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§0. Introduction.

Let G be a finite group with a 2-Sylow subgroup isomorphic to that of
the symmetric group of degree 4n. The purpose of the present paper is to
make some remarks on the fusion of involutions of &, which are useful for
the investigations of certain finite simple groups, especially the alternating
group of degree 4n+2 or 4n+3 and the orthogonal commutator groups
2402508, @) (¢"'= —emod 4 and ¢ = -+3 mod &)*.

The main results are A and B in §7. We note that
the Thompson subgroup of a 2-Sylow subgroup of G plays the important role
in the discussions in § 2~§6. These can be regarded as a generalization of a
part of [6] Moreover, as an application of A, the author has ob-
tained a characterization of the alternating groups of degrees 4n-+2 and 4n4-3
in terms of the centralizer of an involution (1, 2) (3, 4)--- (4n—1, 4n). This
will be published in a subsequent paper. Also H. Yamaki [9] has treated
such characterizations of U, (m=12, 13, 14 and 15), though, for m =12 and
13, A can not be applied and an additional condition is necessary on
account of the existence of the finite simple group Sp,(2).

Notations and Terminology.

JXD The Thompson subgroup of a group X (cf. (8

Z(X) the center of a group X

X/ the commutator subgroup of X

XY a wreath product of a group X by a permutation group Y
x~3yin X  x is conjugate to y in a group X

N lyx

X:y—z Vi=1z

Lx, v] Ty lxy

1) For the notations of orthogonal groups, see [1] and [T0]. Note that if gr+:
= —s mod 4, Q,,+,(c, ¢) has the trivial center.

2) Recently, the slightly different definition of J(X) from that of [8] is used, but
for groups treated in the present paper, both definitions are the same.
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<D a group generated by --- subject to the relations --..
&, the symmetric group of degree n

A, the alternating group of degree n

Z, a cyclic group of order n.

Let X be a group isomorphic to &,. X is generated by /—1 elements
X1, Xy v, X;—; subject to the relations;
xi= e = xd = () = Ggr) =1 =4, 7, k<1-1 and |j—k|>D".
We call an ordered set of such generators of X a set of canonical generators
of X.

§1. The symmetric groups and the orthogonal groups.

(1.1) Let G be a finite group satisfying the following conditions:

() G has a subgroup N, which is isomorphic to a wreath product of a
dihedral group of order 8 by the symmetric group of degree n, and

(1) a 2-Sviow subgroup of N is that of G.
Then N has a set of generators A, w}, 7, and o, l=k<n and 1 =i=n-1)
subject to the following relations:

t=ni =) =1 = (A7t )?,
( ) [<’21m 751/c>: <;(h: TC;L>]:1 (kih):
*
gl =0, = (@0 = (@0 =1 (=i,j, k=n-, [j—k|>1),
2;” — li—H’ ﬂ-;ﬂi = ng—H and [Gir Zk] - [Oi) n'.l,cj :1 (k :# i! 1’+1) .
Put
J=h XX Xy Je=C{lw ),
S:SIXSQX'XSn Sk:<7‘ck17r},c>l
M:MIXMZX“'Mn Mlc:<7rk52k>:
P= <01: Gos s Opmy )y
Ay =TTy *** Ty
and

H: CG(an) .

Then J is normal in N. N is a semidirect product of P and J, and is a sub-
group of H. [J is a direct product of n copies J, (1 =<k=<n) of a dihedral
group of order & S and M are elementary abelian subgroups of order 2°*. P
is isomorphic to the symmetric group of degree n.

In this section, we shall give some examples which may be useful for the

3) Cf. [2; p. 287].
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understanding of the discussions in §2~§7.
(1.2) Examples.
(i) The Symmetric Groups: G=©,,. Let =, nt, 4, and o, be involutions

in &,, as follows:
7, = (4k—3, Ak—2)(4k—1, 4k),
= (Ak—3, 4k —1)(4k—2, 4k),
A, = (4k—3, 4k—2),

and
0, =43, 4i+D41--2, 4i+-2)(4i—1, 4i+3)(di, 41+4).

Then these involutions satisfy the conditions ().
(ii) The Alternating Group: G =N, (r=20r 3. Put 1,=@4k—-3, 4k-2)
(4n-+1, 4n+2) and let m,, n; and o; be the same as (i). Then these involutions

satisfy the conditions ().
(iiiy The Orthogonal Group: G=0,,(¢,q) where ¢"=¢ mod4 and q= +3

2
mod 8. Let Enx% be the underlying quadratic form of the orthogonal group
=1

0,.(¢’, ). 8'By [, we denote the kX k unit matrix. Put

IZ(’G-I)

o
[Z(n_k)
I?Ck”‘l)
= ( U v=(; b
IZ(?’&—’G)
Lt sy
) vt
IZ(H—/C)
o, =1, x Py,

where P; denotes the n X n permutation matrix corresponding to the permuta-
tion (7, i+1) and [, X P; denotes the Kronecker product of marices.
(iv) The Orthogonal Commutator Groups: G =2,,..(¢, ¢), where ¢"*' = —¢
mod 4 and ¢=+3mod8. Let a be a nonsquare element of the finite field of
2n
q elements and >} x?+x},,,+axi,.. be the underlying quadratic form of the
=1
group 2,,..(e, ¢). There is an injective isomorphism of 0,,(¢, ¢) with the
2n
quadratic form 3 x} into the group £,,..(¢, ¢) (cf. [10, p. 4197). In the present
i=1

case, let 7, 7, A, and o; be the image by this isomorphism of the correspond-
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ing elements in 0,,(¢’, ¢).

(v) The Wreath Products: G=2,!,, Let X, bean elementary abelian
group of order 2*® with ¢ set {x, x,, ---, x,,} of generators and Y, be a group
isomorphic to &,, with {y,, z,, ¥, -+, Z,_1, ¥»} as a set of canonical generators
of V,. Define the action on X, of YV, as follows;

XY= xy [ pd =1 A=Zisn, j#2i-1, 2)
X8 == Xyyn, (X5 21 =1 A=ign—-1, j+2, 2i+1).
Construct a semidirect product G=X,, - Y,. Then G is isomorphic to a wreath
product Z,? S,,.
Put

A= Xoi-1s

A
7ri ”“yv, y
Ty = Xgi-1%3¢»

;= (YY)t
Then these involutions satisfy the conditions (x).

REMARK. In §5, we shall use the following fact: the representatives of
conjugacy classes of involutions of X, Y, are m} - TfMiy - Tpee (O < EHIZ 1)
and e T Ty o Tpad, O=Zk4H{<n—1) (cf. W. Specht [T]). This can be
proved directly without difficulties.

(1.3) In the above examples, we can verify the following statements with-
out difficulty. The verifications are left to the reader,

(i) A 2-Sylow subgroup of N is that of G,

(i1) J is generated by all abelian subgroups of N of order 2°* and so, it
is the Thompson subgroup of a 2-Sylow subgroup of G,

(ili) e, is an involution in the center of a 2-Sylow subgroup of G,

(iv) every element of Nyz(S) induces a permutation on the set {z}, =iz,
T, Wy, -+, 7y, mhw,} which consists of members in a basis of S, and so does
one of Ny(Al) on the set {A,, 4,7, Ay, ATy, =, Ay, AnTy,}, and

(v) the structure of the normalizers of S and M are given in the follow-
ing table:

O NSCKS) | NG | No(SCoS) | No(MY/CoM)

G 226, G, &6, S,
()27;(8/’ Q) W ‘" 7 élﬂﬂ - @Eﬂ ) @.Zn B @211/
Ape | Z28, 3., 828, | Gun
L | S G,  Gun | G
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§2. Elementary abelian subgroups of G.

(2.1) Throughout the rest of the present paper, G denoles a finite group
salisfying the conditions (i) and (ii) in (1.1). Also all notations introduced in
(1.1) will be preserved in the same meanings as there.

We note that J is the Thompson subgroup of a 2-Sylow subgroup of G,
all elementary abelian subgroups of order 2*" of J are normal in J, and, S and
M are normal in N.

J, S and M play the important roles in the discussions in § 2~§6.

(2.2) LEMMA. Let D be a group isomorphic to a divect product of n copies
D, 1sisn) of a dihedral group of order 2™ (m=2). Put Z(D,)=<{z,.
Define Aut(D = {0 & Aut(D)|zf =2, (1 =1 = n)}, where Aut(D) denotes the
automorphism group of D. Then we have (i) every element of Aut (D) induces a
permutation on the set {z,, z,, -, z,} and (i) Auty (D) is a 2-group.

PrOOF. Let a, and b; be generators of D, subject to the relations:
a=0=(bh)"=1 Igi<n). Put ¢;—ab,, From a theorem of Remak-
Schmidt [5, p. 1307, it follows that, for ¢ € Aut (), there exists an element r
of ©, such that D¢ and D.,, are centrally isomorphic. This implies that
(@68 = gyt and (b,cld)” = byu;, where s;=1¢; mod 2 and wu;, uj= Z(D). Then
we get 27 =2z, by taking the product of both equalities and doing its 2™-'-
powers. This proves (i). By counting all the possible choices of s;, f;, u, and
1}, we see that Auty(D) is a Z-group.

(2.3) LEMMA. Ng(J)=NCq(]).

PrOOF. Put Ny={o& Ny(N|nf==m, 1 =:=n)}. Then we have N,2/C, ().
From (2.2), it follows that N ,(/)=PN, P~ N,=1 and N,/JC(]) is a 2-group.
By the assumption (1.1: (ii)), we must have N,=JCi(J). Hence we get
Ng(J) = NCo( )

(24) LEMMA. Ng(S) No(M)2 Ng(J)-

PrOOF. This is obvious, because S and M are normal in N and Ng(J)

(2.5) LEMMA. S and M are weakly closed in a 2-Sylow subgroup of G with
respect to G.

PrOOF. Let D0 be a 2-Sylow subgroup of N. Suppose that S*C D for
some x<= (. Then we have S*<|J. Hence we get Ny(S)D/, /' and we can
find an element y of NgS) such that J¥=/%"". Since N4 S)2 N, J) by (2.4),
we get Ng(S) > yx and so S=SY"=S5” Thus we have proved that S is weakly
closed in D with respect to (. Similarly we can prove that M is weakly
closed in D.

(2.6) LEMMA. If any two elements of S (resp. M) are conjugate in G, they
are conjugate in Ng(S) (resp. No(M)). If X is a 2-subgroup of G containing S
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(resp. M), X normalizes S (resp. M).
Proor. This is an immediate consequence of (2.5).

§ 3. General remarks on the fusion of involutions of .

(3.1) DEeFINITION. We define some elements of G as follows;
Oy = T 7y =+ T A<k<n)

T = TG = T Wiy Ty
O<k+l<n)

ch,L == 3 Ay ot ApTay - Taa
Tpg ™= TS o T Ty~ Fpprhn O=k+I=n-1).

We note that =, ;s (resp. 4;,’s) are representatives of the orbits of elements in
S (resp. M) under the action on S (resp. M) of N.

Throughout the present paper, we shall assume n>2, The special case
n=2 was treated in [6].

(3.2) LEMMA. Any two elements of «y, a,, ---, «, are not conjugate in G.

Proor. By the definition of N and (2.3), any two of a,’s are not conjugate
in Ng(J). On the other hand, if two elements of Z(/) are conjugate in G,
they are conjugate in Ng(J) since J is weakly closed in a 2-Sylow subgroup
of . From this, our lemma follows.

(3.3) For convenience, we shall introduce the following definition. If an
involution x of G is conjugate to an involution of Z(J), we say that x is of
positive length. Then it follows from the structure of N that x is conjugate
to one of ay, a,, -, «,. I x~a; in G, we say that x is of length k. Note
that, in Z(J), there is exactly one element of length n, namely «,. Further
we introduce some notations frequently used in subsequent lemmas.

Assume that z,, is of positive length. Put

Uk,a:CJ(ﬂ'k,l):SzLX e WKSE X Jrar X X

Then we have Z(U, ) =S, XS, X -+ XSy % {Tpp, —+» Ty @and Uhy = {Taan, v 5 Tpde
Denote by P,, a 2-Sylow subgroup of Cu(x,,;) with ﬁk,LCP,G:[CCG(ﬂk]E). Since
7, 18 of positive length, P, contains a subgroup conjugate to J, which is the
Thompson subgroup J(P.; of P, Since [7“ is generated by elementary
abelian subgroups of order 2**, we have U’,MC](P,C,[). Put U, =<, J(P:)>-
Then we have

@) Z((Prp) 2 Trps Tirny s Ty

(1) ZWUxp) D Tz = 5 Ty and

(i) U, normalizes ljk,l, Z(Uklz), L—];.,l and all elementary abelian subgroups

of ﬁk,, of order 2%,

In fact, since J/ normalizes all elementary abelian subgroups of J of order 22®
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and J\J(Py) 2 Uy Uy, normalizes all such subgroups of U, Since Uy, is
generated by elementary abelian subgroups of order 2*%, we get U,,D> U,M
and so U,,> Z(0,,), U}, because Z(U, ) and U}, are characteristic subgroups
of U,, This proves (iii). (i) follows from the fact that Z(J(P:))=J(Ps.)
and U}, C J(P.))'. Then (i) is obvious. Similarly, under the assumption that
A, 18 of positive length, we define the followings:

Vk,l = CJ(Zk,l)’ _

L, =2a 2-Sylow subgroup of Cu(4;,) with V, ;< L,; € Cs(4s,0),

Vi = I JLg,1)>-

Then we have
D ZU(Li,) D Aes Tpgar =0 5 Ty
1) Z(Vie,) 2 Teays =5 Ty and
(iii)) V,, normalizes T7,m, Z Vk,l) and all elementary abelian subgroups of
V.. of order 2.
Finally, under the assumption that z,, is of positive length, we construct the
followings:

Wk,l = CJ(TFC,L)’

T:.=a 2-Sylow subgroup of Cy(zy) with Wy, S Th, S Colzr )

Wk,l =< ](Tjs,z>>-

Then we have
@ ZUJT5%,) 3 Aeys Tors =0 s Trmrs
(A1) Z(Wi ) D Tpprs =5 Tymyy and
(i) Wy, normalizes W,, Z(W,,)), W}, and all elementary abelian sub-
groups of W, , of order 2.

(34) LEMMA. () mp ~a, in GI1=0 or k+l=n, (i) 4, ~a, in GDI=0
or k+l=n and (iii) v, ~a, in G{=0 or k+[=n—1.

PrROOF. Suppose that 7,,~a, in G. Then we can construct P,, as in
(3.3). By 3.3; (i)), we have Z(J(Pr) 2 7xp Tpaps > Ty Assume by way of
contradiction that /=1 and n> k4l Then, since =, ,~x; 77, in G and
Ty ToaTpeaTn € Z(J(Py)), Z(J(Py;)) has two elements of length n, which is
impossible because Z(/) has only one element of length n. This proves (i).
Similarly, by using L, and T, in (3.3), we obtain (ii) and (iii).

(3.5 LEMMA. () a,~m,,in Goa,~m,, in G and (i) a;~1,, in Go
y~ Ay oy in G

PrROOF. Suppose that a,~m,, in G. We can construct P,, as in (3.3).
Then we have Z(J(P,,)) =<x], &y ---, @, ). Since there are exactly n elements
of length 1 in Z(j(P,,) which must be xf{, 7, ---, 7,, we get a,~7ir, - 7,
=, -, in G. Conversely, if a,~= ,-, in G, we have Z(J(P,,-,))={x{, y, -+,
7.y where P, ,_, is a group constructed for =, , as in (3.3). Then we get
ml=n,,, (@, w)~a, in G because =x,,., is of length n and zys 2=k <n)
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are of length 1. This proves (i). Similarly, we can prove (ii) by using L, ,
and L,,., constructed for Z,, and 4,,., as in (3.3).

(3.6) LEMMA. We may assume a, »n{ and a,+ A, in G without loss of
generality. (Therefore we shall assume a,+ | and a,+ A, in G throughout the
rest of this paper.)

ProoF. This follows from (3.2) and (3.5), by interchanging z,’s (resp. 4;’s)
by «,m.'s (resp. «,4,’s) if necessary.

(3.7) LemmMmA. (1) If ={ is of positive length, we have wi~xm, and m i~
(i1) If A, is of positive length, we have A ~m, and A, ;~ &4,

PRrROOF. Suppose that n{~ e« in G. We have Z(J(P, )= {x}, m; -+, 7> bY
(3.3; (). By (3.6), we have n>*k. If k>1, by taking suitable n—£ elements
of =/s (2=<s<n), for example 7wy, -, T (FTpey -~ Towi would be of length n.
This is impossible since m{my, =+ Ty ~(T(Tppy *+* T)TpThey i N and Z(J(P, o)) has
only one element of length n. Thus we have shown that, if ={ is of positive
length, ={ must be of length 1 and so #{~x, in G. Since Z(](P]ro)):@r{, Ty
., m,y and x{ is of length 1, nir, -- 7,,, must be of length /+1. This proves
(i). Similarly we can prove (ii).

(3.8) LEMMA. (1) w{# 7, in G Ng(S)=Ngx(S), where H=Cgla,). (i1) 4,
Ay in G2 Ng(M) = Ng(M).

Proor. We shall prove (i). Similarly we can work in the case (ii). It is
sufficient to see that «, is not conjugate in G to any element of S other than
a,, and so, by (3.4; (1)) it suffices to see a, * o and a, ¥ 7, In G (1= k =n).
We shall show this by inducticn on k. Since #]+x, in G by our assumption,
it follows from (3.5; (1)) that «, # 7,,-, in G. This implies that our assertion
is true for £=1. Suppose by the inductive hypothesis that, if 1<h <k, we
have w,,# a, and 7, ,_, * &, in G. Firstly, we shall show that =, , » «, in
G. Assume by way of contradiction that =, ,.;~a, in G. Then, since
Z(J(Prpn-1)) D Tipypmier Tiary ~+» Ty A0 Ty~ @, in G, we have m,,~a, in G.
We know by (3.3; (iii)) that Uj,-, normalizes Z(I_J“k,n”k):@r{, Ty oty Thy Ty, T,
-+, T,y. From the inductive hypothesis, (3.4; (i)) and 7, ,~«, in G, it follows
that the totality of elements in Z(ﬁm_k) of length n is as follows:

a, and 7 ,-X,

where x ranges over all elements of {(x, -, m>. Denote by X the group
generated by them. Then we have X={m, T4 - Tp, T}, Ty -+, 7> and
X QUyg,u-x The totality of elements in X of length 1 is

iy Mgy o0, Ty if < n-1
and
Ty Moy *on y Wy, if bzn—1.

Since XQUy -1, wWe have Uy D> {(n,, 7, -+, Ty Or {7, 7,, -, ®,» according to
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whether 2 < n—1 or k=n—1. In the second casz, we have [Uy -z 775 - 7))
=1. In the former case, we have [, 7, - 7 ]=1 and so [U; 4 a,]=1
because Z(Uj p-x) 2 Tpars -5 Ty, bY (3.3 (31)). Thus, in any case, we get Z(Uy,,-x)
s a, Then we have a, < Z(J(P., 1), which is impossible since a,, 7; .-
& Z(J(Py,n-)) and they are of length n. Hence we have proved that a«, % 7,
in G. Secondly assume that a,~7;, in G. We have Z(U, )= {x}, w5 -, x},
7, Ty -+, %> and the totality of elements in Z(U,C,O) of length n is «, and
7y0¥, Where x ranges over all elements of {x,, 7,, ---, 7). If we denote by V
the group generated by them, we have Y = {(my,, w4y - 7,, T, Ty, ---, ) and
Ugol>Y by (3.3; (iii)). By the same argument as above, we get Z(Uy,) 3 a,
and 80 a, € Z(J(Py,)), which is impossible because a,, 7, = Z(J(F,)) and they
are of length n. Hence we have proved that a, # 7, in G. This completes
the proof of our lemma.

§4. The case N (S)> Ny(S).

(4.1) In this section, we shall assume Ng(S)> Ny(S). Then, by (3.8), we
have n{~x, in G. Further, we note that, if we work with M and A;’s (1 </
<n) in place of S and =,’s (1 =k <n) respectively, we can obtain the corre-
sponding results for M under the assumption N (M) > Ny(M).

(4.2) LEMMA. We have two possibilities Case I or Case II for the fusion
win G of elements of S according to whether a,~mwin or «a,~mn{rl. More pre-
cisely, we have

Case I (i) mp~ag in G, and

(1) there exist n elemenis B, (1 =s=<n) of Ny(S) of odd order such
that By: ny—ni—mrt and [ By o) =[Bs mil=1 for s=t, or

Case Il (Y moporg~Topi~ Qe 12 G and

(i) there exist n elements B, (1 =<s=n)of NgS) of odd order such
that B,: n,—ni—wnl and (B, 7, 1=1[Bs mmil=1 for s +1.

PrROOF. Since we have n{~x, in G, we can construct ljm, P, ,and U, ,
for an element z}=m=,, as in (3.3). For simplicity, we write U, ,=U, P, ;=P
and U, ,=U. Then, by (i) and (iii) of (3.3), we know that Z2(0Yy=<x,, =
X {7y, -+, @,y and U normalizes Z(U). Since Z(U)2{n,, -, 7, and, w,, =
and r,7] are only elements of length 1 of Z(U)—<{xy, -+, 7,), we get Up<{a}, m,>.
Further, since Z(U) 2 <{ny, -+, 7, Z(J(P))= <=}, &y, ---, w,» and J(P) is conjugate
in U to J, we have n{~m, in /. Therefore we have U/Cy({x}, ©,>))=&,. This
implies that there is an element 8 of IV of odd order such that 8: =, —n{— =z =z}
By (3.3; (iii)) we know that 8 normalizes all elementary subgroups of U of
order 2°¢, in particular S=S5, X - X S5, and S; X M, X «++ X My X Spg X My X -
% M, Hence 8 normalizes their intersection ¢ Z(I), z;>. Since 8 normalizes
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Z(U) by (3.3; (iii)) and is of odd order, B must centralize an element of
<Z(l7), :r;‘.,>~Z(l7), and so one of r}, nix, my7i and =}=,n) because B cen-
tralizes {m,, my, -+, 7> and m,—a{—mr,. Suppose that [§, ntn{]=1. Then
we get mf =m,m,, which is impossible because n}~x, and rjx, ~#irw, ~ 7,7,
by (3.7; (i)). Hence we get [, njz{]1+ 1. Similarly we have [§, m;m,z]+ 1.
Hence we get [8, a3 1=1 or [, miw,J=1. Firstly suppose that [ ni.]=1
Then we have B:mirm, >werni—nim,w]. Since miw|~=ix} in N and mp7m, ~«a,
by (3.7; (i), we get njri~ «a,. Secondly suppose that [3, wjz,]=1. Then we
have wf =r, 7 n|. Hence we get B:rx,—njx, x| —rpn). Since wp~ai~mn, by
the assumption NG(S)> Nz(S) and (3.8), we get minj~«,. From these facts it
follows that we have [, n;]=1or [, n,x,]=1 according to whether a,~x{7;
or a,~mjr;. This implies that, if zizi~a, in G, we must have [, r;J=1 for
any | (2=1<n), and if n{z{~ «a,, we must have {8, zjzr,1=1 for any [ 2=l=n).

Case I. Suppose that a,~mxmix) If, for every [ (1 <[/<n), we start with
7; in place of =n{ in the above discussions, we can find an element 5, of Ng(S)
of odd order such that B,:m,—=nj—m=a; and [, 7, )={8, 7z 1=1 for k=1l
Then we have fi8--- Bt : wp— as.  Thus we get the first case in our lemma.

Case II. Suppose that «, ~ iz, in G. If we start with =} in place of =]
in the above discussions, we can find an element §8, of Ny (S) of odd order
such that 8,: n;, »m—mm and (8, 7, ] =08, mm]=1 for k[l If s is even
(1<s<mn), we have B,:7,,— 7 -+ Thityyy -+ Tery SINCE 75~ (7)) o (T TN T gy -+
Tsepy By mmi—m, and [y, mpm, 1=12<k<s). If sisodd (1=s=n) we have
Bt Ty TR, - Ty oo Wy ™~ Ty g0 SiNCe B3 7] — 71, and np— 7w 2=ZkSs).
From these it follows that we have =, ~ a,, ., Or a,.,, . according to whether
s is even or odd. This yields the second case in our lemma.

(4.3) REMARK. (i) If we choose S as in §1, the first case in (4.2) occurs
when G =8,,, W, or W,,.,, and the second case in (4.2) does when G =0,,.,
(¢, q). (i) If we take M in §1 as “S” in this section, then only the second
case occurs in both “orthogonal ” and “symmetric’ cases.

(44) LEMMA. Every element of Ny(S) induces a permutation on the set
{wf, mwimy, -, 7h, nhw,}, which consists of members of a basis of S.

ProoOF. Firstly suppose that we have case I for the fusion in G of ele-
ments of S. By (4.2), it is sufficient to see that n,» =z, in Ny(S) 1Lk, [<n).
If mfF =, for some x & Ngy(S), we would have (z}«a,)” = m,«a,, which is impos-
sible because m,a,~«a, and T,a,~a,, in G. Secondly, suppose that we have
case II. By (4.2), it is sufficient to see that =}« m, and 7}« mjn), in Ny(S)
1=k, I, m=n). In the same way as case I, “nf~x, in N4(S)” is impossible.
If #i7 =mix;, for some x & Ny(S), we would have (a,x})*=njr,a, which is
impossible because w,7;~«, and mmha,~7, - y~a,., in G. This completes
the proof of our lem ma.
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(4.5) LEMMA.

. 2,08, for case I
(1 Np(S)/Cu(S)=
&, for case II,
and

3 &, 5, for case [
(i1) [o(§)/Co(S) =

&, for case II.

Proor. Case I. Firstly we shall determine the structure of Ng(S)/C4(S).
We note that, if we have case ], every element of N(S) induces a permuta-
tion on the set {z,, m,, ---, m,} of n elements by (4.2). Put /I ={z, =iz, .-,
ny, whry,t and I, ={n}, nim,} (1< k<n). Suppose that II{~II,+ ¢, where
xe Np(S) and ¢ denotes the empty set. Then we have z;—=x" or (z}m,)" if
rje i~ H,, and =iz, =nr{® or (mpm)° if =i, Ii~I, For example, if
rp==f, we must have m,==f. In fact, if zf==x, (h+1), we would have
(mipmpy = mim, and so (a,7;7w,)* = njm,a,, which is impossible because a, 7w} 7, ~a,
and wjma, ~a,_, if h=1. Thus we get [I¢=1I,. Also in any other cases,
we get [I7=11, if II§f~1I,+ ¢. This implies that N,(S)/Cyx(S) is an impri-
mitive permutation group on the set /7 with /7/,’s 1 <k=mn) as a class of sets
of imprimitivity. On the other hand, N is a subgroup of N4(S) and N\ Ci(5)
==S. Further, from the structure of AN, it follows that NC,(S)/Cu(S) is the
maximal imprimitive group on the set [T with [I;’s 1 =k =<n) as a class of
sets of imprimitivity. Hence we have N, (S)=NCgx(S). This implies that
CONg(SY/CH(SY=Z,7?8,. Denote by ¥ the image of an element x by the can-
onical homomorphism of Ng(S) onto Ny (S)/Cx(S). Let 8y 1 £k=<n) be n ele-
ments defined in (4.2). Then from the action on S of §,, 4, and ¢ P, it fol-
lows that B#—=3:% [, Bl =[Bw Bl=1 (k=1), and 57 = B, Remark that,
in the right hand side of the last equality, ¢ is identified with an element of
©, (cf. (1.1)). This implies that N4S)/C4(S) contains a subgroup isomorphic
to ©,2©,. On the other hand, since S has 3" elements conjugate in Ng(S) to
a, by case I in (4.2) and (2.6), we have [Ny(S): Ny(S)]=23" This yields that
we must have Ny (S)/Co(S) =&, &,.

Case 1. Let 8, (1£k=n) be n elements defined in (4.2: case II). Put
0= Bees Ay 1=k <n—1). Then from the action on Sof A, 1=<k=<n)
and §, (1=k=n—1), it follows that N;(S)=d, and the set {I,, 6,, 4y, ', Onoys
1.} is a set of canonical generators of ©,, (for this terminology, see the intro-
duction). Then, by (4.4), we must have Ny(S)/Cy(S)=&,,. Further, from the
action on S of (4, it follows that the set {5,2,, A, 0y, *» Apo1s Opeyy A5} IS @
set of canonical generators of &,,,,. Since S has 2n-+1 elements conjugate in
Ng(S) to «, by (4.2: case II) and (2.6), we have [Ny (S): Ny(S)l1=2n-+1. This
yvields that N (S)/Ca(S)=S,,.,. This completes the proof of (4.5).
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(4.6) In the rest of the present paper, we shall consider the following
conditions for S and M:

(UI) every element of Ng(S) induces a permutation on the set {x|, wim, -

Tc’ln! ﬂ‘.;ln-?l}’
() every element of Ny(M) induces a permutation on the sel {A,, A7, -
Ay AnTn}

If Ng(S) > Ny(S) (resp. Ng(M) > Ny(M)), S (resp. M) satisfies the conditions
(I (resp. (A)) by (4.4). For all examples in §1, S and M satisfy the condi-
tions (/1) and (A4) respectively. Furthermore we note that

(A) implies A, » 7z, 1n G, and

(D) implies n1+ wim, in G.
In fact, if 2, ~A,m, in G, (2.6) and (1) yield that NgzM)> Ny(M). Hence by
(4.2), we have A,~a«, and A,w,~, which is impossible if 1, ~ A,7,, because
a, 4o, in G. Quite similarly the second statement follows.

4.7 LEMMA. Assume that Ng(S) > Ny(S) and the condition (A). Then we
have one of the followings:

Case I/ [Bw Ad=1 for any pair {k, 1} (R=+1), or

Case Il [, Am)=1 for any pair {k, I} (k+1),
according to whether wi,~m A, 0 T, ~A,.

Proor. By (4.2), we know that 8,:7m,—ni—ajn, and [, 7 1=1 (k+1)
in both cases of (4.2). By the proof of (4.2), 5, normalizes all elementary
abelian subgroups of C,(x}) of order 2%, in particular {z}, m,> X M;X II S; and

ik, L

{mly, Tuy X My X TI M,. Hence B, normalizes their intersection Y, = Z(J)x<{zn%, 4>
(Fi,t

H

1)

Then B, must centralize an element of Y,—Z(J) X <{x}> because 3, normalizes
Z(]) x {x}y and is of odd order. Therefore 8, centralizes one of 1, 4;x;, w4,
and z A, since [ m1==1(k=+[). Suppose that [§; A4m;]=1. Then, from
Al = (A7 )Pk = Wl we get APk = A,m,, which is impossible as remarked in
(4.6) because A, ~ 4, and A~ Ay, in G, Secondly suppose that [y, mpmi4,]
=1. Then we get Zt = Az, which is impossible by the same reason as above.
Thus we have [3;, 4,]1=1 or [ B, A4m,1=1. If [Bi A4, 1=1, we must have Az}
=(A4,m,)P%, and so wi,~m A, because A,m[~Ax; and Az, ~A4m, in N If
[Bi Aimp) =1, we must have 2, =(4,7;)°r, and so 4, ~={l, in G. Therefore, if
njAd,~m, A, in G, we must have [, 4, ]=1 for any pair {& [} (210, and if
njA,~ A, we must have [, 4,7;1=1 for any pair {k, [} (¢=+1). The proof is
complete.

(4.8) LEMMA. Assume that Ng(M)> Ng(M) and (II). Then we have one
of the followings:

Case 17 Uy mil=1 for any pair {k, I} (R=:1), or

Case 1I” [yw mime]=1 for any pair {k, 1} (k1)
according to whether wid,~ iz, or i, ~7x}. Here y)s 1 <k=<n) are the ele-
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ments constructed for M in place of S in (4.2) (cf. (4.1)).

4.9) LEMMA. Assume that Ng(S)> Ni(S) and Ng(M) > Ng(M). Then we
have [B;, 4,]=1 and [y, mi]J=1 (k1.

Proor. By (44) S and M satisfy the assumptions of (4.7) and (4.8) respec-
tively. Furthermore we know that n{~2,~e«, and z{z,~md,~a, in G by
(4.2). Therefore by (4.7) and (4.8), it is sufficient to see that z/i,~a,. Put

F={n}, m,) X4y m> and X=NgF)/Ce(F).

We shall determine the structure of X. Firstly we note that, from (4.7) and
(4.8), we have Ny (F)= 8, v, for any cases of the lemmas. Take a 2-Sylow
subgroup D of N (F) containing /. (Note that J[>F.) Then we have D[]
and so D C Ng(D)\NgF). Since Ng(J)=N-Cq([]), it follows from the struc-
ture of N that D.CyF)={4, 5> Cs(F). This implies that the four group
(2, 7> is a 2-Sylow subgroup of X. From the action of 1, and A,7, on F, we
see that 2, and i,7 are not conjugate in X. Therefore X has a normal 2-
complement, and so {X|=4-3* (0= a<2) by the structure of GL(4, 2) because
X can be regarded as a subgroup of GL(4, 2)= A;. Since Nyg(F)—CKF) = 8, 7.
we get No(F)y= {2y, @}, Bi, 7.0 - Ce(F). This yields that [Ny(F) Cele,): Co(F)]
=4 and so [NgI"): NgF)Colay]=9. Namely, a, has nine conjugates in
Neg(I). Since =, ©f, mim,, A, w, and Az, are of length 1 by (4.2), we must have
A, ~ e, in N (F). This completes the proof of our lemma.

(4.10) LEMMA. Assume that Ng(S) > Ny(S) and (A). Without loss of gen-
erality, we may assume that [ B, 4,]=1 (k+1).

Proor. If NgH{M)> Ng(M), our lemma follows from (4.9). Assume that
Ng(M)= Ny(M) and we have case II’ in (4.7), namely [f;, 4,;7,]=1 for any
pair {&, [} (k+#1). Then we have [f; 4a,]=1, because [§;, 7,]=1 (& + h).
We can replace A/s by Ae,’s (1 =Z[1<n) from the structure of N. (Note that,
since N (M)= Ny(M) and so A, # a,, this replacement does not conflict with
that of (3.6) and does not destroy the condition (A4).) Thus we may assume
that [5,, 4,]=1 by the suitable choice of notations.

(4.11) LEMMA. Assume that Ng(M) > Ny(M) and (II). Then without loss
of generality, we may assume that [y, nj]l=1 (k=1).

(4.12) Summarizing the results of this section, we obtain the following
theorem:.

THEOREM. (1) Assume that NyS)> Nxz(S) and M satisfies the condition
(D). Then we have one of the followings:

Case 1 (i) there exist n elements B, (1 =<s=n) of Ng(S) such that

(i-1) B is of odd order,
(1-2) Bs:mi—wi—win,

(-3) By mi=[0Bsml=[Fs A= L(s#1),



708 T. Konpo

and
(i) Na(S)/CelS)=8, 2 G, and Ny(S)/Cu(S)=Z,2 &,
or
Case 11 (i) there exist n element B, (1 =s=n) of Ny(S) such that
(-1) Bs is of odd order,
(i-2) Bs: my—mi—mm,,
(1—3) [‘Bsr 72-5] == [ﬁs: ”s’fij — [‘8& At] = 1 (S 75 t):
and
(i) Ne(S)/Co(S) =&,y and Ny(S)/CulS) = &y,
(2) Assume that No(M)> Ny(M) and S satisfies the condition ({I). Then
we have one of the followings:
Case I (i) there exist n elements y, of No(M) such that
(i-1) 7. is of odd order,
(1_2) Ts: Tfs—>zs—>23ﬂ.‘3,
(i-3) [re ml)=[re Al=0[re ml=1 (=10,
(if) Ne(M)/CoM) =&, &, and Ng(M)/Cpx(M)=Z,2 &,
or
Case Il (i) there exist n elements y, 1=s=n) of Ny(M) such that
(-1) 75 is of odd order,
(1_2) 7s e 753_")23_)]371'31

(1_3) [Tsr TEL] — [Tss Zﬁﬁs] = [Ts: 752] =1 (3 + t)r
and
(i) Ne(M)/Co(M) = Syppy and Ny(M)/Cy(M) = &,,.
(3) If Ng(S)>Ny(S) and No(M)> Nyg(M), S and M satisfy () and (A)
respectively, and so (1) and (2) hold.

§5. The fusion under the additional assumption to M.

(5.1) In the rest of the present paper, besides the fundamental assumption
to G in (1.1), we shall assume that

(D) NaM)/Ca(M)=8,,
and

(i) M satisfies the condition (A1) in (4.6).
We remark that, 1f Ny(M) < N4(M), (il) is an immediate consequence of (4.4)
applied to M in place of S and we must have case II for the fusion in G of
M, and Ny(M)Y/Co(M) = S,,,, by (4.5). If we choose M asin §1, all examples
in §1 satisfy the conditions (i) and (ii).
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Since M is self-centralizing normal subgroup of a 2-Sylow subgroup of H,
we have Cu(M)=M X F and |F|=odd. Put W= N,(M)/F and, for a subset
X of W= Ny(M), denote by X the image of X by the canonical homomorphism
from W onto .

LEMMA. There exists a complement K of W over M and n—1 involutions
5 (1<i<n—1) of K such that {7, &, -, .y, 7} is a set of canonical genera-
tors of K.

Proor. By a theorem of Gaschiitz [3], there is a complement K of W
over M. Then the above assumptions (i) and (ii) to M yield that there are
2n—1 involutions {¥,, Z;, ¥a - » Zn-1, 7n} ©f K such that

=17, (2, 31=[2,%, 5.1=1 (G#1)

Q7= A1, [ 2= [ A Zi1=1 (G141 k=+1).
From the action of 7/ on M, we see that ;= mod M. Now we claim that
y,=#% for any 1 (1<£i<n) or ¥,=xa, for any ¢ (1<i<n). In fact as is
easily seen from (1.2; (V)), N,=<(Jy &, 4, (F;7u )91 Si5n, 1=j=n—1) is
conjugate in W to N and the cardinality of the orbit containing 7; under the
action on (¥, 7;]1=i=<n> of N, is 2n. Considering the orbit under the action
on S of N (cf. (21)) and using the fact that 7, = %, mod }M, it follows that
yi=x, or i@, 1=i<n). Since 7, ¥, ---, ¥, are conjugate in W, we must
have §,=x, for any 1 (1<i<n) or ,=#a, (1 =i=<n). If we have the former
case, our lemma holds, while if we have the latter case, the subgroup (¥ a,,
210 vy BpoOin, Vo, has the required properties.

(5.2) LEMMA. The representatives of conjugacy classes of involulions of
Nuy(M) are m,; O<k+l=n) and 7,, O k+1=n—1), where z,,s are elements
defined in (3.1).

ProoOrF. We note that two involutions ¥, v of W are conjugate in W if
and omnly if ¥ and 7 are conjugate in W because F is of odd order. Then our
lemma follows from Lemma in (5.1} and Remark in (1.2; (V).

(5.3) LEMMA. If G has no normal subgroup of index 2, every involution
of G must be conjugate in G to an element of S.

Proor. It is sufficient to see that every involution of N,(M) fuses to an
element of S, because N (M) contains a 2-Sylow subgroup of G. From the
structure of N (M), it follows that there is a subgroup K, of Ny(M) of index
2 such that K, contains S but does not contain 7,,’s. By (5.2), every involu-
tion of K, must be conjugate in N, (M) to an element of S. Further, since G
has no normal subgroup of index 2, a lemma of J. G. Thompson yields that
Ty, 18 conjugate to an element of K, and so one of S. This completes the

proof of our lemma.
(5.4) LEMMA. Assume that Ng(M)> Ny(M) and S satisfies the condition
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(Il in (4.6). Then we have t,,~m 1, in G.
. 7t .
PROOF. Let r, be as in (411). Then we have t;7 ==, x, Since =7,
N”k,l-i‘l in N, we get T’C,LNH-JC,!-!‘I il’l G.

§6. The degenerate case N (S)= Ny(5).

(6.1) In this section, we shall assume the conditions (i) and (ii) in (5.1)
for M.

(6.2) LEMMA. Assume that Ny(M)= N (M) and Ny(S)= Ng(S). Then we
have G = HO(G), where O(G) denotes the largest normal subgroup of G of odd
order. In particular, G is not simple.

Proor. We shall show that «, is not conjugate in G to any element of
H other than «,. By (5.2), we know that the representatives of conjugacy
classes of involutions in H are wn,;, (0<k+4I{<n) and 7., (0=Zk+I=Zn-1).
Then, by the assumption Ng(S)= Ng(S), we have z,,* a, Hence, by (3.4:
(iii)) it is sufficient to see that ¢ ,» «, and 7, ,_,.x* @, in G. We shall prove
this by induction on k. By (3.6) and the assumption Ny(M)= N (M), we have
Too® @, and 7., «, in G. This implies that our assertion is true for k=0.
Assume by the inductive hypothesis that, if 0 S h <k, 75, @, and 7, -5 %* ay
in G. Suppose by way of contradiction that 7, ,_,~«, in G. Then we can
construct Wk,n_l_k, Trn-1-x and Wy, .., for an element z;,-,.; as in (3.3). Put
Wk,n_l_k: W, Ten-1-r=1T and W, ,_,_,=W. Then we have Z(W)=S8, xS, %
coo XS, X (i pgyy 0y Tpeyy X <o,y Ay, From the assumption of our lemma, induc-
tive hypothesis and (3.4; (iii)), it follows that the totality of elements in Z(i¥)
of length n is «, and 7,,.,,x, where x is an arbitrary element in {(m,, 7,,
o, Ty X (. (Remark that, if 7, ,, ,~a, in G, we have 7,,*a, in G.
Otherwise, Z(J(W,,)) would have two elements ¢, ,-,., and 7, of length =n.)
Denote by X the group generated by e, and 7,.,..x’s. Then we have
X =Thmroi Ty Ty vy Mgy Ty = Tnyy Tp>.  Since W Z(W) by (3.3: (iii)”), we
get W X. The totality of elements in X of length 1 is {#, 7, -, 7y 7.}
or {z,, 7, ++, m,} according to whether k< n—2 or 2=n—2. In the second
case, WD <m, @, -, 7,y and so [W,a,]=1. In the former case, we have
W > {m,, 7y o, g, @, and so [ W, a, ] =1, because [W, 7py; - 7,..]=1 by (3.3:
@1i)7). Then Z(J(T)) has two elements z,,_,-, and «, of length n, which is
impossible. Thus we have proved that «, + 74,-;- in G. Secondly suppose
that a,~7;, in G. We have Z(VI_/}G,O): Sy X o XS X L gags o 5 Tpmq » X Ty Ay
and the totality of elements in Z(W,m) of length n is «, and z,,x, where x
is an arbitrary element in {x,, -+, 7> X {m,>. If we denote by Y the group
generated by them, we have ¥V =<t 7y, =, Tp Tpsy -** Ty Ty DY the same
argument as above, we get Z(W, ) = «a, and so a,< Z(J(T,)), which is im-
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possible because a,, z;,,= Z(J(T,,)) and they are of length n. Thus we have
proved that «, is not conjugate in G to any element of H other than «,.
Then our lemma follows from Glauberman’s theorem and Frattini argument.

(6.3) LEMMA. Assume that H has a normal subgroup of index 2 and S
satisfies the condition (II) in (4.6). Then if NgS)=Nuy(S), G has a normal
subgroup of index 2.

PrROOF. If Ny(M)= Ny (M), our lemma follows from (6.2). Assume that
Ng(MY> Nyg(M). Put D, = MP{={x}, wix}, -+, miw,y and then we have N =D (z).
Then N contains a 2-Sylow subgroup of G by (1.1; (ii)) and [N: D,]=2. From
(5.2) and (5.4) it follows that every involution of [, is conjugate in G to an
element S\ D,. If G has no normal subgroup of index 2, a lemma of Thomp-
son yields that z{ must fuse to an element of D, and so one of S~ D,. Since
7{ is not conjugate in Ng(S) to any element of S\ D, by the assumption of
our lemma, (2.6) yields that Ny(S)< N (S). This is a contradiction.

(6.4) THEOREM. Assume that M satisfies the conditions (i) and (i) in (5.1),
and, S and H satisfy the same assumptions as (6.3). If G has no normal sub-
group of index 2, the followings hold;

(B Np(S)<NS) and Nug(M) < Ne(M),
(i) G has exactly n classes of involutions wilh the vepresentatives a,, a,,
v, Oy, and

(iif) G has two possibilities for the fusion of involutions.

Proor. By (6.3), we have Ng(S)<NgS). Then (4.2) yields that each
element of S must be conjugate in G to one of ay, &, -+, a, From (5.3) it
follows that A, must fuse in G to one of a’s 1=k=#) and so A, ~¢«, in G
by (3.7). By (3.5) and (2.6), we have Ny(M) < Ng(M). Then (5.3), (4.2) and
(4.5) yield that G has exactly =z classes of involutions and two possibilities for
the fusion of involutions.

§7. Applications.

(7.1) The Alternating Case. Let a, be an involution of ,,., (r=2 or 3)
which has a cycle decomposition

(1, 23, 4) - (An—1, 4n),

and A, 7, 7y, H, S and M be as in (1.2: (ii)). Let G be a finite group satisfy-
ing the following conditions :
(i) G has no normal subgroup of index 2, and
(i) G contains an involution &, in the center of a 2-Sylow subgroup of G
whose centralizer H is isomorphic to H.
For simplicity, we identify elements and subgroups of [ with the correspond-
ing ones of . Then we have the following



712 T. KoNDO

THEOREM A. G has exactly n classes of tnvolutions with the representatives
gy Qgy oy Ay More precisely, there exist elements B, and y, (1=s=<n) of odd
order with the following properties;

() Bs= Ng(S) and y,& No(M),
(i) Bs:my—ni—mas and (B, w]=[Fs nj1="[fs A1=1 (s #1), and
(i) 7s: w4y [ye Tl =1re Al =1 (s+ 1) and
lremil=1A<s, t<n and s+ t).
In particular, we have

(iv) Tg,e ™ Mgips

(V) 225-1,tN228,tNaS+E) and

(Vi) Ty ™ Hgpt41y
where wy,, A, and t,, ave involutions defined in (3.1).

PROOF. G satisfles all assumptions of Theorem (6.4) (cf. (1.3)). Hence G
has exactly n classes of involutions. Further we have N;(S) < Ng(S). Since
Nu(S)/Cu(S)= 2,2 6, (cf. (1.3)), we must have case | for the fusion in G of S
by (4.5). Then our theorem follows from (4.2), (4.10), (4.11) and (5.4).

(7.2) The Orthogonal Case. Let £,,..(¢c, q¢) (¢""'=—emod4 and g:= +3
mod 8) be the orthogonal commutator group with the underlying quadratic

2n
form 3 x?4x%,.,+axd, ., where ¢ is a nonsquare element of the finite field of
=1

g elements. Put a,= (HIZ”‘ I)’ where I, =the k X k unit matrix. Then «a,
2

is an involution in the center of 2-Sylow subgroup of 2,...(¢c, ). By H we
denote the centralizer in £,,.,(s, @) of a,. Let 4, ny, 7, S and M be as in
(1.2: (iv)) and (1.1).
Let G be a finite group satisfying the following conditions;
(1) G has no normal subgroup of index 2, and
(i) G contains an tnvolution &, in the center of a 2-Sylow subgroup of G
whose centralizer H is isomorphic to H.
We identify elements and subgroups of H with the corresponding elements of
H. Then we have the following
THEOREM B. G has exactly n classes of involutions with representatives
ay, &y, -+, &, Morve precisely, there exist elements B, and 7, A =<s=<n) of odd
order such that
@) Bs= Ng(S) and 75 No(M),
(i) Bs:mi—mi—rmh [Bo ml=[Ps mail=1 and [ B, 2,]=1
(1<s, t<n, s£1), and
(i) g5 ws—A—m s [re 7] =[re 7 l=1 and [y, mj]=1
(1Zs, t<£n, s+1).
In particular, we have

(V) Tasoq,e ™~ Tasye ™~ Ogiy
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(V) Aus—1,7 Ansp ™ sy ANd

(vi) Tas—1,6 ™ Tast ™ Ksrpsre

PrROOF. G satisfies all assumptions of Theorem (6.4) (cf. (1.3)). Hence G
has n classes of involutions with the representatives «, ---, @, Further we
have Nz(S) < Ng(S) and Ny(M) < Ng(M). Since Ny(S)/Cu(S)= Nuz(M)/Cx(M)
=&, (cf. (1.3)), we must have case II for the fusion in G of S and M by
(4.5). Then our theorem follows from (4.2), (4.11) and (5.4).

College of General Education,
University of Tokyo
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