyclic.

Proof. Note that G has a unique Sylow pk-subgroup, say P , so that every
element of G, of order a power of pk, lies in P . Let mi denote the number of
elements of G of order pk

i, 1 ≤ i ≤ αk. Then, by Proposition 2.2, φ(pk
i)|mi.

So,

mi = pk
i−1(pk − 1)xi

for some integer xi ≥ 0. If G is a POS-group then we have

xi|pk
αk−i+1 (2.2)

whenever xi �= 0, 1 ≤ i ≤ k. Now,

αk∑
i=1

mi = |P | − 1 = pk
αk − 1

⇒
αk∑
i=1

pk
i−1 × (xi − 1) = 0 (2.3)

This gives

x1 ≡ 1 (mod pk)

⇒ x1 = 1, by (2.2).

But, then (2.3) becomes

αk∑
i=2

pk
i−1 × (xi − 1) = 0.

Repeating the above process inductively, we get

x1 = x2 = · · · = xαk
= 1

⇒ mαk
= pk

αk−1(pk − 1) �= 0.

This means that P is cyclic.

In view of Proposition 2.7 the following corollary is immediate.

Corollary 2.9. If |G| = 42 × 43r, r ≥ 1, then G is not a POS-group.
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Finally, we have

Proposition 2.10. Let G be a nontrivial POS-group. Then, the following
assertions hold:

(a) If ord2 |G| = 1 then either |G| = 2, or 3 divides |G|.

(b) If ord2 |G| = ord3 |G| = 1 then either |G| = 6, or 7 divides |G|.

(c) If ord2 |G| = ord3 |G| = ord7 |G| = 1 then either |G| = 42, or there exists
a prime p ≥ 77659 such that 432p divides |G|.

Proof. We have already noted that |G| is even. So, let

|G| = p1
α1 × p2

α2 × · · · pk
αk

where k ≥ 1, 2 = p1 < p2 < · · · < pk are primes, and α1, α2, . . . , αk are positive
integers. Now, for all i = 1, 2, . . . , k, we have gcd(pi, pi − 1) = 1. So, in view
of Corollary 2.3 we have the following implications:

k ≥ 2, α1 = 1 =⇒ (p2 − 1)|2 =⇒ p2 = 3,

k ≥ 3, α1 = α2 = 1 =⇒ (p3 − 1)|6 =⇒ p3 = 7,

k ≥ 4, α1 = α2 = α3 = 1 =⇒ (p4 − 1)|42 =⇒ p4 = 43.

However,

k ≥ 5, α1 = α2 = α3 = α4 = 1 =⇒ (p5 − 1)|1806

which is not possible for any prime p5 > 43. Hence, the theorem follows from
Corollary 2.9 and the fact that p = 77659 is the smallest prime greater than
43 such that p − 1 divides 2 × 3 × 7 × 43r, r > 1.

Remark 2.11. Using Proposition 2.7 and the celebrated theorem of Frobenius
one can, in fact, show that if |G| = 42 × 43r × 77659, r ≤ 3, then G is not a
POS-group. The proof involves counting of group elements of order powers of
43.

We have enough evidence in support of the following conjecture; however,
a concrete proof is still eluding.

Conjecture 2.12. If G is a POS-group such that ord2 |G| = ord3 |G| = ord7 |G|
= 1 then |G| = 42.
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3 Some examples

Recall (see [7], page 27) that if H and K are any two groups, and θ : H −→
Aut(K) is a homomorphism then the Cartesian product H ×K forms a group
under the binary operation

(h1, k1)(h2, k2) = (h1h2, θ(h2)(k1)k2), (3.1)

where hi ∈ H , ki ∈ K, i = 1, 2. This group is known as the semidirect product
of H with K (with respect to θ ), and is denoted by H �θ K. Such groups
play a very significant role in the construction of nonabelian POS-groups.

The following proposition gives a partial characterization of POS-groups
whose orders have exactly one distinct odd prime factor.

Proposition 3.1. Let G be a POS-group with |G| = 2αpβ where α and β
are positive integers, and p is a Fermat’s prime. If 2α < (p − 1)3 then G is
isomorphic to a semidirect product of a group of order 2α with the cyclic group
Cpβ .

Proof. Since p is a Fermat’s prime, p = 22k
+ 1 where k ≥ 0. Let Xn = {g ∈

G | gpn
= 1} where 0 ≤ n ≤ β. Then, using essentially the same argument

as in the proof of Proposition 2.4 together with the fact that the order of 2
modulo p is 2k+1, we get |Xn| = pn for all n with 0 ≤ n ≤ β. This implies that
G has a unique (hence normal) Sylow p-subgroup and it is cyclic. Thus, the
proposition follows.

Taking cue from the above proposition, we now construct a couple new
families of nonabelian POS-groups which also serve as counter-examples to
the first and the third question posed in section 4 of [3].

Theorem 3.2. Let p be a Fermat’s prime. Let α, β be two positive integers
such that 2α ≥ p − 1. Then there exists a homomorphism θ : C2α → Aut(Cpβ)
such that the semidirect product C2α �θ Cpβ is a nonabelian POS-group.

Proof. Since p is a Fermat’s prime, p = 22k
+ 1 where k ≥ 0. Also, since the

group U(Cpβ) of units in the ring Cpβ is cyclic and has order pβ−1 × 22k
, there

exists a positive integer z such that

z22k ≡ 1 (mod pβ), and z22k−1 ≡ −1 (mod pβ).

Moreover, we may choose z in such a way that

z22k �≡ 1 (mod pβ+1)

(for, otherwise, z may be replaced by z + pβ). Let the cyclic groups C2α

and Cpβ be generated by a and b respectively. Define an automorphism f :
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Cpβ → Cpβ by setting f(b) = bz ; noting that gcd(z, p) = 1. Consider now
the homomorphism θ : C2α → Aut(Cpβ) defined by θ(a) = f. Let (ax, by) ∈
C2α � Cpβ . we may write x = 2rm, y = psn, where 0 ≤ r ≤ α, 0 ≤ s ≤ β,
2 � m, and p � n. It is easy to see that

θ(ax)(by) = byzx

. (3.2)

So, in C2α �θ Cpβ , we have, by repeated application of (3.1) and (3.2),

(ax, by)2α−r

= (1, bγ) (3.3)

where

γ = y × z2αm − 1

z2rm − 1
. (3.4)

Now, put c = ordp m. Then, m = pcu for some positive integer u such that
p � u. Therefore, using elementary number theoretic techniques, we have, for
all r ≥ 2k,

z2rm = (z22k

)2r−2k
pcu ≡ 1 (mod pβ+c) but �≡ 1 (mod pβ+c+1).

On the other hand, if r < 2k then

z2rm �≡ 1 (mod p);

otherwise, since z has order 22k
modulo p, we will have

22k |2rm =⇒ 2k ≤ r.

Thus, we have

γ =

{
pβ+c+sv, if r < 2k,

psw, if r ≥ 2k,

where v and w are two positive integers both coprime to p. This, in turn,
means that

o((ax, by)2α−r

) =

{
1, if r < 2k,

pβ−s, if r ≥ 2k.
(3.5)

Putting o(ax, by) = t, we have

(ax, by)t = (1, 1) =⇒ atx = 1 =⇒ 2α|2rtm =⇒ 2α−r|t,
since m is odd. Thus, 2α−r|o(ax, by). hence, from 3.5, we have

o(ax, by) =

{
2α−r, if r < 2k,

2α−rpβ−s, if r ≥ 2k.
(3.6)

This enables us to count the number of elements of C2α �θ Cpβ having a given
order, and frame the following table:
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Orders of Cardinalities of
group elements corresponding order subsets

1 1
2α−r, (0 ≤ r < 2k) 2α−r−1pβ

2α−r, (2k ≤ r < α) 2α−r−1

pβ−s, (0 ≤ s < β) pβ−s−1(p − 1)
2α−rpβ−s, (2k ≤ r < α, 0 ≤ s < β) 2α−r−1pβ−s−1(p − 1)

It is now easy to see from this table that C2α �θCpβ is a nonabelian POS-group.
This completes the proof.

Remark 3.3. For p = 5, taking z = −1 in the proof of the above theorem, we
get another class of nonabelian POS-groups, namely, C2α �θ C5β where α ≥ 2
and β ≥ 1. In this case we have the following table:

Orders of Cardinalities of
group elements corresponding order subsets

1 1
2α 2α−15β

2α−r, (1 ≤ r < α) 2α−r−1

5β−s, (0 ≤ s < β) 225β−s−1

2α−r5β−s, (1 ≤ r < α, 0 ≤ s < β) 2α−r+15β−s−1

Remark 3.4. The argument used in the above theorem also enables us to
show that the semidirect product C6 �θ C7 is a nonabelian POS-group where
the homomorphism θ : C6 → Aut(C7) is given by (θ(a))(b) = b2 (here a and
b are generators of C6 and C7 respectively). In this case the element orders
are 1, 2, 3, 6, 7, 14 and the cardinalities of the corresponding order subsets are
1, 1, 14, 14, 6, 6.

In ([3], Theorem 1), it has been proved, in particular, that if Cpa ×M is a
POS-group then Cpa+1 ×M is also a POS-group where a ≥ 1 and p is a prime
such that p � |M |. Moreover, as mentioned in the proof of Theorem 1.3 of [4],
the group M need not be abelian. This enables us to construct yet another
family of nonabelian POS-groups.

Proposition 3.5. Let M be a nonabelian group of order 21. Then, C2a × M
is a POS-group for each a ≥ 1.

Proof. In view of the above discussion, it is enough to see that C2×M is a POS-
group. In fact, the element orders and the cardinalities of the corresponding
order subsets of C2 × M are same as those mentioned in Remark 3.4

Finally, we settle Conjecture 5.2 of [4] regarding An.
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Proposition 3.6. For n ≥ 3, the alternating group An is not a POS-group.

Proof. It has been proved in [2] and also in [1] that every positive integer,
except 1, 2, 4, 6, and 9, can be written as the sum of distinct odd primes.
Consider now a positive integer n ≥ 3. It follows that either n or n− 1 can be
written as the sum p1+p2+ · · ·+pk where p1, p2, . . . , pk are distinct odd primes
(k ≥ 1). Clearly, for such n, the number of elements of order p1p2 . . . pk in An

is
n!

p1p2 . . . pk
which does not divide |An| =

n!

2
. This completes the proof.
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