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\S 0. Introduction.

Let $G$ be a finite group with a 2-Sylow subgroup isomorphic to that of

the symmetric group of degree $4n$ . The purpose of the present paper is to

make some remarks on the fusion of involutions of $G$ , which are useful for

the investigations of certain finite simple groups, especially the alternating

group of degree $4n+2$ or $4n+3$ and the orthogonal commutator groups
$\Omega_{2n+2}(\epsilon, q)(q^{n+1}\equiv-\epsilon mod 4$ and $q\equiv\pm 3mod 8)^{1)}$ .

The main results are Theorem A and Theorem $B$ in \S 7. We note that

the Thompson subgroup of a 2-Sylow subgroup of $G$ plays the important role

in the discussions in \S 2\sim \S 6. These can be regarded as a generalization of a
part of [6]. Moreover, as an application of Theorem $A$ , the author has ob-

tained a characterization of the alternating groups of degrees $4n+2$ and $4n+3$

in terms of the centralizer of an involution $(1, 2)$ $(3, 4)$ $\cdots(4n-1,4n)$ . This

will be published in a subsequent paper. Also H. Yamaki [9] has treated

such characterizations of $\mathfrak{A}_{m}$ ($m=12,13,14$ and 15), though, for $m=12$ and

13, Theorem A can not be applied and an additional condition is necessary on
account of the existence of the finite simple group $Sp_{6}(2)$ .

Notations and Terminology.

$J(X)$ The Thompson subgroup of a group $X$ $($cf. $[8])^{2)}$

$Z(X)$ the center of a group $X$

$X^{\prime}$ the commutator subgroup of $X$

$X$ ? $Y$ a wreath product of a group $X$ by a permutation group $Y$

$x\sim y$ in $X$ $\tau$ is conjugate to $y$ in a group $X$

$y^{x}$ $1j^{-1}yx$

$x:y\rightarrow z$ $y^{x}=z$

$[x, y]$ $x^{-1}y^{-1}xy$

1) For the notations of orthogonal groups, see [1] and [10]. Note that if $q^{n+1}$

$\equiv-\epsilon mod 4,$ $\Omega_{zn+2}(\epsilon, q)$ has the trivial center.
2) Recently, the slightly different definition of $J(X)$ from that of [8] is used, but

for groups treated in the present paper, both definitions are the same.
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$\langle\cdots|\cdots\rangle$ a group generated by... subject to the relations $\cdots$ .
$\mathfrak{S}_{n}$ the symmetric group of degree $n$

$\mathfrak{A}_{n}$ the alternating group of degree $n$

$Z_{n}$ a cyclic group of order $n$ .
Let $X$ be a group isomorphic to $\mathfrak{S}_{\iota}$ . $X$ is generated by $l-1$ elements

$x_{1},$ $x_{2},$ $\cdots$ , $x_{l-1}$ subject to the relations;
$x_{1}^{2}=$ $=x_{l-1}^{2}=(x_{i}x_{i+1})^{3}=(x_{j}x_{k})^{2}=1$ $(1\leqq i,$ $j,$ $k\leqq l-1$ and $|j-k|>1)^{3)}$ .

We call an ordered set of such generators of $X$ a set of canonical generators

of $X$.

\S 1. The symmetric groups and the orthogonal groups.

(1.1) Let $G$ be a finite group satisfying the following conditions:

(i) $G$ has a subgroup $N$, which is isomorphic to a wreath product of a
dihedral group of order 8 by the symmetric group of degree $n$ , and

(ii) a 2-Sylow subgroup of $N$ is that of $G$ .

Then $N$ has a set of generators $\lambda_{k},$ $\pi_{k}^{\prime},$

$\pi_{k}$ and $\sigma_{i}$ ( $1\leqq k\leqq n$ and $1\leqq i\leqq n-1$)

subject to the following relations:

$\lambda_{k}^{2}=\pi_{k}^{\prime 2}=(\lambda_{k}\pi_{k}^{\prime})^{4}=1$ $\pi_{k}=(\lambda_{k}\pi_{k}^{\prime})^{2}$ ,

$[\langle\lambda_{k}, \pi_{k}^{\prime}\rangle, \langle\lambda_{h}, \pi_{h}^{\prime}\rangle]=1$ $(k\neq h)$ ,
$(*)$

$\sigma_{1}^{2}=...$ $=\sigma_{n-1}^{2}=(\sigma_{i}\sigma_{i+1})^{3}=(\sigma_{j}\sigma_{k})^{2}=1$ $(1\leqq i, j, k\leqq n-1, |j-k|>1)$ ,

$\lambda_{\iota^{i}}^{\sigma}=\lambda_{i+1},$ $\pi_{t^{\prime\prime i}}^{\prime}=\pi_{i+1}^{\prime}$ and $[\sigma_{i}, \lambda_{k}]=[\sigma_{i}, \pi_{k}^{\prime}]=1$ $(k\neq i, i+1)$ .
Put

$J=J_{1}\times J_{2}\times\cdots\times J_{n}$ $ J_{k}=\langle\lambda_{k}, \pi_{k}^{\prime}\rangle$ ,

$S=S_{1}\times S_{2}\times\cdots\times S_{n}$ $ S_{k}=\langle\pi_{k}, \pi_{k}^{\prime}\rangle$ ,

$ M=M_{1}\times M_{2}\times$ $M_{n}$ $ M_{k}=\langle\pi_{k}, \lambda_{k}\rangle$ ,

$ P=\langle\sigma_{1}, \sigma_{2}, \sigma_{n-1}\rangle$ ,

$\alpha_{n}=\pi_{1}\pi_{2}\cdots\pi_{n}$ ,

and
$H=C_{G}(\alpha_{n})$ .

Then $J$ is normal in N. $N$ is a semidirect product of $P$ and $J$, and is a sub-

group of H. $J$ is a direct product of $n$ copies $J_{k}(1\leqq k\leqq n)$ of a dihedral

group of order 8. $S$ and $M$ are elementary abelian subgroups of order $2^{2n}$ . $P$

is isomorphic to the symmetric group of degree $n$ .
In this section, we shall give some examples which may be useful for the

3) Cf. [2; p. 287].
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understanding of the discussions in \S 2\sim \S 7.
(1.2) Examples.

(i) The Symmetric Groups: $G=\mathfrak{S}_{4n}$ . Let $\pi_{k},$
$\pi_{k}^{\prime}$ , $\lambda_{k}$ and $\sigma_{i}$ be involutions

in $\mathfrak{S}_{4n}$ as follows:

$\pi_{k}=(4k-3,4k-2)(4k-1,4k)$ ,

$\pi_{k}^{\prime}=(4k-3,4k-1)(4k-2,4k)$ ,

$\lambda_{k}=(4k-3,4k-2)$ ,

and
$\sigma_{i}=(4i-3,4i+1)(4i-2,4i+2)(4i-1,4i+3)(4i, 4i+4)$ .

Then these involutions satisfy the conditions $(*)$ .
(ii) The Alternating Group: $G=\mathfrak{A}_{4n+r}$ ($r=2$ or 3). Put $\lambda_{k}=(4k-3,4k-2)$

$(4n+1,4n+2)$ and let $\pi_{k},$
$\pi_{k}^{\prime}$ and $\sigma_{i}$ be the same as (i). Then these involutions

satisfy the conditions $(*)$ .

(iii) The Orthogonal Group: $G=O_{2n}(\epsilon^{\prime}, q)$ where $q^{n}\equiv\epsilon^{\prime}mod 4$ and $q\equiv\pm 3$

$mod 8$ . Let $\sum_{i=1}^{2n}x_{i}^{2}$ be the underlying quadratic form of the orthogonal group

$O_{2\mathcal{R}}(\epsilon^{\prime}, q)_{\rightarrow}^{\Re}$ [By $I_{k}$ we denote the $k\times k$ unit matrix. Put

$\pi_{k}=\left(\begin{array}{llll}I_{2(k-1)} & & & \\ & -I_{2} & I_{(} & k)\end{array}\right)$

$\pi_{k}^{\prime}=(^{I_{2(k-1)}}UI_{2(n- k})$ $U=\left(1 & 1\right)$

$\lambda_{k}=(^{I_{2(k-1)}}VI_{2(n- k})$ $V=\left(-1 & 1\right)$

$\sigma_{i}=I_{2}\times P_{i}$ ,

where $P_{i}$ denotes the $n\times n$ permutation matrix corresponding to the permuta-

tion $(i, i+1)$ and $I_{2}\times P_{i}$ denotes the Kronecker product of marices.
(iv) The Orthogonal Commutator Groups: $G=\Omega_{2n+2}(\epsilon, q)$ , where $ q^{n+1}\equiv-\epsilon$

$mod 4$ and $q\equiv\pm 3mod 8$ . Let $a$ be a nonsquare element of the finite field of

$q$ elements and $\sum_{i=1}^{2n}x_{i}^{2}+x_{2n+1}^{2}+ax_{2n+2}^{2}$ be the underlying quadratic form of the

group $\Omega_{2n+2}(\epsilon, q)$ . There is an injective isomorphism of $O_{2n}(\epsilon^{\prime}, q)$ with the

quadratic form $\sum_{i=1}^{2n}x_{i}^{2}$ into the group $\Omega_{2n+2}(\epsilon, q)$ (cf. [10, p. 419]). In the present

case, let $\pi_{k},$
$\pi_{k}^{\prime}$ , $\lambda_{k}$ and $\sigma_{i}$ be the image by this isomorphism of the correspond-
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ing elements in $O_{2n}(\epsilon^{f}, q)$ .
(v) The Wreath Products: $G=Z_{2}$ ? $\mathfrak{S}_{2n}$ . Let $X_{n}$ be an elementary abelian

group of order $2^{2n}$ with $a$ set $\{x_{1}, x_{2}, \cdot.. , x_{2n}\}$ of generators and $Y_{n}$ be a group
isomorphic to $\mathfrak{S}_{2n}$ with $\{y_{1}, z_{1}, y_{2}, \cdots , z_{n-1}, y_{n}\}$ as a set of canonical generators

of $Y_{n}$ . Define the action on $X_{n}$ of $Y_{n}$ as follows;

$x_{2i-1}^{yi}=x_{2t},$ $[x_{j}, y_{i}]=1$ $(1 \leqq i\leqq n, j\neq 2i-1,2i)$

$x_{2i}^{zt}=x_{2i+1},$ $[x_{j}, z_{i}]=1$ $(1 \leqq i\leqq n-1, j\neq 2i, 2i+1)$ .

Construct a semidirect product $G=X_{n}\cdot Y_{n}$ . Then $G$ is isomorphic to a wreath
product $Z_{2}$ ? $S_{2n}$ .

Put
$\lambda_{i}=x_{2i-1}$ ,

$\pi_{i}^{\prime}=y_{i}$ ,

$\pi_{i}=x_{2i-1}x_{zi}$ ,

$\sigma_{i}=(y_{i}y_{i+1})^{z_{i}}$ .

Then these involutions satisfy the conditions $(*)$ .
REMARK. In \S 5, we shall use the following fact: the representatives of

conjugacy classes of involutions of $X_{n}\cdot Y_{n}$ are $\pi_{1}^{\prime}$ $\pi_{k}^{\prime}\pi_{k+1}$ $\pi_{k+l}(0<k+l\leqq n)$

and $\pi_{1}^{\prime}$ . $\pi_{k}^{\prime}\pi_{k+1}$ ... $\pi_{k+l}\lambda_{\iota}(0\leqq k+l\leqq n-1)$ (cf. W. Specht [7]). This can be
proved directly without difficulties.

(1.3) In the above examples, we can verify the following statements with-
out difficulty. The verifications are left to the reader.

(i) A 2-Sylow subgroup of $N$ is that of $G$ ,

(ii) $J$ is generated by all abelian subgroups of $N$ of order $2^{2n}$ and so, it
is the Thompson subgroup of a 2-Sylow subgroup of $G$ ,

(iii) $\alpha_{n}$ is an involution in the center of a 2-Sylow subgroup of $G$ ,

(iv) every element of $N_{H}(S)$ induces a permutation on the set $\{\pi_{1}^{\prime},$ $\pi_{1}^{\prime}\pi_{1}$ ,

$\pi_{2}^{\prime},$ $\pi_{2}^{\prime}\pi_{2}$ , $\cdot$ .. , $\pi_{n}^{\prime},$ $\pi_{n}^{\prime}\pi_{n}$ } which consists of members in a basis of $S$ , and so does
one of $N_{H}(M)$ on the set $\{\lambda_{1}, \text{\‘{A}}_{1}\pi_{1}, \lambda_{2}, \lambda_{2}\pi_{2}, \cdots, \lambda_{n}, \lambda_{n}\pi_{n}\}$ , and

(v) the structure of the normalizers of $S$ and $M$ are given in the follow-
ing table;

$\ovalbox{\tt\small REJECT}_{\frac{H()/H()}{2}}|_{\frac{4n+\gamma}{\Omega_{2n\prec 2}(\epsilon,q)}}^{-}\frac{O_{n}(}{A}.|^{\frac{\mathfrak{S}}{Z_{2}?\mathfrak{S}_{n}}1_{\frac{}{\neg^{\mathfrak{S}_{2n}}\mathfrak{S}^{2n}}}^{\frac{H()/H()}{2n}}\frac{NS_{8}C_{\mathfrak{S}_{n}}S_{-}?}{\mathfrak{S}_{3}l\mathfrak{S}_{n}}\frac{}{\mathfrak{S}_{2n+1}}\overline{|}}2\mathfrak{S}_{\epsilon^{4,n}\underline{q)^{--}}}|^{\frac{}{\mathfrak{S}_{2n}}}\frac{NM_{\mathfrak{S}}CM}{\mathfrak{S}_{2n}}\overline{\lfloor\frac{\mathfrak{S}}{\mathfrak{S}_{2}}}\frac{\mathfrak{S}}{\mathfrak{S}_{2n}}\frac{G()/G()}{n}\overline{\frac{N_{G}(M)/C_{G^{-}}(M)}{2n}}\mathfrak{S}_{2n+1}\mathfrak{S}_{2n+1}$
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\S 2. Elementary abelian subgroups of $G$ .

(2.1) Throughout the rest of the present paper, $G$ denotes a finite group
satisfying the condztions (i) and (ii) in (1.1). Also all notations introduced in

(1.1) will be preserved in the same meanings as there.

We note that $J$ is the Thompson subgroup of a 2-Sylow subgroup of $G$ ,

all elementary abelian subgroups of order $2^{2n}$ of $J$ are normal in $J$, and, $S$ and
$M$ are normal in $N$.

$J,$ $S$ and $M$ play the important roles in the discussions in \S 2\sim \S 6.
(2.2) LEMMA. Let $D$ be a group isomorphic to a direct product of $n$ copies

$D_{i}(1\leqq i\leqq n)$ of a dihedral group of order $2^{m\vee\vdash 1}(m\geqq 2)$ . Put $ Z(D_{i})=\langle z_{f}\rangle$ .

Define $Aut_{0}(D)=$ { $\sigma\in$ Aut $(D)|z_{i}^{\sigma}=z_{i}(1\leqq i\leqq n)$ }, where Aut $(D)$ denotes the
automorphism group of D. Then we have (i) every element of Aut $(D)$ induces a

permutation on the set $\{z_{1}, z_{2}, \cdots, z_{n}\}$ and (ii) $Aut_{0}(D)$ is a 2-group.

PROOF. Let $a_{i}$ and $b_{i}$ be generators of $D_{i}$ subject to the relations:
$a_{i}^{2}=b_{i}^{2}=(a_{i}b_{i})^{2^{m}}=1(1\leqq i\leqq n)$ . Put $c_{i}=a_{i}b_{i}$ . From a theorem of Remak-

Schmidt [5, p. 130], it follows that, for $\sigma\in Aut(D)$ , there exists an element $\tau$

of $\mathfrak{S}_{n}$ such that $D_{i}^{\sigma}$ and $D_{-(i)}$ are centrally isomorphic. This implies that
$(a_{i}c_{i}^{s_{i}})^{\sigma}=a_{\tau(i)}u_{i}$ and $(b_{i}c_{i}^{t_{i}})^{\sigma}=b_{\tau(i)}u_{i}^{\prime}$ , where $s_{i}\equiv t_{i}$ mod2 and $u_{i},$ $u_{i}^{\prime}\in Z(D)$ . Then

we get $z_{i}^{\sigma}=z_{\tau(i)}$ by taking the product of both equalities and doing its $2^{m- 1}$ ,

powers. This proves (i). By counting all the possible choices of $s_{i},$ $t_{i},$ $u_{i}$ and
$u_{i}^{\prime}$ , we see that $Aut_{0}(D)$ is a 2-group.

(2.3) LEMMA. $N_{G}(J)=NC_{G}(J)$ .
PROOF. $PutN_{0}=\{\sigma\in N_{G}(J)|\pi_{i}^{0}=\pi_{i}(1\leqq i\leqq n)\}$ . $ThenwehaveN_{0}\supseteqq JC_{G}(J)$ .

From (2.2), it follows that $N_{G}(J)=PN_{0},$ $P\cap N_{0}=1$ and $N_{0}/JC_{G}(J)$ is a 2-group.

By the assumption (1.1: (ii)), we must have $N_{0}=JC_{G}(J)$ . Hence we get

$N_{G}(J)=NC_{G}(J)$ .
(2.4) LEMMA. $N_{G}(S)\cap N_{G}(M)\supseteqq N_{G}(J)$ .

PROOF. This is obvious, because $S$ and $M$ are normal in $N$ and $\Lambda^{T_{G}}(J)$

$=NC_{G}(J)$ by (2.3).

(2.5) LEMMA. $S$ and $M$ are weakly closed in a 2-Sylow subgroup of $G$ with

respect to $G$ .
PROOF. Let $D$ be a 2-Sylow subgroup of $N$. Suppose that $S^{x}\subset D$ for

some $x\in G$ . Then we have $S^{x}\triangleleft J$. Hence we get $N_{G}(S)\supset IJ^{x^{-1}}$ and we can
find an element $y$ of $N_{G}(S)$ such that $J^{y}=J^{x^{-1}}$ . Since $N_{G}(S)\supseteqq N_{G}(J)$ by (2.4),

we get $N_{G}(S)\ni yx$ and so $S=S^{yx}=S^{x}$ . Thus we have proved that $S$ is weakly

closed in $D$ with respect to $G$ . Similarly we can prove that $M$ is weakly

closed in $D$ .
(2.6) LEMMA. If any two elements of $S$ (resp. $M$) are conjugate in $G$ , they

are conjugate in $1V_{G}(S)$ (resp. $N_{G}(M)$). If $X$ is a 2-subgroup of $G$ containing $S$
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(resp. $M$ ), $X$ normalizes $S$ (resp. $M$).

PROOF. This is an immediate consequence of (2.5).

\S 3. General remarks on the fusion of involutions of $G$ .

(3.1) DEFINITION. We define some elements of $G$ as follows;

$\alpha_{k}=\pi_{1}\pi_{2}\cdots\pi_{k}$ $(1\leqq k\leqq n)$

$\pi_{k,l}=\pi_{1}^{\prime}\pi_{2}^{\prime}\cdots\pi_{k}^{\prime}\pi_{k+1}\cdots\pi_{k+l}$

$(0<k+l\leqq n)$

$\lambda_{k,l}=\lambda_{1}\lambda_{2}\cdots\lambda_{k}\pi_{k\$\cdot 1}$ $\pi_{kil}$

$\tau_{k,l}=\pi\{\pi_{2}^{\prime}\cdots\pi_{k}^{\prime}\pi_{k\dashv- 1}\cdots\pi_{k+l}\lambda_{n}$ $(0\leqq k+l\leqq n-1)$ .

We note that $\pi_{k,l}’ s$ (resp. $\lambda_{k,l}’ s$) are representatives of the orbits of elements in
$S$ (resp. M) under the action on $S$ (resp. $M$ ) of $N$.

Throughout the present paper, we shall assume $n\geqq 2$ . The special case
$n=2$ was treated in [6].

(3.2) LEMMA. Any two elements of $\alpha_{1},$ $\alpha_{2}$ , , $\alpha_{n}$ are not conjugate in $G$ .
PROOF. By the definition of $N$ and (2.3), any two of $\alpha_{k}’ s$ are not conjugate

in $N_{G}(J)$ . On the other hand, if two elements of $Z(J)$ are conjugate in $G$ ,

they are conjugate in $N_{G}(J)$ since $J$ is weakly closed in a 2-Sylow subgroup

of $G$ . From this, our lemma follows.

(3.3) For convenience, we shall introduce the following definition. If an
involution $x$ of $G$ is conjugate to an involution of $Z(J)$ , we say that $x$ is of
positive length. Then it follows from the structure of $N$ that $x$ is conjugate

to one of $\alpha_{1},$ $\alpha_{2},$
$\cdots$ , $\alpha_{n}$ . If $x\sim\alpha_{k}$ in $G$ , we say that $x$ is of length $k$ . Note

that, in $Z(J)$ , there is exactly one element of length $n$ , namely $\alpha_{n}$ . Further
we introduce some notations frequently used in subsequent lemmas.

Assume that $\pi_{k,l}$ is of positive length. Put

$\overline{U}_{k,l}=C_{J}(\pi_{k,l})=S_{1}\times\cdots\times S_{k}\times J_{k\dashv-1}\times\cdots\times J_{n}$ .

Then we have $ Z(\overline{U}_{k,l})=S_{1}\times S_{2}\times\cdots\times S_{k}\times\langle\pi_{k\dashv\rightarrow 1}, \cdots , \pi_{n}\rangle$ and $\overline{U}_{\lambda,l}^{\prime}=\langle\pi_{k\dashv 1}, \cdots , \pi_{n}\rangle$ .
Denote by $P_{k},$

’ a 2-Sylow subgroup of $C_{G}(\pi_{k,l})$ with $\overline{U}_{k,l}\subset P_{k.l}\subset C_{G}(\pi_{k,l})$ . Since
$\pi_{k,l}$ is of positive length, $P_{k,l}$ contains a subgroup conjugate to $J$, which is the

Thompson subgroup $J(P_{k,l})$ of $P_{k,l}$ . Since $\overline{U}_{k,l}$ is generated by elementary

abelian subgroups of order $2^{2n}$ , we have $\overline{U}_{k,l}\subset J(P_{k,l})$ . Put $ U_{h,l}=\langle J, J(P_{k.l})\rangle$ .
Then we have

(i) $Z(J(P_{k,l}))\ni\pi_{k,l},$ $\pi_{k\dashv\rightarrow 1},$ $\pi_{n}$ ,

(ii) $Z(U_{k,l})\ni\pi_{k+1},$ $\cdots$ , $\pi_{n}$ , and

(iii) $U_{k,\iota_{-}}normalizes$
$\overline{U}_{k,l},$ $Z(\overline{U}_{k,l}),\overline{U}_{h.l}^{\prime}$ and all elementary abelian subgroups

of $U_{k,l}$ of order $2^{2n}$ .
In fact, since $J$ normalizes all elementary abelian subgroups of $J$ of order $2^{2n}$
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and $J\cap J(P_{k,l})\supseteqq\overline{U}_{k,l},$ $U_{k,l}$ normalizes all such subgroups of $\overline{U}_{k,l}$ . Since $\overline{U}_{k,l}$ is

generated by elementary abelian subgroups of order $2^{2n}$ , we get $U_{k,l}\triangleright\overline{U}_{k,l}$

and so $U_{k,l}\triangleright Z(\overline{U}_{k,l}),\overline{U}_{k,l}^{\prime}$ because $Z(\overline{U}_{k,l})$ and $\overline{U}_{k.l}^{\prime}$ are characteristic subgroups

of $\overline{U}_{k,l}$ . This proves (iii). (i) follows from the fact that $Z(J(P_{k,l}))=J(P_{k,l})^{\prime}$

and $\overline{U}_{k,l}^{\prime}\subset J(P_{k,l})^{\prime}$ . Then (ii) is obvious. Similarly, under the assumption that
$\lambda_{k,l}$ is of positive length, we define the followings:

$\overline{V}_{k,l}=C_{J}(\lambda_{k,l})$ ,

$L_{k,l}=a$ 2-Sylow subgroup of $C_{G}(\lambda_{k,l})$ with $\overline{V}_{k,l}\subseteqq L_{k,l}\subseteqq C_{G}(\lambda_{k,l})$ ,

$ V_{k,i}=\langle J, J(L_{k,l})\rangle$ .
Then we have

(i)i $Z(J(L_{k,l}))\ni\lambda_{k,l},$ $\pi_{k+1},$ $\pi_{n}$ ,

$(ii)^{\prime}$ $Z(V_{k,l})\ni\pi_{k+1},$ $\cdots$ , $\pi_{n}$ , and
$(iii)^{\prime}$ $V_{k,l}$ normalizes $\overline{V}_{k,l},$ $Z(\overline{V}_{k,l})$ and all elementary abelian subgroups of

$\overline{V}_{k,l}$ of order $2^{2n}$ .
Finally, under the assumption that $\tau_{k,l}$ is of positive length, we construct the
followings:

$\overline{W}_{k,l}=C_{J}(\tau_{k,l})$ ,

$T_{k,l}=a$ 2-Sylow subgroup of $C_{G}(\tau_{k,l})$ with $\overline{W}_{k,l}\subseteqq T_{k,l}\subseteqq C_{G}(\tau_{k,l})$ ,

$ W_{k,l}=\langle J, J(T_{k,l})\rangle$ .
Then we have

$(i)^{\prime\prime}$ $Z(J(T_{k,\iota}))\ni\lambda_{k,l},$ $\pi_{k+1},$ $\pi_{n-1}$ ,

(ii)’ $Z(W_{k,l})\ni\pi_{k+1},$ $\cdots$ , $\pi_{n-1}$ , and

(iii)“ $W_{k,l}$ normalizes $\overline{W}_{k,l},$ $Z(\overline{W}_{k,l}),\overline{W}_{k,l}^{\prime}$ and all elementary abelian sub-
groups of $\overline{W}_{k,l}$ of order $2^{2n}$ .

(3.4) LEMMA. (i) $\pi_{k,l}\sim\alpha_{n}$ in $G31=0$ or $k+l=n$ , (ii) $\lambda_{k,l}\sim\alpha_{n}$ in $G\Rightarrow l=0$

or $k+l=n$ and (iii) $\tau_{k,l}\sim\alpha_{n}$ in $G\Rightarrow l=0$ or $k+l=n-1$ .
PROOF. Suppose that $\pi_{k,l}\sim\alpha_{n}$ in $G$ . Then we can construct $P_{k,l}$ as in

(3.3). By $($3.3; $(i))$ , we have $Z(J(P_{k,l}))\ni\pi_{k,l},$ $\pi_{k+1},$
$\cdots$ , $\pi_{n}$ , Assume by way of

contradiction that $1\geqq 1$ and $n>k+l$ . Then, since $\pi_{k,l}\sim\pi_{k,l}\pi_{k\dashv-1}\pi_{n}$ in $G$ and
$\pi_{k,l},$ $\pi_{k,l}\pi_{k+1}\pi_{n}\in Z(J(P_{k,b})),$ $Z(J(P_{k,l}))$ has two elements of length $n$ , which is
impossible because $Z(J)$ has only one element of length $n$ . This proves (i).

Similarly, by using $L_{k,l}$ and $T_{k,l}$ in (3.3), we obtain (ii) and (iii).

(3.5) LEMMA. (i) $\alpha_{1}\sim\pi_{1,0}$ in $G\Leftrightarrow\alpha_{n}\sim\pi_{1,n-1}$ in $G$ and (ii) $\alpha_{1}\sim\text{{\it \‘{A}}}_{1,0}$ in $G\Leftarrow i$

$\alpha_{n}\sim\lambda_{1,n-1}$ in $G$ .
PROOF. Suppose that $\alpha_{1}\sim\pi_{1,0}$ in $G$ . We can construct $P_{1,0}$ as in (3.3).

Then we have $ Z(J(P_{1,0}))=\langle\pi_{1}^{\prime}, \pi_{2}, \cdots , \pi_{n}\rangle$ . Since there are exactly $n$ elements

of length 1 in $Z(J(P_{1,0}))$ which must be $\pi\{,$
$\pi_{2},$

$\cdots$ , $\pi_{n}$ , we get $\alpha_{n}\sim\pi_{1}^{\prime}\pi_{2}\cdots\pi_{n}$

$=\pi_{1,n-1}$ in $G$ . Conversely, if $\alpha_{n}\sim\pi_{1,n-1}$ in $G$ , we have $Z(J(P_{1,n-1}))=\langle\pi_{1}^{\prime},$ $\pi_{2},$
$\cdots$ ,

$\pi_{n}\rangle$ where $P_{1,n-1}$ is a group constructed for $\pi_{1,n-1}$ as in (3.3). Then we get

$\pi_{1}^{\prime}=\pi_{1,n-1}(\pi_{2}\cdots\pi_{n})\sim\alpha_{1}$ in $G$ because $\pi_{1,n-1}$ is of length $n$ and $\pi_{k}’ s(2\leqq k\leqq n)$
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are of length 1. This proves (i). Similarly, we can prove (ii) by using $L_{1,0}$

and $L_{1,n-1}$ constructed for $\lambda_{1,0}$ and $\lambda_{1,n-1}$ as in (3.3).

(3.6) LEMMA. We may assume $\alpha_{\uparrow\iota}\#\pi_{1}^{\prime}$ and $\alpha_{n}\#\lambda_{1}$ in $G$ $\iota^{f}ithout$ loss of
generality. (Therefore we shall assume $\alpha_{n^{\prime}}\star\pi_{1}^{\prime}$ and $\alpha_{n^{\prime}}\star\lambda_{1}$ in $G$ throughout the

rest of this paper.)

PROOF. This follows from (3.2) and (3.5), by interchanging $\pi_{k}’ s$ (resp. $\lambda_{k}’ s$)

by $\alpha_{n}\pi_{k}’ s$ (resp. $\alpha_{n}\lambda_{k}’ s$) if necessary.

(3.7) LEMMA. (i) If $\pi_{1}^{\prime}$ is of positive length, we have $\pi_{I}^{\prime}\sim\pi_{\dot{\perp}}$ and $\pi_{1,l}\sim\alpha_{\iota+1}$ .
(ii) If $\lambda_{1}$ is of positive length, we have $\lambda_{1}\sim\pi_{1}$ and $\lambda_{1,l}\sim\alpha_{\iota+1}$ .

PROOF. Suppose that $\pi_{1}^{\prime}\sim\alpha_{k}$ in $G$ . We have $ Z(J(P_{1,0}))=\langle\pi_{1}^{\prime}, \pi_{A},, \cdot.. , \pi_{n}\rangle$ by
$($3.3; $(i))$ . By (3.6), we have $n>k$ . If $k>1$ , by taking suitable $n-k$ elements

of $\pi_{s}’ s(2\leqq s\leqq n)$ , for example $\pi_{k+1},$ $\cdots$ , $\pi_{n},$
$(\pi_{k+1}\cdots\pi_{n})\pi_{1}^{\prime}$ would be of length $n$ .

This is impossible since $\pi^{\prime}$

]
$\pi_{k+1}\cdots\pi_{n}\sim(\pi_{1}^{\prime}\pi_{k+1}\cdots\pi_{n})\pi_{k}\pi_{k+1}in\perp\backslash ^{\rightarrow}$ and $Z(J(P_{1,0}))$ has

only one element of length $n$ . Thus we have shown that, if $\pi_{1}^{\prime}$ is of positive

length, $\pi_{1}^{\prime}$ must be of length 1 and so $\pi_{1}^{\prime}\sim\pi_{1}$ in $G$ . Since $Z(J(P_{1r^{0}}))=\langle\pi_{1}^{\prime},$ $\pi_{2}$ ,

... , $\pi_{n}\rangle$ and $\pi_{1}^{\prime}$ is of length 1, $\pi_{i}^{\prime}\pi_{2}\cdots\pi_{\iota+1}$ must be of length $l\perp 1$ . This proves

(i). Similarly we can prove (ii).

(3.8) LEMMA. (i) $\pi_{1}^{\prime}\theta\pi_{1}$ in $G\Rightarrow N_{G}(S)=N_{H}(S)$ , where $H=C_{G}(\alpha_{n})$ . (ii) $\lambda_{1}$

$\sqrt{}\cdot\pi_{1}$ in $G\Rightarrow N_{G}(M)=N_{H}(M)$ .
PROOF. We shall prove (i). Similarly we can work in the case (ii). It is

sufficient to see that $\alpha_{n}$ is not conjugate in $G$ to any element of $S$ other than

$\alpha_{n}$ , and so, by $($3.4; $(i))$ it suffices to see $\alpha_{n}\theta\pi_{k,0}$ and $\alpha_{n}\#\pi_{k,n- k}$ in $G(1\leqq k\leqq n)$ .
We shall show this by induction on $k$ . Since $\pi_{1}^{\prime}\theta\pi_{1}$ in $G$ by our assumption,

it follows from $($3.5; $(i))$ that $\alpha_{n^{\prime}}\star\pi_{1,n-1}$ in $G$ . This implies that our assertion

is true for $k=1$ . Suppose by the inductive hypothesis that, if $1\leqq h<k$ , we
have $\pi_{h,0^{\prime}}\star\alpha_{n}$ and $\pi_{h,n-h^{\prime}}\star\alpha_{n}$ in $G$ . Firstly, we shall show that $\pi_{k,n-k^{r}}/\cdot\alpha_{n}$ in
$G$ . Assume by way of contradiction that $\pi_{k,n- k}\sim\alpha_{n}$ in $G$ . Then, since
$Z(J(P_{k,n-k}))\ni\pi_{k,n-k},$ $\pi_{k+1},$ $\cdots$ , $\pi_{n}$ and $\pi_{k,n- k}\sim\alpha_{n}$ in $G$ , we have $\pi_{k,0}\sim\alpha_{k}$ in $G$ .
We know by (3.3; (iii)) that $U_{k,n- k}$ normalizes $Z(\overline{U}_{k,n- k})=\langle\pi_{1}^{\prime},$

$\pi_{2}^{\prime}$ , $\cdot$ .. , $\pi_{k}^{\prime},$

$\pi_{1},$ $\pi_{2}$ ,

... , $\pi_{n}\rangle$ . From the inductive hypothesis, $($3.4; $(i))$ and $\pi_{k,0}\sim\alpha_{k}$ in $G_{y}$ it follows
that the totality of elements in $Z(\overline{U}_{k,n- k})$ of length $n$ is as follows:

$\alpha_{n}$ and $\pi_{k,n-k}x$ ,

where $x$ ranges over all elements of $\langle\pi_{1}, \cdots , \pi_{k}\rangle$ . Denote by $X$ the group
generated by them. Then we have $ X=\langle\pi_{k,0}, \pi_{k+1} \pi_{n}, \pi_{1}, \pi_{2}, \cdot.. , \pi_{h}\rangle$ and
$X\triangleleft U_{k,n- k}$ . The totality of elements in $X$ of length 1 is

$\pi_{1},$ $\pi_{2},$ , $\pi_{k}$ if $k<n-1$

and

$\pi_{1},$ $\pi_{2},$ , $\pi_{n}$ if $k\geqq\uparrow\iota-1$ .

Since $X\triangleleft U_{k,n-k}$ , we have $ U_{k,n-k}\triangleright\langle\pi_{1}, \pi_{2}, \cdots , \pi_{k}\rangle$ or $\langle\pi_{1}, \pi_{2}, \cdots, \pi_{n}\rangle$ according to
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whether $k<\uparrow x-1$ or $k\geqq n-1$ . In the second case, we have $[U_{k,n- k}, \pi_{1}\pi_{2}\cdots\pi_{n}]$

$=1$ . In the former case, we have $[U_{k,n-k}, \pi_{1}\cdots\pi_{k}]=1$ and so $[U_{k,n- k}, \alpha_{n}]=1$

because $Z(U_{k,n-k})\ni\pi_{kk1},$ $\cdots$ , $\pi_{n}$ by (3.3; (ii)). Thus, in any case, we get $Z(U_{k,n- k})$

$\ni\alpha_{n}$ . Then we have $\alpha_{n}\in Z(J(P_{k,n-k}))$ , which is impossible since $\alpha_{n},$ $\pi_{k,n- k}$

$\in Z(J(P_{k,n-k}))$ and they are of length $n$ . Hence we have proved that $\alpha_{n}\star\pi_{k,n- k}$

in $G$ . Secondly assume that $\alpha_{n}\sim\pi_{k,0}$ in $G$ . We have $Z(\overline{U}_{k,0})=\langle\pi_{1}^{\prime},$ $\pi_{2}^{\prime}$ , $\cdot$ .. , $\pi_{h}^{\prime}$ ,

$\pi_{1},$ $\pi_{2}$ , $\cdot$ .. , $\pi_{n}\rangle$ and the totality of elements in $Z(\overline{U}_{k,0})$ of length $n$ is $\alpha_{n}$ and
$\pi_{k,0}x$ , where $x$ ranges over all elements of $\langle\pi_{1}, \pi_{2}, \cdot., , \pi_{k}\rangle$ . If we denote by $Y$

the group generated by them, we have $ Y=\langle\pi_{k,0}, \pi_{k+1}\cdots\pi_{n}, \pi_{1}, \pi_{2}, \cdots , \pi_{k}\rangle$ and
$U_{k,0}\triangleright Y$ by (3.3; (iii)). By the same argument as above, we get $Z(U_{k,0})\ni\alpha_{n}$

and so $\alpha_{n}\in Z(J(P_{k,0}))$ , which is impossible because $\alpha_{n},$ $\pi_{k,0}\in Z(J(P_{k,0}))$ and they

are of length $n$ . Hence we have proved that $\alpha_{n}\eta^{6}\pi_{k,0}$ in $G$ . This completes

the proof of our lemma.

\S 4. The case $N_{G}(S)>N_{H}(S)$ .

(4.1) In this section, we shall assume $N_{G}(S)>N_{H}(S)$ . Then, by (3.8), we
have $\pi_{1}^{\prime}\sim\pi_{1}$ in $G$ . Further, we note that, if we work with $M$ and $\lambda_{k}’ s(1\leqq k$

$\leqq n)$ in place of $S$ and $\pi_{k}’ s(1\leqq k\leqq n)$ respectively, we can obtain the corre-
sponding results for $M$ under the assumption $N_{G}(M)>N_{H}(M)$ .

(4.2) LEMMA. We have two possibilities Case I or Case II for the fusion
in $G$ of elements of $S$ according to whether $\alpha_{2}\sim\pi_{1}^{\prime}\pi_{2}^{\prime}$ or $\alpha_{1}\sim\pi_{1}^{\prime}\pi_{2}^{\prime}$ . More pre-
cisely, we have

Case I (i) $\pi_{k,l}\sim\alpha_{k+l}$ in $G$ , and
(ii) there exist $n$ elements $\beta_{s}(1\leqq s\leqq n)$ of $N_{G}(S)$ of odd order such

that $\beta_{s}$ : $\pi_{s}\rightarrow\pi_{s}^{\prime}\rightarrow\pi_{s}\pi_{s}^{\prime}$ and $[\beta_{s}, \pi_{t}]=[\beta_{s}, \pi_{t}^{\prime}]=1$ for $s\neq t$ , or
Case II $(i)^{\prime}\pi_{2k-1,l}\sim\pi_{2k,l}\sim\alpha_{k+l}$ in $G$ and

$(ii)^{\prime}$ there exist $n$ elements $\beta_{s}(1\leqq s\leqq n)$ of $N_{G}(S)$ of odd order such

that $\beta_{s}$ : $\pi_{s}\rightarrow\pi_{s}^{\prime}\rightarrow\pi_{s}\pi_{s}^{\prime}$ and $[\beta_{s}, \pi_{t}]=[\beta_{s}, \pi_{s}\pi_{t}^{\prime}]=1$ for $s\neq t$ .
PROOF. Since we have $\pi_{1}^{\prime}\sim\pi_{1}$ in $G$ , we can construct $\overline{U}_{1,0},$

$P_{1,0}$ and $U_{1,0}$

for an element $\pi_{1}^{\prime}=\pi_{1,0}$ as in (3.3). For simplicity, we write $\overline{U}_{1,0}=\overline{U},$ $P_{1,0}=P$

and $U_{1,0}=U$ . Then, by (i) and (iii) of (3.3), we know that $ Z(\overline{U})=\langle\pi_{1}, \pi_{1}^{\prime}\rangle$

$\times\langle\pi_{2}, \cdots, \pi_{n}\rangle$ and $U$ normalizes $Z(\overline{U})$ . Since $ Z(U)\supseteqq\langle\pi_{2}, \cdots , \pi_{n}\rangle$ , and, $\pi_{1},$
$\pi_{1}^{\prime}$

and $\pi_{1}\pi_{1}^{\prime}$ are only elements of length 1 of $ Z(\overline{U})-\langle\pi_{2}, \cdots , \pi_{n}\rangle$ , we get $ U\triangleright\langle\pi\{, \pi_{1}\rangle$ .
Further, since $Z(U)\supseteqq\langle\pi_{2}, \cdots , \pi_{n}\rangle,$ $ Z(J(P))=\langle\pi_{1}^{\prime}, \pi_{2}, \cdots , \pi_{n}\rangle$ and $J(P)$ is conjugate

in $U$ to $J$, we have $\pi_{1}^{\prime}\sim\pi_{1}$ in $U$ . Therefore we have $U/C_{U}(\langle\pi_{1}^{\prime}, \pi_{1}\rangle)\cong \mathfrak{S}_{3}$ . This

implies that there is an element $\beta$ of $U$ of odd order such that $\beta:\pi_{1}\rightarrow\pi_{1}^{\prime}\rightarrow\pi_{1}\pi_{1}^{\prime}$ .
By (3.3; (iii)) we know that $\beta$ normalizes all elementary subgroups of $\overline{U}$ of

order $2^{2n}$ , in particular $S=S_{1}\times\cdots\times S_{n}$ and $ S_{1}\times M_{2}\times$ – $\times M_{k-1}\times S_{k}\times M_{k\prec 1}\times\cdots$

$\times M_{n}$ . Hence $\beta$ normalizes their intersection $\langle Z(\overline{U}), \pi_{k}^{\prime}\rangle$ . Since $\beta$ normalizes
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$Z(\overline{U})$ by (3.3; (iii)) and is of odd order, $\beta$ must centralize an element of
$\langle Z(\overline{U}), \pi_{k}^{\prime}\rangle-Z(\overline{U})$ , and so one of $\pi_{k}^{\prime},$ $\pi_{k}^{\prime}\pi_{1},$ $\pi_{k}^{\prime}\pi_{1}^{\prime}$ and $\pi_{h}^{\prime}.\pi_{1}\pi_{1}^{\prime}$ because $\beta$ cen-
tralizes $\langle\pi_{2}, \pi_{3}, \cdots , \pi_{n}\rangle$ and $\pi_{1}\rightarrow\pi_{1}^{\prime}\rightarrow\pi_{1}\pi_{1}^{\prime}$ . Suppose that $[\beta, \pi_{k}^{\prime}\pi_{1}^{\prime}]=1$ . Then

we get $\pi_{k}^{\prime\beta}=\pi_{k}^{\prime}\pi_{1}$ , which is impossible because $\pi_{k}^{\prime}\sim\pi_{1}$ and $\pi_{k}^{\prime}\pi_{1}\sim\pi_{1}^{\prime}\pi_{2}\sim\pi_{1}\pi_{2}$

by $($3.7; $(i))$ . Hence we get $[\beta, \pi_{k}^{\prime}\pi_{1}^{\prime}]\neq 1$ . Similarly we have $[\beta, \pi_{k}^{\prime}\pi_{1}\pi_{1}^{\prime}]\neq 1$ .
Hence we get $[\beta, \pi_{k}^{\prime}]=1$ or $[\beta, \pi_{k}^{\prime}\pi_{1}]=1$ . Firstly suppose that $[\beta, \pi_{k}^{\prime}]=1$ .
Then we have $\beta$ : $\pi_{k}^{\prime}\pi_{1}\rightarrow\pi_{k}^{\prime}\pi_{1}^{\prime}\rightarrow\pi_{k}^{\prime}\pi_{1}\pi_{1}^{\prime}$ . Since $\pi_{k}^{\prime}\pi_{1}^{\prime}\sim\pi_{1}^{\prime}\pi_{2}^{\prime}$ in $N$ and $\pi_{k}^{\prime}\pi_{1}\sim\alpha_{2}$

by $($3.7; $(i))$ , we get $\pi_{1}^{\prime}\pi_{2}^{\prime}\sim\alpha_{2}$ . Secondly suppose that $[\beta, \pi_{k}^{\prime}\pi_{1}]=1$ . Then we
have $\pi_{k}^{\prime\beta}=\pi_{k}^{\prime}\pi_{1}\pi_{1}^{\prime}$ . Hence we get $\beta$ : $\pi_{k}^{\prime}\rightarrow\pi_{k}^{\prime}\pi_{1}\pi_{1}^{\prime}\rightarrow\pi_{k}^{\prime}\pi_{1}^{\prime}$ . Since $\pi_{k}^{\prime}\sim\pi_{1}^{\prime}\sim\pi_{1}$ by

the assumption $N_{G}(S)>N_{H}(S)$ and (3.8), we get $\pi_{1}^{\prime}\pi_{2}^{\prime}\sim\alpha_{1}$ . From these facts it

follows that we have $[\beta, \pi_{k}^{\prime}]=1$ or $[\beta, \pi_{k}^{\prime}\pi_{1}]=1$ according to whether $\alpha_{2}\sim\pi_{1}^{\prime}\pi_{2}^{\prime}$

or $\alpha_{1}\sim\pi_{1}^{\prime}\pi_{2}^{\prime}$ . This implies that, if $\pi\{\pi_{2}^{\prime}\sim\alpha_{2}$ in $G$ , we must have $[\beta, \pi_{t}^{\prime}]=1$ for

any 1 $(2\leqq l\leqq n)$ , and if $\pi_{1}^{\prime}\pi_{2}^{\prime}\sim\alpha_{1}$ , we must have $[\beta, \pi_{l}^{\prime}\pi_{1}]=1$ for any $l(2\leqq l\leqq n)$ .
Case I. Suppose that $\alpha_{2}\sim\pi_{1}^{\prime}\pi_{2}^{\prime}$ . If, for every 1 $(1 \leqq l\leqq n)$ , we start with

$\pi_{l}^{\prime}$ in place of $\pi_{1}^{\prime}$ in the above discussions, we can find an element $\beta_{l}$ of $N_{G}(S)$

of odd order such that $\beta_{\iota}$ : $\pi_{\iota}\rightarrow\pi_{\iota}^{\prime}\rightarrow\pi_{\iota}\pi_{\iota}^{\prime}$ and $[\beta_{\iota}, \pi_{k}]=[\beta_{\iota}, \pi_{k}^{\prime}]=1$ for $k\neq l$ .
Then we have $\beta_{1}^{2}\beta_{2}^{2}\cdots\beta_{k}^{2}$ : $\pi_{k,l}\rightarrow\alpha_{k+\iota}$ . Thus we get the first case in our lemma.

Case II. Suppose that $\alpha_{1}\sim\pi_{1}^{\prime}\pi_{2}^{\prime}$ in $G$ . If we start with $\pi_{\iota}^{\prime}$ in place of $\pi_{1}^{\prime}$

in the above discussions, we can find an element $\beta_{\iota}$ of $N_{G}(S)$ of odd order

such that $\beta_{l}$ : $\pi_{l}\rightarrow\pi_{\iota}^{\prime}\rightarrow\pi_{\iota}\pi_{\iota}^{\prime}$ and $[\beta_{l}, \pi_{k}]=[\beta_{l}, \pi_{k}^{\prime}\pi_{\iota}]=1$ for $k\neq l$ . If $s$ is even
$(1 \leqq s\leqq n)$ , we have $\beta_{1}$ ; $\pi_{s,t}\rightarrow\pi_{2}^{\prime}\cdots\pi_{s}^{\prime}\pi_{s\dashv-1}\cdots\pi_{s+t}$ since $\pi_{s,t}\sim(\pi_{1}\pi\{)\cdots(\pi_{1}\pi_{S}^{\prime})\pi_{s+1}\ldots$

$\pi_{s\cdot t},$ $\beta_{1}$ ; $\pi_{1}\pi_{1}^{\prime}\rightarrow\pi_{1}$ and $[\beta_{1}, \pi_{k}^{\prime}\pi_{1}]=1(2\leqq k\leqq s)$ . If $s$ is odd $(1 \leqq s\leqq n)$ , we have
$\beta_{1}^{g}$ : $\pi_{s,t}\rightarrow\pi_{1}\pi_{2}^{\prime}\pi_{3}^{\prime}\cdots\pi_{s}^{\prime}\pi_{s+1}$

$\pi_{s+t}\sim\pi_{s-1,’\vdash 1}\sim$ since $\beta_{1}^{2}$ ; $\pi_{1}^{\prime}\rightarrow\pi_{1}$ and $\pi_{k}^{\prime}\rightarrow\pi_{k}^{\prime}\pi_{1}^{\prime}(2\leqq k\leqq s)$ .
From these it follows that we have $\pi_{s,t}\sim\alpha_{s/2}+c$ or $\alpha_{s+1/2}+c$ according to whether
$s$ is even or odd. This yields the second case in our lemma.

(4.3) REMARK. (i) If we choose $S$ as in \S 1, the first case in (4.2) occurs
when $G=\mathfrak{S}_{4n},$ $\mathfrak{A}_{4n+2}$ or $\mathfrak{A}_{4n- 1\cdot\$}$ , and the second case in (4.2) does when $G=\Omega_{2n+2}$

$(\epsilon, q)$ . (ii) If we take $M$ in \S 1 as $S$ ’ in this section, then only the second
case occurs in both “ orthogonal ” and “ symmetric ” cases.

(4.4) LEMMA. Every element of $N_{H}(S)$ induces a permutation on the set
$\{\pi_{1}^{\prime}, \pi_{1}^{\prime}\pi_{1}, \cdots , \pi_{n}^{\prime}, \pi_{n}^{\prime}\pi_{n}\}$ , which consists of members of a basis of $S$ .

PROOF. Firstly suppose that we have case I for the fusion in $G$ of ele-

ments of $S$ . By (4.2), it is sufficient to see that $\pi_{k^{\prime}}^{\prime}\rho\pi_{\iota}$ in $N_{H}(S)(1\leqq k, l\leqq n)$ .
If $\pi_{k}^{\prime x}=\pi_{\iota}$ for some $\chi\in N_{H}(S)$ , we would have $(\pi_{k}^{\prime}\alpha_{n})^{x}=\pi_{\iota}\alpha_{n}$ , which is impos-

sible because $\pi_{k}^{\prime}\alpha_{n}\sim\alpha_{n}$ and $\pi_{\iota}\alpha_{n}\sim\alpha_{n-1}$ in $G$ . Secondly, suppose that we have
case II. By (4.2), it is sufficient to see that $\pi_{k^{\prime}}^{\prime}\star\pi_{\iota}$ and $\pi_{k}^{\prime}\theta\pi_{l}^{\prime}\pi_{m}^{\prime}$ in $N_{H}(S)$

$(1\leqq k, 1, m\leqq n)$ . In the same way as case I, $\pi_{k}^{\prime}\sim\pi_{\iota}$ in $N_{H}(S)$ is impossible.

If $\pi_{k}^{\prime x}=\pi_{\iota}^{\prime}\pi_{m}^{\prime}$ for some $x\in N_{H}(S)$ , we would have $(\alpha_{n}\pi_{k}^{\prime})^{x}=\pi_{l}^{\prime}\pi_{m}^{\prime}\alpha_{n}$ , which is
impossible because $\alpha_{n}\pi_{k}^{\prime}\sim\alpha_{n}$ and $\pi_{\iota}^{\prime}\pi_{m}^{\prime}\alpha_{n}\sim\pi_{2,n-2}\sim\alpha_{n-1}$ in $G$ . This completes

the proof of our lem ma.
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(4.5) LEMMA.

(i) $N_{H}(S)/C_{H}(S)\cong\left\{\begin{array}{l}Z_{2}?\mathfrak{S}_{n} forcaseI\\\mathfrak{S}_{2n} forcaseII,\end{array}\right.$

and

(ii) $N_{G}(S)/C_{G}(S)\cong\{\mathfrak{S}_{2n}^{3}\mathfrak{S}?_{+1}\mathfrak{S}_{n}$

for case I

for case II.

PROCF. Case I. Firstly we shall determine the structure of $N_{H}(S)/C_{H}(S)$ .
We note that, if we have case I, every element of $N_{H}(S)$ induces a permuta-

tion on the set $\{\pi_{1}, \pi_{2}, \cdots , \pi_{n}\}$ of $n$ elements by (4.2). Put $\Pi=\{\pi_{1}^{\prime},$ $\pi_{1}^{\prime}\pi_{1},$ $\cdots$ ,

$\pi_{n}^{\prime},$ $\pi_{n}^{\prime}\pi_{n}$ } and $\Pi_{k}=t’(1\leqq k\leqq n)$ . Suppose that $\Pi_{k}^{x}\cap\Pi_{\iota}\neq\phi$ , where
$x\in N_{H}(S)$ and $\phi$ denotes the empty set. Then we have $\pi_{l}^{\prime}=\pi_{k}^{\prime x}$ or $(\pi_{k}^{\prime}\pi_{k})^{x}$ if
$\pi_{\iota}^{\prime}\in\Pi_{k}^{x_{O}}\Pi_{l}$ , and $\pi_{\iota}^{\prime}\pi_{\iota}=\pi_{k}^{\prime x}$ or $(\pi_{k}^{\prime}\pi_{k})^{x}$ if $\pi_{\iota}^{\prime}\pi_{\iota}\in\Pi_{k}^{x}\cap\Pi_{\iota}$ . For example, if
$\pi_{\iota}^{\prime}=\tau_{k}^{\prime x}$ , we must have $\pi_{\iota}=\pi_{k}^{x}$ . In fact, if $\pi_{k}^{x}=\pi_{h}(h\neq l)$ , we would have
$(\pi_{k}^{\prime}\pi_{k})^{\prime}‘=\pi_{l}^{\prime}\pi_{h}$ and so $(\alpha_{n}\pi_{k}^{\prime}\pi_{k})^{x}=\pi_{\iota}^{\prime}\pi_{l\iota}\alpha_{n}$ , which is impossible because $\alpha_{n}\pi_{k}^{\prime}\pi_{k}\sim\alpha_{t}$

and $\pi_{l^{d\vee}h}^{\prime}-\alpha_{f}\sim\alpha_{n-1}$ if $h\neq l$ . Thus we get $\Pi_{h}x=\Pi$ . Also in any other cases,

we get $\Pi_{k}r=\Pi_{\iota}$ if $\Pi_{k}x\cap\Pi_{\iota}\neq\phi$ . This implies that $N_{H}(S)/C_{H}(S)$ is an impri-

mitive permutation group on the set $\Pi$ with $\Pi_{k}s(1\leqq k\leqq n)$ as a ciass of sets

of imprimitivity. On the other hand, $N$ is a subgroup of $N_{H}(S)$ and $N\cap C_{H}(S)$

$=S$ . Further, from the structure of $N$, it follows that $NC_{H}(S)/C_{H}(S)$ is the

maximal imprimitive group on the set $\Pi$ with $\Pi_{k}s(1\leqq k\leqq n)$ as a class of

sets of imprimitivity. Hence we have $N_{H}(S)=NC_{H}(S)$ . This implies that
$N_{H}(S)/C_{H}(S)\cong Z_{2}$ ? $\mathfrak{S}_{?}$ . Denote by $\overline{x}$ the image of an element $x$ by the can-
onical homomorphism of $N_{G}(S)$ onto $N_{G}(S)/C_{G}(S)$ . Let $\beta_{k}(1\leqq k\leqq n)$ be $n$ ele-

ments defined in (4.2). Then from the action on $S$ of $\beta_{k},$ $\lambda_{k}$ and $\sigma\in P$ , it fol-

lows that $\overline{\beta}_{k^{\prime}}^{\overline{\lambda}}\cdot=\overline{\beta}_{k}^{-1}$ , $[; k’\overline{\beta}_{\iota}]=[\overline{\beta}_{k},\overline{\beta}_{l}]=1(k\neq l)$ , and $\overline{\beta}_{k}^{\overline{\sigma}}=\overline{\beta}_{\sigma(k)}$ . Remark that,

in the right hand side of the last equality, $\sigma$ is identified with an element of
$\mathfrak{S}_{7b}$ (cf. (1.1)). This implies that $N_{G}(S)/C_{G}(S)$ contains a subgroup isomorphic

to $\mathfrak{S}_{3}$ ? $\mathfrak{S}_{\iota}$ . On the other hand, since $S$ has $3^{n}$ elements conjugate in $N_{G}(S)$ to

$\alpha_{n}$ by case I in (4.2) and (2.6), we have $[N_{G}(S):N_{H}(S)]=3^{n}$ . This yields that

we must have $\perp V_{G}(S)/C_{G}(S)\cong \mathfrak{S}_{3}$ ? $\mathfrak{S}_{n}$ .
Case II. Let $\beta_{k}(1\leqq k\leqq n)$ be $n$ elements defined in (4.2: case II). Put

$\delta_{k}=\beta_{k}^{-1}\beta_{k1}\beta_{\lambda}\grave{A}_{h+1}(1\leqq k\leqq n-1)$ . Then from the action on $S$ of $\text{{\it \‘{A}}}_{k}(1\leqq k\leqq n)$

and $\delta_{h}(1\leqq k\leqq n-1)$ , it follows that $N_{H}(S)\ni\delta_{k}$ and the set { $\overline{\lambda}_{1},$ $\overline{\partial}_{1},\overline{\lambda}_{2}$ , $\cdot$ .. , $\overline{\delta}_{n-1}$ ,
$\overline{\lambda}_{n}\}$ is a set of canonical generators of $\mathfrak{S}_{2n}$ (for this terminology, see the intro-
duction). Then, by (4.4), we must have $N_{H}(S)/C_{H}(S)\cong \mathfrak{S}_{2n}$ . Further, from the

action on $S$ of $\beta_{1}\lambda_{1}$ , it follows that the set $\{\overline{\beta}_{1}\overline{\lambda}_{1},\overline{\lambda}_{1},\overline{\delta}_{1}, \cdot.. , \overline{\lambda}_{n-1}, \overline{\delta}_{n-1},\overline{\lambda}_{n}\}$ is a

set of canonical generators of $\mathfrak{S}_{2n\dashv 1}$ . Since $S$ has $2n+1$ elements conjugate in
$N_{G}(S)$ to $\alpha_{l}$ by (4.2: case II) and (2.6), we have $[N_{G}(S):N_{H}(S)]=2n+1$ . This
yields that $-V_{G}(S)/C_{G}(S)\cong \mathfrak{S}_{2n+1}$ . This completes the proof of (4.5).
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(4.6) In the rest of the present paper, we shall consider the following

conditions for $S$ and $M$ :
$(\Pi)$ every element of $N_{H}(S)$ induces a permutation on the set { $\pi_{1}^{\prime},$ $\pi_{1}^{\prime}\pi_{1},$ $\cdots$

$\pi_{n}^{\prime},$ $\pi_{n}^{\prime}\pi_{n}$ },
$(\Lambda)$ every element of $N_{H}(M)$ induces a permutation on the set { $\lambda_{1},$ $\lambda_{1}\pi_{1},$ $\cdots$ ,

$\lambda_{n},$ $\lambda_{n}\pi_{n}$ }.
If $N_{G}(S)>N_{H}(S)$ (resp. $N_{G}(M)>N_{H}(M)$), $S$ (resp. $M$) satisfies the conditions
$(\Pi)$ (resp. $(\Lambda)$) by (4.4). For all examples in \S $l,$ $S$ and $M$ satisfy the condi-
tions $(\Pi)$ and $(\Lambda)$ respectively. Furthermore we note that

$(\Lambda)$ implies $\lambda_{1^{r}}\star\lambda_{1}\pi_{2}$ in $G$ , and
$(\Pi)$ implies $\pi_{1}^{\prime}\#\pi_{1}^{\prime}\pi_{2}$ in $G$ .

In fact, if $\lambda_{1}\sim\grave{\text{{\it \‘{A}}}}_{1}\pi_{2}$ in $G,$ $(2.6)$ and $(\Lambda)$ yield that $N_{G}(M)>N_{H}(M)$ . Hence by

(4.2), we have $\lambda_{1}\sim\alpha_{1}$ and $\lambda_{1}\pi_{2}\sim\alpha_{2}$ which is impossible if $\lambda_{1}\sim\lambda_{1}\pi_{2}$ , because
$\alpha_{1^{\prime}}\star\alpha_{2}$ in $G$ . Quite similarly the second statement follows.

(4.7) LEMMA. Assume that $N_{G}(S)>N_{H}(S)$ and the condition $(\Lambda)$ . Then we
have one of the followings:

Case I’ $[\beta_{k}, \lambda_{\iota}]=1$ for any pair $\{k, 1\}(k\neq l)$ , or
Case II’ $[\beta_{k}, \lambda_{\iota}\pi_{k}]=1$ for any pair $\{k, l\}(k\neq l)$ ,

according to whether $\pi_{1}^{\prime}\lambda_{2}\sim\pi_{1}\lambda_{2}$ or $\pi_{1}^{\prime}\text{\‘{A}}_{2}\sim\lambda_{1}$ .
PROOF. By (4.2), we know that $\beta_{k}$ ; $\pi_{k}\rightarrow\pi_{k}^{\prime}\rightarrow\pi_{k}^{\prime}\pi_{k}$ and $[\beta_{k}, \sim_{\vee\iota}]=1(k\neq l)$

in both cases of (4.2). By the proof of (4.2), $\beta_{k}$ normalizes all elementary

abelian subgroups of $C_{J}(\pi_{k}^{\prime})$ of order $2^{2n}$ , in particular $\langle\pi_{k}^{\prime} , \pi_{k}\rangle\times M_{\iota}\times\prod_{i\neq kl}.S_{i}$ and

$\langle\pi_{k}^{\prime} , \pi_{k}\rangle\times M_{\iota}\times\prod_{t\neq k,l}M_{i}$ . Hence $\beta_{k}$ normalizes their intersection $ Y_{k}=Z(J)\times\langle\pi_{k}^{\prime} , \lambda_{\iota}\rangle$ .
Then $\beta_{k}$ must centralize an element of $ Y_{k}-Z(J)\times\langle\pi_{k}^{\prime}\rangle$ because $\beta_{k}$ normalizes
$ Z(J)\times\langle\pi_{k}^{\prime}\rangle$ and is of odd order. Therefore $\beta_{k}$ centralizes one of $\lambda_{t},$ $\lambda_{\iota}\pi_{k}^{\prime}$ , $\pi_{k}^{\prime}\pi_{k}\lambda_{l}$

and $\pi_{k}\lambda_{\iota}$ since $[\beta_{k}, \pi_{\iota}]=1(k\neq l)$ . Suppose that $[\beta_{k}, \lambda_{\iota}\pi_{k}^{\prime}]=1$ . Then, from
$\lambda_{\iota}\pi_{k}^{\prime}=(\lambda_{\iota}\pi_{k}^{\prime})^{\beta_{k}}=\lambda_{\iota}^{\beta_{k}}\pi_{k}\pi_{k}^{\prime}$ , we get $\lambda_{\iota}^{\beta_{k}}=\lambda_{\iota}\pi_{k}$ , which is impossible as remarked in
(4.6) because $\lambda_{\iota}\sim\lambda_{1}$ and $\lambda_{\iota}\pi_{k}\sim\lambda_{1}\pi_{2}$ in G. Secondly suppose that $[\beta_{k}, \pi_{k}^{\prime}\pi_{k}\lambda_{\iota}]$

$=1$ . Then we get
$\lambda_{l}^{\beta_{k}^{2}}=\lambda_{\iota}\pi_{k}$ , which is impossible by the same reason as above.

Thus we have $[\beta_{k}, \lambda_{\iota}]=1$ or $[\beta_{k}, \lambda_{\iota}\pi_{k}]=1$ . If $[\beta_{k}, \lambda_{\iota}]=1$ , we must have $\lambda_{\iota}\pi_{k}^{\prime}$

$=(\lambda_{\iota}\pi_{k})^{\beta_{k}}$ , and so $\pi_{1}^{\prime}\lambda_{2}\sim\pi_{1}\lambda_{2}$ because $\lambda_{2}\pi_{1}^{\prime}\sim\lambda_{\iota}\pi_{k}^{\prime}$ and $\lambda_{2}\pi_{1}\sim\lambda_{\iota}\pi_{k}$ in $N$. If
$[\beta_{k}, \lambda_{\iota}\pi_{k}]=1$ , we must have $\lambda_{\iota}=(\lambda_{\iota}\pi_{k}^{\prime})^{\beta_{k}}$ , and so $\text{{\it \‘{A}}}_{1}\sim\pi_{1}^{\prime}\lambda_{2}$ in $G$ . Therefore, if
$\pi_{1}^{\prime}\lambda_{2}\sim\pi_{1}\lambda_{2}$ in $G$ , we must have $[\beta_{k}, \lambda_{\iota}]=1$ for any pair $\{k, l\}(k\neq l)$ , and if
$\pi_{1}^{\prime}\lambda_{2}\sim\lambda_{1}$ , we must have $[\beta_{k}, \text{{\it \‘{A}}}_{\iota}\pi_{k}]=1$ for any pair $\{k, 1\}(k\neq l)$ . The proof is

complete.

(4.8) LEMMA. Assume that $N_{G}(M)>N_{H}(M)$ and $(\Pi)$ . Then we have one

of the followings:

Case $I^{\prime\prime}$

$[\gamma_{k}, \pi_{\iota}^{\prime}]=1$ for any pair $\{k, l\}(k\neq l)$ , or
Case II” $[\gamma_{k}, \pi_{\iota}^{\prime}\pi_{k}]=1$ for any pair $\{k, 1\}(k\neq l)$

according to whether $\pi_{1}^{\prime}\lambda_{2}\sim\pi_{1}^{\prime}\pi_{2}$ or $\pi_{1}^{\prime}\lambda_{2}\sim\pi_{1}^{\prime}$ . Here $\gamma_{k}’ s(1\leqq k\leqq n)$ are the ele-
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ments $co$ nstructed for $M$ in place of $S$ in (4.2) (cf. (4.1)).

(4.9) LEMMA. Assume that $N_{G}(S)>N_{H}(S)$ and $N_{G}(M)>N_{H}(M)$ . Then we
have $[\beta_{k}, \text{{\it \‘{A}}}_{\iota}]=1$ and $[\gamma_{k}, \pi_{l}^{\prime}]=1(k\neq l)$ .

PROOF. By (4.4) $S$ and $M$ satisfy the assumptions of (4.7) and (4.8) respec-

tively. Furthermore we know that $\pi_{1}^{\prime}\sim\lambda_{1}\sim\alpha_{1}$ and $\pi_{1}^{\prime}\pi_{2}\sim\pi_{1}\lambda_{2}\sim\alpha_{2}$ in $G$ by

(4.2). Therefore by (4.7) and (4.8), it is sufficient to see that $\pi_{1}^{\prime}\lambda_{2}\sim\alpha_{2}$ . Put

$ F=\langle\pi_{1}^{\prime}, \pi_{1}\rangle\times\langle\lambda_{2}, \pi_{2}\rangle$ and $X=N_{G}(F)/C_{G}(F)$ .

We shall determine the structure of $X$ . Firstly we note that, from (4.7) and

(4.8), we have $N_{G}(F)\ni\beta_{1},$ $\gamma_{2}$ for any cases of the lemmas. Take a 2-Sylow

subgroup $D$ of $N_{G}(F)$ containing J. (Note that $J\triangleright F.$) Then we have $D\triangleright J$

and so $D\subset N_{G}(J)\cap N_{G}(F)$ . Since $N_{G}(J)=N\cdot C_{G}(J)$ , it follows from the struc-

ture of $N$ that D. $C_{G}(F)=\langle\lambda_{1}, \pi_{2}^{\prime}\rangle\cdot C_{G}(F)$ . This implies that the four group
$\langle\overline{\lambda}_{1},\overline{\pi}_{2}^{\prime}\rangle$ is a 2-Sylow subgroup of $X$ . From the action of $\text{{\it \‘{A}}}_{1}$ and $\lambda_{1}\pi_{2}^{\prime}$ on $F$, we
see that $\overline{\lambda}_{1}$ and $\overline{\lambda}_{1}\overline{\pi}_{2}^{\prime}$ are not conjugate in $X$ . Therefore $X$ has a normal 2-

complement, and so $|X|=4\cdot 3^{a}(0\leqq a\leqq 2)$ by the structure of $GL(4,2)$ because
$X$ can be regarded as a subgroup of $GL(4,2)\cong A_{8}$ . Since $N_{G}(F)-C_{G}(F)\ni\beta_{1},$ $\gamma_{2}$ ,

we get $\Lambda^{\gamma_{G}}(F)=\langle\lambda_{1}, \pi_{2}^{\prime}, \beta_{1}, \gamma_{2}\rangle\cdot C_{G}(F)$ . This yields that $[N_{G}(F)\cap C_{G}(\alpha_{2}) : C_{G}(F)]$

$=4$ and so $[N_{G}(F):N_{G}(F)\cap C_{G}(\alpha_{2})]=9$ . Namely, $\alpha_{2}$ has nine conjugates in
$N_{G}(F)$ . Since $\pi_{1},$

$\pi_{1}^{\prime},$ $\pi_{1}^{\prime}\pi_{1},$ $\lambda_{2},$
$\pi_{2}$ and $\lambda_{2}\pi_{2}$ are of length 1 by (4.2), we must have

$\pi_{1}^{\prime}\lambda_{2}\sim\alpha_{2}$ in $N_{G}(F)$ . This completes the proof of our lemma.

(4.10) LEMMA. Assume that $N_{G}(S)>N_{H}(S)$ and $(\Lambda)$ . Without loss of gen-

erality, we may assume that $[\beta_{k}, \lambda_{\iota}]=1(k\neq l)$ .

PROOF. If $N_{G}(M)>N_{H}(M)$ , our lemma follows from (4.9). Assume that

$N_{G}(M)=N_{H}(M)$ and we have case II’ in (4.7), namely $[\beta_{k}, \lambda_{\iota}\pi_{k}]=1$ for any

pair $\{k, l\}(k\neq l)$ . Then we have $[\beta_{k}, \lambda_{\iota}\alpha_{n}]=1$ , because $[\beta_{k}, \pi_{h}]=1(k\neq h)$ .

We can replace $\text{{\it \‘{A}}}_{\iota’}s$ by $\lambda_{\iota}\alpha_{n}’ s(1\leqq l\leqq n)$ from the structure of N. (Note that,

since $N_{G}(M)=N_{H}(M)$ and so $\lambda_{\iota}\alpha_{n^{7^{6}}}\alpha_{n}$ , this replacement does not conflict with

that of (3.6) and does not destroy the condition $(\Lambda).)$ Thus we may assume
that $[\beta_{k}, \lambda_{\iota}]=1$ by the suitable choice of notations.

(4.11) LEMMA. Assume that $N_{G}(M)>N_{H}(M)$ and $(\Pi)$ . Then without loss

of generality, we may assume that $[\gamma_{k}, \pi_{\iota}^{\prime}]=1(k\neq l)$ .
(4.12) Summarizing the results of this section, we obtain the following

theorem.

THEOREM. (1) Assume that $N_{G}(S)>N_{H}(S)$ and $M$ satisfies the condition
$(\Lambda)$ . Then we have one of the followings:

Case I (i) there exist $n$ elements $\beta_{s}(1\leqq s\leqq n)$ of $N_{G}(S)$ such that

(i-1) $\beta_{s}$ is of odd order,

$(i-2)$ $\beta_{s};\pi_{s}\rightarrow\pi_{s}^{\prime}\rightarrow\pi_{s}^{\prime}\pi_{s}$ ,

$(i-3)$ $[\beta_{s}, \pi_{t}]=[\beta_{s}, \pi_{t}^{\prime}]=[\beta_{s}, \lambda_{t}]=1(s\neq t)$ ,
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and

(ii) $N_{G}(S)/C_{G}(S)\cong \mathfrak{S}_{3}$ ? $\mathfrak{S}_{n}$ and $N_{H}(S)/C_{H}(S)\cong Z_{2}$ ? $\mathfrak{S}_{n}$ ,

$or$

Case II (i) there exist $n$ element $\beta_{s}(1\leqq s\leqq n)$ of $1V_{G}(S)$ such that

$(i-1)$ $\beta_{s}$ is of odd order,

$(i-2)$ $\beta_{s}$ : $\pi_{s}\rightarrow\pi_{s}^{\prime}\rightarrow\pi_{s}^{\prime}\pi_{s}$ ,

(i-3) $[\beta_{s}, \pi_{t}]=[\beta_{s}, \pi_{s}\pi_{t}^{\prime}]=[\beta_{s}, \lambda_{t}]=1(s\neq t)$ ,

and
(ii) $N_{G}(S)/C_{G}(S)\cong \mathfrak{S}_{2n\dashv-\iota}$ and $N_{H}(S)/C_{H}(S)\cong \mathfrak{S}_{2n}$ .

(2) Assume that $N_{G}(M)>N_{H}(M)$ and $S$ satisfie $s$ the conditio $7l(\Pi)$ . Then

we have one of the followings:

Case I (i) there exist $n$ elements $\gamma_{s}$ of $N_{G}(M)$ such that

$(i-1)$ $\gamma_{s}$ is of odd order,

(i-2) $\gamma_{s}$ : $\pi_{s}\rightarrow\lambda_{s}\rightarrow\lambda_{s}\pi_{s}$ ,

$(i-3)$ $[\gamma_{s}, \pi_{t}]=[\gamma_{s}, \lambda_{t}]=[\gamma_{s}, \pi_{t}^{\prime}]=1(s\neq t)$ ,

(ii) $N_{G}(M)/C_{G}(M)\cong \mathfrak{S}_{3}$ ? $\mathfrak{S}_{n}$ and $N_{H}(M)/C_{H}(M)\cong Z_{2}$ ? $\mathfrak{S}_{n}$ ,

$or$

Case II (i) there exist $n$ elements $\gamma_{s}(1\leqq s\leqq n)$ of $N_{G}(M)$ such that

$(i-1)$ $\gamma_{s}$ is of odd order,

$(i-2)$ $\gamma_{s}$ : $\pi_{s}\rightarrow\lambda_{s}\rightarrow\lambda_{s}\pi_{s}$ ,

$(i-3)$ $[\gamma_{s}, \pi_{t}]=[\gamma_{s}, \lambda_{t}\pi_{s}]=[\gamma_{s}, \pi_{t}^{\prime}]=1(s\neq t)$ ,

and
(ii) $N_{G}(M)/C_{G}(M)\cong \mathfrak{S}_{2n+1}$ and $N_{H}(M)/C_{H}(M)\cong \mathfrak{S}_{2n}$ .

(3) If $N_{G}(S)>N_{H}(S)$ and $N_{G}(M)>N_{H}(M),$ $S$ and $M$ satisfy $(\Pi)$ a $7?d(\Lambda)$

respectively, and so (1) and (2) hold.

\S 5. The fusion under the additional assumption to $M$.
(5.1) In the rest of the present paper, besides the fundamental assumption

to $G$ in (1.1), we shall assume that

(i) $N_{H}(M)/C_{H}(M)\cong \mathfrak{S}_{2n}$

and

(ii) $M$ satisfies the condition $(\Lambda)$ in (4.6).

We remark that, if $N_{H}(M)<N_{G}(M)$ , (ii) is an immediate consequence of (4.4)

applied to $M$ in place of $S$ and we must have case II for the fusion in $G$ of
$M$, and $N_{G}(M)/C_{G}(M)\cong \mathfrak{S}_{2n\dashv-1}$ by (4.5). If we choose $M$ as in \S 1, all examples

in \S 1 satisfy the conditions (i) and (ii).
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Since $M$ is self-centralizing normal subgroup of a 2-Sylow subgroup of $H$ ,

we have $C_{H}(M)=M\times F$ and $|F|=odd$ . Put $\overline{W}=N_{H}(M)/F$ and, for a subset
$X$ of $W=N_{H}(M)$ , denote by $\overline{X}$ the image of $X$ by the canonical homomorphism

from $W$ onto $\overline{W}$.
LEMMA. There exists a complement $\overline{K}$ of $\overline{W}$ over $\overline{M}$ and $n-1$ involutions

$\overline{\sigma}_{i}^{\prime}(1\leqq i\leqq n-1)$ of $\overline{K}$ such that { $\overline{\pi}\{,\overline{\sigma}_{1}^{\prime}, \cdots , \overline{\sigma}_{n-1}^{\prime},\overline{\pi}_{n}^{\prime}\}$ is a set of canonical genera-

tors of $\overline{K}$.
PROOF. By a theorem of Gasch\"utz [3], there is a complement $\overline{K}$ of $\overline{W}$

over $\overline{M}$. Then the above assumptions (i) and (ii) to $M$ yield that there are
$2n-1$ involutions $\{\overline{y}_{1},\overline{z}_{1},\overline{y}_{2}, \cdots , \overline{z}_{n-1},\overline{y}_{n}\}$ of $\overline{K}$ such that

$\overline{\lambda}_{i^{i}}^{\overline{y}}=\overline{\lambda}_{i}\overline{\pi}_{i},$ $[\overline{\lambda}_{j},\overline{y}_{i}]=[\overline{\lambda}_{j}\overline{\pi}_{j},\overline{y}_{i}]=1$ $(j\neq i)$

$(\overline{\lambda}_{i}\overline{\pi}_{i})^{\acute{z}_{i}}=\overline{\lambda}_{i+1},$ $[\overline{\lambda}_{j},\overline{z}_{i}]=[\overline{\text{{\it \‘{A}}}}_{k}\overline{\pi}_{k},\overline{z}_{i}]=1$ $(j\neq i+1, k\neq i)$ .

From the action of $\overline{\pi}_{i}^{\prime}$ on $\overline{M}$, we see that $\overline{y}_{i}\equiv\overline{\pi}_{i}^{\prime}mod \overline{M}$. Now we claim that
$\overline{y}_{i}=\overline{\pi}_{i}^{\prime}$ for any $i(1\leqq i\leqq n)$ or $\overline{y}_{i}=\overline{\pi}_{i}^{\prime}\overline{\alpha}_{n}$ for any $i(1\leqq i\leqq n)$ . In fact as is

easily seen from $($1.2; $(v)),\overline{N}_{1}=\langle\overline{y}_{i},\overline{\pi}_{i},\overline{\lambda}_{i}, (\overline{y}_{j}\overline{y}_{j+1})^{z_{j}}-|1\leqq i\leqq n, 1\leqq 1\leqq n-1\rangle$ is

conjugate in $\overline{W}$ to $\overline{N}$ and the cardinality of the orbit containing $\overline{y}_{i}$ under the

action on $\langle\overline{y}_{i},\overline{\pi}_{i}|1\leqq i\leqq n\rangle$ of $N_{1}$ is $2n$ . Considering the orbit under the action

on $S$ of $N$ (cf. (2.1)) and using the fact that $\overline{y}_{i}\equiv\overline{\pi}_{i}^{\prime}mod \overline{M}$, it follows that
$\overline{y}_{i}=\overline{\pi}_{i}^{\prime}$ or $\overline{\pi}_{i}^{\prime}\overline{\alpha}_{n}(1\leqq i\leqq n)$ . Since $\overline{y}_{1},\overline{y}_{2}$ , $\cdot$ .. , $\overline{y}_{n}$ are conjugate in $\overline{W}$, we must

have $\overline{y}_{i}=\overline{\pi}_{i}^{\prime}$ for any $i(1\leqq i\leqq n)$ or $\overline{y}_{i}=\overline{\pi}_{\ell}^{\prime}\overline{\alpha}_{n}(1\leqq i\leqq n)$ . If we have the former
case, our lemma holds, while if we have the latter case, the subgroup $\langle\overline{y}_{1}\overline{\alpha}_{n}$ ,

$\overline{z}_{1}\overline{\alpha}_{n},$ $\cdots$ , $\overline{z}_{n-1}\overline{\alpha}_{n},\overline{y}_{n}\overline{\alpha}_{n}\rangle$ has the required properties.

(5.2) LEMMA. The representatives of conjugacy classes of involutions of
$N_{H}(M)$ are $\pi_{k,l}(0<k+l\leqq n)$ and $\tau_{k,l}(0\leqq k+l\leqq n-1)$ , where $\tau_{k,l}’ s$ are elements

defined in (3.1).

PROOF. We note that two involutions $x,$ $y$ of $W$ are conjugate in $W$ if

and only if $\overline{x}$ and $\overline{y}$ are conjugate in $\overline{W}$ because $F$ is of odd order. Then our
lemma follows from Lemma in (5.1) and Remark in $($1.2; $(v))$ .

(5.3) LEMMA. If $G$ has no normal subgroup of index 2, every involution

of $G$ must be conjugate in $G$ to an element of $S$ .

PROOF. It is sufficient to see that every involution of $N_{H}(M)$ fuses to an
element of $S$ , because $N_{H}(M)$ contains a 2-Sylow subgroup of $G$ . From the

structure of $N_{H}(M)$ , it tollows that there is a subgroup $K_{0}$ of $N_{H}(M)$ of index

2 such that $K_{0}$ contains $S$ but does not contain $\tau_{k,l}’ s$ . By (5.2), every involu-
tion of $K_{0}$ must be conjugate in $N_{H}(M)$ to an element of $S$ . Further, since $G$

has no normal subgroup of index 2, a lemma of J. G. Thompson yields that

$\tau_{k,l}$ is conjugate to an element of $K_{0}$ , and so one of $S$ . This completes the

proof of our lemma.

(5.4) LEMMA. Assume that $N_{G}(M)>N_{H}(M)$ and $S$ satisfies the condition
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$(\Pi)$ in (4.6). Then we have $\tau_{k,l}\sim\pi_{k,l+1}$ in $G$ .
PROOF. Let $\gamma_{n}$ be as in (4.11). Then we have $\tau_{\lambda}^{\gamma_{n_{l}}^{-1}},=\pi_{k,l}\pi_{n}$ . Since $\pi_{k,l}\pi_{n}$

$\sim\pi_{k,l-\dagger 1}$ in $N$, we get $\tau_{k,l}\sim\pi_{k,l+1}$ in $G$ .

\S 6. The degenerate case $N_{G}(S)=N_{H}(S)$ .
(6.1) In this section, we shall assume the conditions (i) and (ii) in (5.1)

for $M$.
(6.2) LEMMA. Assume that $N_{H}(M)=N_{G}(M)$ and $N_{H}(S)=N_{G}(S)$ . Then we

have $G=HO(G)$ , where $O(G)$ denotes the largest normal subgroup of $G$ of odd

order. In particular, $G$ is not simple.

PROOF. We shall show that $\alpha_{n}$ is not conjugate in $G$ to any element of
$H$ other than $\alpha_{n}$ . By (5.2), we know that the representatives of conjugacy

classes of involutions in $H$ are $\pi_{k,l}(0<k+l\leqq n)$ and $\tau_{k,l}(0\leqq k+l\leqq n-1)$ .
Then, by the assumption $N_{G}(S)=N_{H}(S)$ , we have $\pi_{k,l^{\prime}}\star\alpha_{n}$ . Hence, by (3.4:

(iii)) it is sufficient to see that $\tau_{k,0}\theta\alpha_{n}$ and $\tau_{k,n-1- k^{r}}\star\alpha_{n}$ in $G$ . We shall prove

this by induction on $k$ . By (3.6) and the assumption $N_{H}(M)=N_{G}(M)$ , we have

$T_{0,0}2^{\prime}\alpha_{n}$ and $\tau_{0,n-1}\not\simeq!\alpha_{n}$ in $G$ . This implies that our assertion is true for $k=0$ .
Assume by the inductive hypothesis that, if $0\leqq h<k,$ $\tau_{h,0^{\prime}}\star\alpha_{n}$ and $T_{h,n-1-h}\eta^{6}\alpha_{n}$

in $G$ . Suppose by way of contradiction that $\tau_{k,n- 1- k}\sim\alpha_{n}$ in $G$ . Then we can
construct $\overline{W}_{k,n- 1- k},$ $T_{k,n- 1- k}$ and $W_{k,n- 1- k}$ for an element $\tau_{k,n- 1- k}$ as in (3.3). Put
$\overline{W}_{k,n-1-k}=\overline{W},$ $T_{k,n-1-k}=T$ and $W_{k,n-1-k}=W$. Then we have $ Z(\overline{W})=S_{1}\times S_{2}\times$

... $\times S_{k}\times\langle\pi_{k+1}, \cdots \pi_{n-1}\rangle\times\langle\pi_{n}, \lambda_{n}\rangle$ . From the assumption of our lemma, induc-

tive hypothesis and (3.4; (iii)), it follows that the totality of elements in $Z(\overline{W})$

of length $n$ is $\alpha_{r\iota}$ and $\tau_{k,n-1-k}x$ , where $x$ is an arbitrary element in $\langle\pi_{1},$
$\pi_{2}$ ,

... , $\pi_{k}\rangle$ $\times\langle\pi_{n}\rangle$ . (Remark that, if $\tau_{k,n-1-k}\sim\alpha_{n}$ in $G$ , we have $\tau_{k,0}\#\alpha_{n}$ in $G$ .
Otherwise, $Z(J(W_{k,0}))$ would have two elements $\tau_{k,n-1- k}$ and $\tau_{k,0}$ of length $n.$)

Denote by $X$ the group generated by $\alpha_{n}$ and $\tau_{k,n-1-k}x’ s$ . Then we have
$ X=\langle\tau_{k,n-1-k}, \pi_{1}, \pi_{2}, \cdots , \pi_{k}, \pi_{k+1} \pi_{n-1}, \pi_{n}\rangle$ . Since $W\triangleright Z(\overline{W})$ by $(3.3: (iii)^{\prime/})$ , we
get $W\triangleright X$. The totality of elements in $X$ of length 1 is $\{\pi_{1}, \pi_{2}, \cdot.. , \pi_{k}, \pi_{n}\}$

or $\{\pi_{1}, \pi_{2}, \cdot.. , \pi_{n}\}$ according to whether $k<n-2$ or $k\geqq n-2$ . In the second
case, $ W\triangleright\langle\pi_{1}, \pi_{2}, \cdot.. , \pi_{n}\rangle$ and so $[W, a.]=1$ . In the former case, we have
$ W\triangleright\langle\pi_{1}, \pi_{2}, \pi_{k}, \pi_{n}\rangle$ and so $[W, \alpha_{n}]=1$ , because $[W, \pi_{k+1}\cdots\pi_{n-1}]=1$ by (3.3:

$(ii)^{\prime/})$ . Then $Z(J(T))$ has two elements $\tau_{k,n-1-k}$ and $\alpha_{n}$ of length $n$ , which is
impossible. Thus we have proved that $\alpha_{n^{\prime}}\rho_{T_{k,n-1-k}}$ in $G$ . Secondly suppose
that $\alpha_{n}\sim\tau_{k,0}$ in $G$ . We have $ Z(\overline{W}_{k,0})=S_{1}\times\cdots\times S_{k}\times\langle\pi_{k+1}, \cdots , \pi_{n-1}\rangle\times\langle\pi_{n}, \lambda_{n}\rangle$

and the totality of elements in $Z(\overline{W}_{k,0})$ of length $n$ is $\alpha_{n}$ and $\tau_{k,0}x$ , where $x$

is an arbitrary element in $\langle\pi_{1}, \cdots , \pi_{k}\rangle\times\langle\pi_{n}\rangle$ . If we denote by $Y$ the group
generated by them, we have $ Y=\langle\tau_{k,0}, \pi_{1}, \cdot.. , \pi_{k}, \pi_{k+1}\cdots\pi_{n-1}, \pi_{n}\rangle$ . By the same
argument as above, we get $Z(W_{k,0})\ni\alpha_{n}$ and so $\alpha_{n}\in Z(J(T_{k,0}))$ , which is im-
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possible because $\alpha_{n},$ $\tau_{k,0}\in Z(J(T_{k,0}))$ and they are of length $n$ . Thus we have

proved that $\alpha_{n}$ is not conjugate in $G$ to any element of $H$ other than $\alpha_{n}$ .
Then our lemma foliows from Glauberman’s theorem [4] and Frattini argument.

(6.3) LEMMA. Assume that $H$ has a normal subgroup of index 2 and $S$

satisfies the condition $(\Pi)$ in (4.6). Then if $N_{G}(S)=N_{H}(S),$ $G$ has a normal

subgroup of index 2.
PROOF. $lfN_{G}(M)=N_{H}(M)$ , our lemma follows from (6.2). Assume that

$N_{G}(M)>N_{H}(M)$ . Put $ D_{1}=MP\langle\pi_{1}^{\prime}\pi_{2}^{\prime}, \pi_{1}^{\prime}\pi_{3}^{\prime}, \cdots , \pi_{1}^{\prime}\pi_{n}^{\prime}\rangle$ and then we have $ N=D_{1}\langle\pi_{1}^{\prime}\rangle$ .
Then $N$ contains a 2-Sylow subgroup of $G$ by $($1.1; $(ii))$ and $[N:D_{1}]=2$ . From
(5.2) and (5.4) it follows that every involution of $D_{1}$ is conjugate in $G$ to an
element $S\cap D_{1}$ . If $G$ has no normal subgroup of index 2, a lemma of Thomp-

son yields that $\pi_{1}^{f}$ must fuse to an element of $D_{1}$ and so one of $S\cap D_{1}$ . Since
$\pi_{1}^{\prime}$ is not conjugate in $N_{H}(S)$ to any element of $S\cap D_{1}$ by the assumption of
our lemma, (2.6) yields that $N_{H}(S)<N_{G}(S)$ . This is a contradiction.

(6.4) THEOREM. Assume that $M$ satisfies the conditions (i) and (ii) in (5.1),

and, $S$ and $H$ satisfy the same assumptions as (6.3). If $G$ has no normal sub-
group of index 2, the followings hold;

(i) $N_{H}(S)<N_{G}(S)$ and $N_{H}(M)<N_{G}(M)$ ,

(ii) $G$ has exactly $n$ classes of involutions with the representatives $\alpha_{1},$ $\alpha_{2}$ ,
... , $\alpha_{n}$ , and

(iii) $G$ has two possibilities for the fusion of involutions.
PROOF. By (6.3), we have $N_{H}(S)<N_{G}(S)$ . Then (4.2) yields that each

element of $S$ must be conjugate in $G$ to one of $\alpha_{1},$ $\alpha_{2}$ , $\cdot$ .. , $\alpha_{n}$ . From (5.3) it
follows that $\lambda_{n}$ must fuse in $G$ to one of $\alpha_{k}’ s(1\leqq k\leqq n)$ and so $\lambda_{n}\sim\alpha_{1}$ in $G$

by (3.7). By (3.5) and (2.6), we have $N_{H}(M)<N_{G}(M)$ . Then (5.3), (4.2) and
(4.5) yield that $G$ has exactly $n$ classes of involutions and two possibilities for
the fusion of involutions.

\S 7. Applications.

(7.1) The Alternating Case. Let $\alpha_{n}$ be an involution of $\mathfrak{A}_{4n+r}$ ($r=2$ or 3)

which has a cycle decomposition

$(1, 2)(3, 4)$ $(4n-1,4n)$ ,

and $\lambda_{k},$ $\pi_{k}^{\prime},$

$\pi_{k},$
$H,$ $S$ and $M$ be as in (1.2: (ii)). Let $G$ be a finite group satisfy-

ing the following conditions:
(i) $G$ has no normal subgroup of index 2, and

(ii) $G$ contains an involution $\tilde{\alpha}_{n}$ in the center of a 2-Sylow subgroup of $G$

whose centralizer $\tilde{H}$ is isomorphic to $H$.
For simplicity, we identify elements and subgroups of $H$ with the correspond-

ing ones of $\tilde{H}$. Then we have the following
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THEOREM A. $G$ has exactly $n$ classes of involutions with the representatives
$\alpha_{1},$ $\alpha_{2},$

$\cdots$ , $\alpha_{n}$ . More precisely, there exist elements $\beta_{s}$ and $\gamma_{s}(1\leqq s\leqq n)$ of odd

order with the following properties;

(i) $\beta_{S}\in N_{G}(S)$ and $\gamma_{S}\in N_{G}(M)$ ,

(ii) $\beta_{s}$ ; $\pi_{s}\rightarrow\pi_{s}^{\prime}\rightarrow\pi_{s}\pi_{s}^{\prime}$ and $[\beta_{s}, \pi_{t}]=[\beta_{s}, \pi_{t}^{\prime}]=[\beta_{s}, \lambda_{t}]=1(s\neq t)$ , and
(iii) $\gamma_{s}$ : $\pi_{s}\rightarrow\lambda_{s}\rightarrow\lambda_{s}\pi_{s},$ $[\gamma_{s}, \pi_{t}]=[\gamma_{s}, \pi_{s}\lambda_{l}]=1(s\neq t)$ and

$[\gamma_{s}, \pi_{t}^{\prime}]=1$ ( $1\leqq s,$ $t\leqq n$ and $s\neq t$).

In particular, we have

(iv) $\pi_{s,t}\sim\alpha_{s+t}$ ,

(v) $\lambda_{2S-1,t}\sim\lambda_{2S,t}\sim\alpha_{s+l}$ , and
(vi) $\tau_{s,t}\sim\alpha_{s+l+1}$ ,

where $\pi_{s,t},$
$\lambda_{s,t}$ and $\tau_{s,l}$ are involutions defined in (3.1).

PROOF. $G$ satisfies all assumptions of Theorem (6.4) (cf. (1.3)). Hence $G$

has exactly $n$ classes of involutions. Further we have $N_{H}(S)<N_{G}(S)$ . Since
$N_{H}(S)/C_{H}(S)\cong Z_{2}$ ? $\mathfrak{S}_{n}$ (cf. (1.3)), we must have case I fcr the fusion in $G$ of $S$

by (4.5). Then our theorem follows from (4.2), (4.10), (4.11) and (5.4).

(7.2) The Orthogonal Case. Let $\Omega_{2n+2}(\epsilon, q)(q^{n+1}\equiv-\epsilon mod 4$ and $q\equiv\pm 3$

$mod 8)$ be the orthogonal commutator group with the underlying quadratic

form $\sum_{\iota=1}^{2n}x_{i}^{2}+x_{2n+1}^{2}+ax_{2n+2}^{2}$ , where $a$ is a nonsquare element of the finite field of

$q$ elements. Put $\alpha_{n}=\left(-I_{zn} & I_{2}\right)$ , where $I_{k}=thek\times k$ unit matrix. Then $\alpha_{n}$

is an involution in the center of 2-Sylow subgroup of $\Omega_{2n+2}(\epsilon, q)$ . By $H$ we
denote the centralizer in $\Omega_{2n+2}(\epsilon, q)$ of $\alpha_{n}$ . Let $\lambda_{k},$

$\pi_{k},$
$\pi_{k}^{\prime}$ , $S$ and $M$ be as in

(1.2: (iv)) and (1.1).

Let $G$ be a finite group satisfying the following conditions;

(i) $G$ has no normal subgroup of index 2, and
(ii) $G$ contains an involution $\tilde{\alpha}_{n}$ in the center of a 2-Sylow subgroup of $G$

whose centralizer $\tilde{H}$ is isomorphic to $H$.
We identify elements and subgroups of $H$ with the corresponding elements of
$\tilde{H}$. Then we have the following

THEOREM B. $G$ has exactly $n$ classes of involutions with representatives
$\alpha_{1},$ $\alpha_{2},$

$\cdots$ , $\alpha_{n}$ . More precisely, lhere exist elements $\beta_{s}$ and $\gamma_{s}(1\leqq s\leqq n)$ of odd

order such that
(i) $\beta_{S}\in N_{G}(S)$ and $\gamma_{S}\in N_{G}(M)$ ,

(ii) $\beta_{s}$ ; $\pi_{s}\rightarrow\pi_{s}^{\prime}\rightarrow\pi_{s}\pi_{s}^{\prime},$ $[\beta_{s}, \pi_{t}]=[\beta_{s}, \pi_{s}\pi_{\iota}^{\prime}]=1$ and $[\beta_{s}, \lambda_{t}]=1$

$(1 \leqq s, t\leqq n, s\neq t)$ , and
(iii) $\gamma_{s}$

; $\pi_{s}\rightarrow\lambda_{s}\rightarrow\pi_{s}\lambda_{s},$ $[\gamma_{s}, \pi_{t}]=[\gamma_{s}, \pi_{s}\lambda_{t}]=1$ and $[\gamma_{s}, \pi_{t}^{\prime}]=1$

$(1\leqq s, t\leqq n, s\neq t)$ .
In particular, we have

(iv) $\pi_{2S-1,t}\sim\pi_{2S,t}\sim\alpha_{s+t}$,
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(v) $\lambda_{2S-1,t}\sim\lambda_{2S,t}\sim\alpha_{S+t}$ , and

(vi) $\tau_{2s-1,t}\sim\tau_{2s,t}\sim\alpha_{s+t+1}$ .
PROOF. $G$ satisfies all assumptions of Theorem (6.4) (cf. (1.3)). Hence $G$

has $n$ classes of involutions with the representatives $\alpha_{1},$
$\cdots$ , $\alpha_{n}$ . Further we

have $N_{H}(S)<N_{G}(S)$ and $N_{H}(M)<N_{G}(M)$ . Since $N_{H}(S)/C_{H}(S)\cong N_{H}(M)/C_{H}(M)$

$\cong \mathfrak{S}_{2n}$ (cf. (1.3)), we must have case II for the fusion in $G$ of $S$ and $M$ by

(4.5). Then our theorem follows from (4.2), (4.11) and (5.4).

College of General Education,
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