On Finite Groups Having Perfect Order Subsets

Ashish Kumar Das
Department of Mathematics, North-Eastern Hill University
Permanent Campus, Shillong-793022, Meghalaya, India
akdas@nehu.ac.in

Abstract

A finite group G is said to be a POS-group if for each x in G the cardinality of the set $\{y \in G \mid o(y)=o(x)\}$ is a divisor of the order of G. In this paper we study some of the properties of arbitrary POS-groups, and construct a couple of new families of nonabelian POS-groups. We also prove that the alternating group $A_{n}, n \geq 3$, is not a POS-group.

Mathematics Subject Classification: 20D60, 11A41, 11Z05

Keywords: finite groups, semidirect product, divisibility, primes

1 Introduction

Throughout this paper G denotes a finite group, $o(x)$ the order of a group element x, and $|X|$ the cardinality of a set X. Also, given a positive integer n and a prime $p, \operatorname{ord}_{p} n$ denotes the largest nonnegative integer k such that $p^{k} \mid n$. As in [3], the order subset (or, order class) of G determined by an element $x \in G$ is defined to be the set $\operatorname{OS}(x)=\{y \in G \mid o(y)=o(x)\}$. Clearly, $\forall x \in G$, $\operatorname{OS}(x)$ is a disjoint union of some of the conjugacy classes in G. The group G is said to have perfect order subsets (in short, G is called a POS-group) if $|\operatorname{OS}(x)|$ is a divisor of $|G|$ for all $x \in G$.

The object of this paper is to study some of the properties of arbitrary POSgroups, and construct a couple of new families of nonabelian POS-groups. In the process, we re-establish the facts that there are infinitely many nonabelian POS-groups other than the symmetric group S_{3}, and that if a POS-group has its order divisible by an odd prime then it is not necessary that 3 divides the order of the group (see [3], [4] and [6]). Finally, we prove that the alternating group $A_{n}, n \geq 3$, is not a POS-group (see [4], Conjecture 5.2).

2 Some necessary conditions

Given a positive integer n, let C_{n} denote the cyclic group of order n. Then, we have the following characterization for the cyclic POS-groups.

Proposition 2.1. C_{n} is a POS-group if and only if $n=1$ or $n=2^{\alpha} 3^{\beta}$ where $\alpha \geq 1, \beta \geq 0$.

Proof. For each positive divisor d of n, C_{n} has exactly $\phi(d)$ elements of order d, where ϕ is the Euler's phi function. So, C_{n} is a POS-group if and only if $\phi(d)|n \forall d| n$, $i . e$. if and only if $\phi(n) \mid n$; noting that $\phi(d)|\phi(n) \forall d| n$. Elementary calculations reveal that $\phi(n) \mid n$ if and only if $n=1$ or $n=2^{\alpha} 3^{\beta}$ where $\alpha \geq$ $1, \beta \geq 0$. Hence, the proposition follows.

The following proposition plays a very crucial role in the study of POSgroups (abelian as well as nonabelian).

Proposition 2.2. For each $x \in G,|\mathrm{OS}(x)|$ is a multiple of $\phi(o(x))$.
Proof. Define an equivalence relation \sim by setting $a \sim b$ if a and b generate the same cyclic subgroup of G. Let $[a]$ denote the equivalence class of a in G under this relation. Then, $\forall x \in G$ and $\forall a \in \operatorname{OS}(x)$, we have $[a] \subset \operatorname{OS}(x)$, and $|[a]|=\phi(o(a))=\phi(o(x))$. Hence it follows that $|\operatorname{OS}(x)|=k \cdot \phi(o(x))$ for all $x \in G$, where k is the number of distinct equivalence classes that constitute OS (x).

As an immediate consequence we have the following generalization to the Proposition 1 and Corollary 1 of [3].

Corollary 2.3. If G is a POS-group then, for every prime divisor p of $|G|$, $p-1$ is also a divisor of $|G|$. In particular, every nontrivial POS-group is of even order.

Proof. By Cauchy's theorem (see [7], page 40), G has an element of order p. So, G being a POS-group, $\phi(p)=p-1$ divides $|G|$.

A celebrated theorem of Frobenius asserts that if n is a positive divisor of $|G|$ and $X=\left\{g \in G \mid g^{n}=1\right\}$, then n divides $|X|$ (see, for example, Theorem 9.1.2 of [5]). This result enables us to characterize the 2 -groups having perfect order subsets.

Proposition 2.4. A 2-group is a POS-group if and only if it is cyclic.
Proof. By Proposition 2.1, every cyclic 2-group is a POS-group. So, let G be a POS-group with $|G|=2^{m}, m \geq 0$. For $0 \leq n \leq m$, let $X_{n}=\left\{g \in G \mid g^{2^{n}}=1\right\}$. Clearly, $X_{n-1} \subset X_{n}$ for $1 \leq n \leq m$. We use inductuion to show that $\left|X_{n}\right|=2^{n}$
for all n with $0 \leq n \leq m$. This is equivalent to saying that G is cyclic. Now, $\left|x_{0}\right|=1=2^{0}$. So, let us assume that $n \geq 1$. Since G is a POS-group, and since $X_{n}-X_{n-1}=\left\{g \in G \mid o(g)=2^{n}\right\}$, we have, using Proposition 2.2,

$$
\begin{equation*}
\left|X_{n}\right|-\left|X_{n-1}\right|=\left|X_{n}-X_{n-1}\right|=0 \text { or } 2^{t} \tag{2.1}
\end{equation*}
$$

for some t with $n-1 \leq t \leq m$. By induction hypothesis, $\left|X_{n-1}\right|=2^{n-1}$, and, by Frobenius' theorem, 2^{n} divides $\left|X_{n}\right|$. Hence, from (2.1), it follows that $\left|X_{n}\right|=2^{n}$. This completes the proof.

The possible odd prime factors of the order of a nontrivial POS-group are characterized as follows

Proposition 2.5. Let G be a nontrivial POS-group. Then, the odd prime factors (if any) of $|G|$ are of the form $1+2^{k} t$, where $k \leq \operatorname{ord}_{2}|G|$ and t is odd, with the smallest one being a Fermat's prime.

Proof. Let p be an odd prime factor of $|G|$. Then, by Corollary 2.3,

$$
p-1 \text { divides }|G| \Longrightarrow \operatorname{ord}_{2}(p-1) \leq \operatorname{ord}_{2}|G|,
$$

which proves the first part. In particular, if p is the smallest odd prime factor of $|G|$ then $p-1=2^{k}$, for some $k \leq \operatorname{ord}_{2}|G|$. Thus $p=1+2^{k}$ is a Fermat's prime; noting that k is a power of 2 as p is a prime.

We now determine, through a series of propositions, certain necessary conditions for a group to be a POS-group.

Proposition 2.6. Let G be a nontrivial POS-group with $\operatorname{ord}_{2}|G|=\alpha$. If $x \in G$ then the number of distinct odd prime factors in $o(x)$ is at the most α. In fact, the bound gets reduces by $(k-1)$ if $\operatorname{ord}_{2} o(x)=k \geq 1$.

Proof. If $o(x)$ has r distinct odd prime factors then $2^{r} \mid \phi(o(x))$, and so $r \leq \alpha$. In addition, if $\operatorname{ord}_{2} o(x)=k \geq 1$ then $2^{r+k-1} \mid \phi(o(x))$, and so $r \leq \alpha-(k-1)$.

Proposition 2.7. If $|G|=2 k$ where k is an odd positive integer having at least three distinct prime factors, and if all the Sylow subgroups of G are cyclic, then G is not a POS-group.

Proof. By ([7], 10.1.10, page 290), G has the following presentation:

$$
G=\left\langle x, y \mid x^{m}=1=y^{n}, x y x^{-1}=y^{r}\right\rangle
$$

where $0 \leq r<m, r^{n} \equiv 1(\bmod m), m$ is odd, $\operatorname{gcd}(m, n(r-1))=1$, and $m n=2 k$. Clearly, at least one of m and n is divisible by two distinct odd primes. So, $o(x)$ or $o(y)$ is divisible by at least two distinct odd primes. The result now follows from Proposition 2.6.

Proposition 2.8. Let $|G|=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} p_{3}{ }^{\alpha_{3}} \ldots p_{k}{ }^{\alpha_{k}}$ where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are positive integers and $2=p_{1}<p_{2}<\cdots<p_{k}$ are primes such that $p_{k}-1=$ $p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} p_{3}{ }^{\alpha_{3}} \ldots p_{k-1}{ }^{\alpha_{k-1}}, k \geq 2$. If G is a POS-group then the Sylow $p_{k^{-}}$ subgroup of G is cyclic.

Proof. Note that G has a unique Sylow p_{k}-subgroup, say P, so that every element of G, of order a power of p_{k}, lies in P. Let m_{i} denote the number of elements of G of order $p_{k}{ }^{i}, 1 \leq i \leq \alpha_{k}$. Then, by Proposition 2.2, $\phi\left(p_{k}{ }^{i}\right) \mid m_{i}$. So,

$$
m_{i}=p_{k}^{i-1}\left(p_{k}-1\right) x_{i}
$$

for some integer $x_{i} \geq 0$. If G is a POS-group then we have

$$
\begin{equation*}
x_{i} \mid p_{k}^{\alpha_{k}-i+1} \tag{2.2}
\end{equation*}
$$

whenever $x_{i} \neq 0,1 \leq i \leq k$. Now,

$$
\begin{align*}
& \sum_{i=1}^{\alpha_{k}} m_{i}=|P|-1=p_{k}^{\alpha_{k}}-1 \\
\Rightarrow & \sum_{i=1}^{\alpha_{k}}{p_{k}}^{i-1} \times\left(x_{i}-1\right)=0 \tag{2.3}
\end{align*}
$$

This gives

$$
\begin{aligned}
x_{1} & \equiv 1 \quad\left(\bmod p_{k}\right) \\
\Rightarrow x_{1} & =1, \quad \text { by }(2.2) .
\end{aligned}
$$

But, then (2.3) becomes

$$
\sum_{i=2}^{\alpha_{k}} p_{k}^{i-1} \times\left(x_{i}-1\right)=0
$$

Repeating the above process inductively, we get

$$
\begin{aligned}
& x_{1}=x_{2}=\cdots=x_{\alpha_{k}}=1 \\
\Rightarrow & m_{\alpha_{k}}=p_{k}^{\alpha_{k}-1}\left(p_{k}-1\right) \neq 0
\end{aligned}
$$

This means that P is cyclic.
In view of Proposition 2.7 the following corollary is immediate.
Corollary 2.9. If $|G|=42 \times 43^{r}, r \geq 1$, then G is not a POS-group.

Finally, we have
Proposition 2.10. Let G be a nontrivial POS-group. Then, the following assertions hold:
(a) If ord $_{2}|G|=1$ then either $|G|=2$, or 3 divides $|G|$.
(b) If $\operatorname{ord}_{2}|G|=\operatorname{ord}_{3}|G|=1$ then either $|G|=6$, or 7 divides $|G|$.
(c) If $\operatorname{ord}_{2}|G|=\operatorname{ord}_{3}|G|=\operatorname{ord}_{7}|G|=1$ then either $|G|=42$, or there exists a prime $p \geq 77659$ such that $43^{2} p$ divides $|G|$.

Proof. We have already noted that $|G|$ is even. So, let

$$
|G|=p_{1}{ }^{\alpha_{1}} \times p_{2}{ }^{\alpha_{2}} \times \cdots p_{k}{ }^{\alpha_{k}}
$$

where $k \geq 1,2=p_{1}<p_{2}<\cdots<p_{k}$ are primes, and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are positive integers. Now, for all $i=1,2, \ldots, k$, we have $\operatorname{gcd}\left(p_{i}, p_{i}-1\right)=1$. So, in view of Corollary 2.3 we have the following implications:

$$
\begin{aligned}
& k \geq 2, \alpha_{1}=1 \Longrightarrow\left(p_{2}-1\right) \mid 2 \Longrightarrow p_{2}=3, \\
& k \geq 3, \alpha_{1}=\alpha_{2}=1 \Longrightarrow\left(p_{3}-1\right) \mid 6 \Longrightarrow p_{3}=7, \\
& k \geq 4, \alpha_{1}=\alpha_{2}=\alpha_{3}=1 \Longrightarrow\left(p_{4}-1\right) \mid 42 \Longrightarrow p_{4}=43 .
\end{aligned}
$$

However,

$$
k \geq 5, \alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=1 \Longrightarrow\left(p_{5}-1\right) \mid 1806
$$

which is not possible for any prime $p_{5}>43$. Hence, the theorem follows from Corollary 2.9 and the fact that $p=77659$ is the smallest prime greater than 43 such that $p-1$ divides $2 \times 3 \times 7 \times 43^{r}, r>1$.

Remark 2.11. Using Proposition 2.7 and the celebrated theorem of Frobenius one can, in fact, show that if $|G|=42 \times 43^{r} \times 77659, r \leq 3$, then G is not a POS-group. The proof involves counting of group elements of order powers of 43.

We have enough evidence in support of the following conjecture; however, a concrete proof is still eluding.

Conjecture 2.12. If G is a POS-group such that $\operatorname{ord}_{2}|G|=\operatorname{ord}_{3}|G|=\operatorname{ord}_{7}|G|$ $=1$ then $|G|=42$.

3 Some examples

Recall (see [7], page 27) that if H and K are any two groups, and $\theta: H \longrightarrow$ $\operatorname{Aut}(K)$ is a homomorphism then the Cartesian product $H \times K$ forms a group under the binary operation

$$
\begin{equation*}
\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)=\left(h_{1} h_{2}, \theta\left(h_{2}\right)\left(k_{1}\right) k_{2}\right), \tag{3.1}
\end{equation*}
$$

where $h_{i} \in H, k_{i} \in K, i=1,2$. This group is known as the semidirect product of H with K (with respect to θ), and is denoted by $H \ltimes_{\theta} K$. Such groups play a very significant role in the construction of nonabelian POS-groups.

The following proposition gives a partial characterization of POS-groups whose orders have exactly one distinct odd prime factor.

Proposition 3.1. Let G be a POS-group with $|G|=2^{\alpha} p^{\beta}$ where α and β are positive integers, and p is a Fermat's prime. If $2^{\alpha}<(p-1)^{3}$ then G is isomorphic to a semidirect product of a group of order 2^{α} with the cyclic group $C_{p^{\beta}}$.

Proof. Since p is a Fermat's prime, $p=2^{2^{k}}+1$ where $k \geq 0$. Let $X_{n}=\{g \in$ $\left.G \mid g^{p^{n}}=1\right\}$ where $0 \leq n \leq \beta$. Then, using essentially the same argument as in the proof of Proposition 2.4 together with the fact that the order of 2 modulo p is 2^{k+1}, we get $\left|X_{n}\right|=p^{n}$ for all n with $0 \leq n \leq \beta$. This implies that G has a unique (hence normal) Sylow p-subgroup and it is cyclic. Thus, the proposition follows.

Taking cue from the above proposition, we now construct a couple new families of nonabelian POS-groups which also serve as counter-examples to the first and the third question posed in section 4 of [3].

Theorem 3.2. Let p be a Fermat's prime. Let α, β be two positive integers such that $2^{\alpha} \geq p-1$. Then there exists a homomorphism $\theta: C_{2^{\alpha}} \rightarrow \operatorname{Aut}\left(C_{p^{\beta}}\right)$ such that the semidirect product $C_{2^{\alpha}} \ltimes_{\theta} C_{p^{\beta}}$ is a nonabelian POS-group.

Proof. Since p is a Fermat's prime, $p=2^{2^{k}}+1$ where $k \geq 0$. Also, since the group $U\left(C_{p^{\beta}}\right)$ of units in the ring $C_{p^{\beta}}$ is cyclic and has order $p^{\beta-1} \times 2^{2^{k}}$, there exists a positive integer z such that

$$
z^{2^{2^{k}}} \equiv 1 \quad\left(\bmod p^{\beta}\right), \text { and } z^{2^{2^{k}-1}} \equiv-1 \quad\left(\bmod p^{\beta}\right)
$$

Moreover, we may choose z in such a way that

$$
z^{2^{2^{k}}} \not \equiv 1 \quad\left(\bmod p^{\beta+1}\right)
$$

(for, otherwise, z may be replaced by $z+p^{\beta}$). Let the cyclic groups $C_{2^{\alpha}}$ and $C_{p^{\beta}}$ be generated by a and b respectively. Define an automorphism f :
$C_{p^{\beta}} \rightarrow C_{p^{\beta}}$ by setting $f(b)=b^{z}$; noting that $\operatorname{gcd}(z, p)=1$. Consider now the homomorphism $\theta: C_{2^{\alpha}} \rightarrow \operatorname{Aut}\left(C_{p^{\beta}}\right)$ defined by $\theta(a)=f$. Let $\left(a^{x}, b^{y}\right) \in$ $C_{2^{\alpha}} \ltimes C_{p^{\beta}}$. we may write $x=2^{r} m, y=p^{s} n$, where $0 \leq r \leq \alpha, 0 \leq s \leq \beta$, $2 \nmid m$, and $p \nmid n$. It is easy to see that

$$
\begin{equation*}
\theta\left(a^{x}\right)\left(b^{y}\right)=b^{y z^{x}} . \tag{3.2}
\end{equation*}
$$

So, in $C_{2^{\alpha}} \ltimes_{\theta} C_{p^{\beta}}$, we have, by repeated application of (3.1) and (3.2),

$$
\begin{equation*}
\left(a^{x}, b^{y}\right)^{2^{\alpha-r}}=\left(1, b^{\gamma}\right) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=y \times \frac{z^{2^{\alpha} m}-1}{z^{2^{r} m}-1} . \tag{3.4}
\end{equation*}
$$

Now, put $c=\operatorname{ord}_{p} m$. Then, $m=p^{c} u$ for some positive integer u such that $p \nmid u$. Therefore, using elementary number theoretic techniques, we have, for all $r \geq 2^{k}$,

$$
z^{2^{r} m}=\left(z^{2^{2^{k}}}\right)^{2^{r-2^{k}} p^{c} u} \equiv 1 \quad\left(\bmod p^{\beta+c}\right) \quad \text { but } \not \equiv 1 \quad\left(\bmod p^{\beta+c+1}\right)
$$

On the other hand, if $r<2^{k}$ then

$$
z^{2^{r} m} \not \equiv 1 \quad(\bmod p) ;
$$

otherwise, since z has order $2^{2^{k}}$ modulo p, we will have

$$
2^{2^{k}} \mid 2^{r} m \Longrightarrow 2^{k} \leq r
$$

Thus, we have

$$
\gamma= \begin{cases}p^{\beta+c+s} v, & \text { if } r<2^{k} \\ p^{s} w, & \text { if } r \geq 2^{k}\end{cases}
$$

where v and w are two positive integers both coprime to p. This, in turn, means that

$$
o\left(\left(a^{x}, b^{y}\right)^{2^{\alpha-r}}\right)= \begin{cases}1, & \text { if } r<2^{k} \tag{3.5}\\ p^{\beta-s}, & \text { if } r \geq 2^{k}\end{cases}
$$

Putting $o\left(a^{x}, b^{y}\right)=t$, we have

$$
\left(a^{x}, b^{y}\right)^{t}=(1,1) \Longrightarrow a^{t x}=1 \Longrightarrow 2^{\alpha}\left|2^{r} t m \Longrightarrow 2^{\alpha-r}\right| t
$$

since m is odd. Thus, $2^{\alpha-r} \mid o\left(a^{x}, b^{y}\right)$. hence, from 3.5, we have

$$
o\left(a^{x}, b^{y}\right)= \begin{cases}2^{\alpha-r}, & \text { if } r<2^{k}, \tag{3.6}\\ 2^{\alpha-r} p^{\beta-s}, & \text { if } r \geq 2^{k} .\end{cases}
$$

This enables us to count the number of elements of $C_{2^{\alpha}} \ltimes_{\theta} C_{p^{\beta}}$ having a given order, and frame the following table:

Orders of group elements	Cardinalities of corresponding order subsets
1	1
$2^{\alpha-r},\left(0 \leq r<2^{k}\right)$	$2^{\alpha-r-1} p^{\beta}$
$2^{\alpha-r},\left(2^{k} \leq r<\alpha\right)$	$2^{\alpha-r-1}$
$p^{\beta-s},(0 \leq s<\beta)$	$p^{\beta-s-1}(p-1)$
$2^{\alpha-r} p^{\beta-s},\left(2^{k} \leq r<\alpha, 0 \leq s<\beta\right)$	$2^{\alpha-r-1} p^{\beta-s-1}(p-1)$

It is now easy to see from this table that $C_{2^{\alpha}} \ltimes{ }_{\theta} C_{p^{\beta}}$ is a nonabelian POS-group. This completes the proof.

Remark 3.3. For $p=5$, taking $z=-1$ in the proof of the above theorem, we get another class of nonabelian POS-groups, namely, $C_{2^{\alpha}} \ltimes_{\theta} C_{5^{\beta}}$ where $\alpha \geq 2$ and $\beta \geq 1$. In this case we have the following table:

Orders of group elements	Cardinalities of corresponding order subsets
1	1
2^{α}	$2^{\alpha-1} 5^{\beta}$
$2^{\alpha-r},(1 \leq r<\alpha)$	$2^{\alpha-r-1}$
$5^{\beta-s},(0 \leq s<\beta)$	$2^{2} 5^{\beta-s-1}$
$2^{\alpha-r} 5^{\beta-s},(1 \leq r<\alpha, 0 \leq s<\beta)$	$2^{\alpha-r+1} 5^{\beta-s-1}$

Remark 3.4. The argument used in the above theorem also enables us to show that the semidirect product $C_{6} \ltimes_{\theta} C_{7}$ is a nonabelian POS-group where the homomorphism $\theta: C_{6} \rightarrow \operatorname{Aut}\left(C_{7}\right)$ is given by $(\theta(a))(b)=b^{2}$ (here a and b are generators of C_{6} and C_{7} respectively). In this case the element orders are $1,2,3,6,7,14$ and the cardinalities of the corresponding order subsets are $1,1,14,14,6,6$.

In ([3], Theorem 1), it has been proved, in particular, that if $C_{p^{a}} \times M$ is a POS-group then $C_{p^{a+1}} \times M$ is also a POS-group where $a \geq 1$ and p is a prime such that $p \nmid|M|$. Moreover, as mentioned in the proof of Theorem 1.3 of [4], the group M need not be abelian. This enables us to construct yet another family of nonabelian POS-groups.

Proposition 3.5. Let M be a nonabelian group of order 21. Then, $C_{2^{a}} \times M$ is a POS-group for each $a \geq 1$.

Proof. In view of the above discussion, it is enough to see that $C_{2} \times M$ is a POSgroup. In fact, the element orders and the cardinalities of the corresponding order subsets of $C_{2} \times M$ are same as those mentioned in Remark 3.4

Finally, we settle Conjecture 5.2 of [4] regarding A_{n}.

Proposition 3.6. For $n \geq 3$, the alternating group A_{n} is not a POS-group.
Proof. It has been proved in [2] and also in [1] that every positive integer, except $1,2,4,6$, and 9 , can be written as the sum of distinct odd primes. Consider now a positive integer $n \geq 3$. It follows that either n or $n-1$ can be written as the sum $p_{1}+p_{2}+\cdots+p_{k}$ where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct odd primes $(k \geq 1)$. Clearly, for such n, the number of elements of order $p_{1} p_{2} \ldots p_{k}$ in A_{n} is $\frac{n!}{p_{1} p_{2} \ldots p_{k}}$ which does not divide $\left|A_{n}\right|=\frac{n!}{2}$. This completes the proof.

References

[1] J. L. Brown, Jr., Generalization of Richert's Theorem, Amer. Math. Monthly, 83(8) (1976), 631-634.
[2] R. E. Dressler, A Stronger Bertrand's Postulate with an Application to Partitions, Proc. Amer. Math. Soc.33(2) (1972), 226-228.
[3] C. E. Finch and L. Jones, A curious connection between Fermat numbers and finite groups, Amer. Math. Monthly 109 (2002), 517-524.
[4] C. E. Finch and L. Jones, Nonabelian groups with perfect order subsets, JP J. Algebra Number Theory Appl. 3(1) (2003), 13-26. See also: Corrigendum to: "Nonabelian groups with perfect order subsets" [JP J. Algebra Number Theory Appl. 3(1) (2003), 13-26], JP J. Algebra Number Theory Appl. 4(2) (2004), 413-416.
[5] M. Hall, Theory of Groups, Macmillan, New York, 1959.
[6] S. Libera and P. Tlucek, Some perfect order subset groups, Pi Mu Epsilon Journal, 11 (2003), 495-498.
[7] D. J. S. Robinson, A course in the Theory of Groups (Second Edition), Graduate Text in Mathematics 80, Springer, New York, 1996.

Received: May, 2009

