# COLLOQUIUM MATHEMATICUM <br> VOL. LXIII $1992 \quad$ FASC. 1 

## ON FINITE MINIMAL NON-p-SUPERSOLUBLE GROUPS <br> BY <br> FERNANDO TUCCILLO (NAPLES)

If $\mathfrak{F}$ is a class of groups, then a minimal non- $\mathfrak{F}$-group (a dual minimal non-$\mathfrak{F}$-group resp.) is a group which is not in $\mathfrak{F}$ but any of its proper subgroups (factor groups resp.) is in $\mathfrak{F}$. In many problems of classification of groups it is sometimes useful to know structure properties of classes of minimal non- $\mathfrak{F}$-groups and dual minimal non- $\mathfrak{F}$-groups. In fact, the literature on group theory contains many results directed to classify some of the most remarkable among the aforesaid classes. In particular, V. N. Semenchuk in [12] and [13] examined the structure of minimal non- $\mathfrak{F}$-groups for $\mathfrak{F}$ a formation, proving, among other results, that if $\mathfrak{F}$ is a saturated formation, then the structure of finite soluble, minimal non- $\mathfrak{F}$-groups can be determined provided that the structure of finite soluble, minimal non- $\mathfrak{F}$-groups with trivial Frattini subgroup is known.

In this paper we use this result with regard to the formation of $p$-supersoluble groups ( $p$ prime), starting from the classification of finite soluble, minimal non- $p$-supersoluble groups with trivial Frattini subgroup given by N. P. Kontorovich and V. P. Nagrebetskiĭ ([10]). The second part of this paper deals with non-soluble, minimal non- $p$-supersoluble finite groups. The problem is reduced to the case of simple groups. We classify the simple, minimal non- $p$-supersoluble groups, $p$ being the smallest odd prime divisor of the group order, and provide a characterization of minimal simple groups.

All the groups considered are finite.

1. Some preliminary results. We provide some preliminary results; some of them are implicitly contained in the papers mentioned above, so we omit their proofs.
1.1. Let $G$ be a minimal non-p-supersoluble group with $p=\min \pi(G)$. Then $G$ is soluble.

Proof. If $p>2$, then $|G|$ is odd and so $G$ is soluble ([5]). If $p=2$, the statement follows from a theorem of Ito ([9]), if we recall that 2 -supersolubility is equivalent to 2-nilpotency.
1.2. Let $G$ be a minimal non-p-supersoluble group. If $O_{p}(G) \not \leq \Phi(G)$, then $G$ is soluble.
1.3. Let $G$ be a minimal non-p-supersoluble group with a normal Sylow subgroup. Then $G$ is soluble and $G_{p}$ is the only normal Sylow subgroup of $G$.
1.4. Let $G$ be a soluble, minimal non-p-supersoluble group. Then $|\pi(G)|$ $\leq 3$. Moreover, if $|\pi(G)|=3$ then $G_{p} \triangleleft G$ and $p=\max \pi(G)$.
1.5. Let $G$ be a soluble, minimal non-p-supersoluble group without normal Sylow subgroups. Then $p=\max \pi(G)$.

The following propositions can be obtained using techniques similar to those used in [1], [4], [13].
1.6. Let $G$ be a minimal non-p-supersoluble group and $G_{p} \triangleleft G$. Then:
(i) $G_{p} / \Phi\left(G_{p}\right)$ is minimal normal in $G / \Phi\left(G_{p}\right)$;
(ii) if $M$ is a maximal subgroup of $G$ whose index is a power of $p$, then $M=\Phi\left(G_{p}\right) G_{p^{\prime}}$;
(iii) there exists a supersoluble immersion of $\Phi\left(G_{p}\right)$ in $G$;
(iv) $\Phi\left(G_{p}\right) \leq Z\left(G_{p}\right)$ (and so the class of $G_{p}$ is $\leq 2$ );
(v) the exponent of $G_{p}^{\prime}$ is $\leq p$;
(vi) the exponent of $G_{p}$ is $p$ if $p \neq 2$, and is $\leq 4$ if $p=2$.
1.7. Let $G$ be a minimal non-p-supersoluble group and $G_{p} \triangleleft G$. If $K$ is a p-complement of $G$, then:
(i) $K \cap C_{G}\left(G_{p} / \Phi\left(G_{p}\right)\right)=K \cap \Phi(G)=\Phi(K) \cap \Phi(G)$;
(ii) $K / K \cap \Phi(G)$ is minimal non-abelian or cyclic primary;
(iii) $\Phi(G)=\Phi\left(G_{p}\right) \times\left(\chi_{q \neq p} O_{q}(G)\right)$;
(iv) $\Phi\left(G_{p}\right) \leq Z(G)$.
1.8. Let $G$ be a soluble, minimal non-p-supersoluble group without normal Sylow subgroups. With $\pi(G)=\{p, q\} \quad(p>q)$ we have:
(i) $G$ has no subgroup of index $q$;
(ii) $G$ has only one subgroup $M$ of index $p$;
(iii) $O_{p}(G)=M_{p}$.
1.9. Let $G$ be a soluble, minimal non-p-supersoluble group without normal Sylow subgroups. Using the notation of 1.8 with $K=N_{G}\left(G_{q}\right)$ and $P=\Phi\left(M_{p}\right)\left(K \cap M_{p}\right)$, we have:
(i) $M_{p} / P$ is minimal normal in $G / P$;
(ii) $\Phi(G)=P \times O_{q}(G)$;
(iii) $\Phi(G) \leq K$ (and so $P=K \cap M_{p}$ );
(iv) $K / \Phi(G)$ is minimal non-abelian;
(v) $P \leq Z(M)$ (and so the class of $M_{p}$ is $\leq 2$ );
(vi) $M_{p}^{\prime}$ has exponent $\leq p$;
(vii) if $K_{p}=P\langle c\rangle$, then $P=\left\langle c^{p}\right\rangle \times Q$ with $Q$ elementary abelian and $M_{p}=\Omega\left(M_{p}\right)\left\langle c^{p}\right\rangle$ where $\Omega\left(M_{p}\right)=\left\{x \in M_{p} \mid x^{p}=1\right\}$.
2. Classification of the soluble, minimal non- $p$-supersoluble groups with trivial Frattini subgroup ([10]). We report this classification, modifying the notation of [10] according to that used in Section 1.
(A) Let $p, q, s$ be primes such that $q \mid p-1$ and $s \neq q$. Let $K=K_{q} K_{s}$ be the subgroup of $\mathrm{GL}(s, p)$ defined as follows (equating indexes modulo $s$ ):

$$
K_{s}=\left\langle\left[\gamma_{i} \delta_{i, j+i}\right]_{1 \leq i, j \leq s}\right\rangle
$$

where $\gamma_{i}=1$ for $i=1, \ldots, s-1$ and $\gamma_{s}$ is of order $s^{k} \mid p-1(k \geq 0)$. If $s \mid q-1$, then

$$
K_{q}=\left\langle\left[m^{t^{i-1}} \delta_{i, j}\right]_{1 \leq i, j \leq s}\right\rangle
$$

where $m$ is a primitive $q$ th root of unity, $2 \leq t \leq q-1$ and $t^{s} \equiv 1(\bmod q)$. If $s \nmid, q-1$, then

$$
K_{q}=\chi_{t=0}^{r-1}\left\langle\left[m_{i+t} \delta_{i, j}\right]_{1 \leq i, j \leq s}\right\rangle
$$

where $r=\exp (q, s), m_{i+t}^{q}=1(i=1, \ldots, s ; t=0, \ldots, r-1)$ and $m_{i+r}=$ $m_{i}^{\beta_{1}} \ldots m_{i+r-1}^{\beta_{r}}(i=1, \ldots, s), x^{r}-\beta_{r} x^{r-1}-\ldots-\beta_{1}$ being the minimal polynomial over $\operatorname{GF}(q)$ of an element of GF $\left(q^{r}\right)^{\times}$of order $s$. The holomorph of an elementary abelian group of order $p^{s}$ by $K$ will be denoted by $\Gamma(p, q, s)$. If $s=p$, then $\Gamma(p, q, s)$ will sometimes be denoted by $\Gamma(p, q)$.
(B) Let $p, q$ be primes and $h$ an integer such that $q^{h} \mid p-1$. Let $K=$ $\langle a, b\rangle$ be the $q$-subgroup of $\mathrm{GL}(q, p)$ defined as follows (equating indexes modulo $q$ ):

$$
a=\left[m^{\left(1+q^{h-1}\right)^{i-1}} \delta_{i, j}\right]_{1 \leq i, j \leq q}, \quad b=\left[\delta_{i, j+1}\right]_{1 \leq i, j \leq q}
$$

where $m$ is a primitive $q$ th root of unity. The holomorph of an elementary abelian group of order $p^{q}$ by $K$ will be denoted by $\Delta(p, q, h)$.
(C) Let $p, q$ be primes such that $q \mid p-1$ and $q \neq 2$. Let $K$ be the subgroup (extraspecial of order $q^{3}$ ) of $\mathrm{GL}(q, p)$ defined as follows (equating indexes modulo $q$ ): $K=\langle a, b\rangle$ where

$$
a=\left[m l^{i-1} \delta_{i, j}\right]_{1 \leq i, j \leq q}, \quad b=\left[\delta_{i, j+1}\right]_{1 \leq i, j \leq q}
$$

with $m^{q}=1$ and $l$ a primitive $q$ th root of unity. The holomorph of an elementary abelian group of order $p^{q}$ by $K$ will be denoted by $\Delta(p, q)$.
(D) Let $p$ be a prime such that $4 \mid p-1$ and let $K$ be the subgroup
$\left(\simeq Q_{8}\right)$ of $\mathrm{GL}(2, p)$ defined by

$$
K=\left\langle\left[\begin{array}{cc}
m & 0 \\
0 & m^{-1}
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\right\rangle
$$

where $m$ is a primitive 4 th root of unity. The holomorph of an elementary abelian group of order $p^{2}$ by $K$ will be denoted by $\Theta(p)$.
(E) Let $p, q$ be different primes and $m$ a positive integer. With $n=$ $\exp \left(p, q^{m}\right), \Lambda(p, q, m)$ will denote the holomorph of the additive group of the Galois field $\operatorname{GF}\left(p^{n}\right)$ by the subgroup $\langle\tau\rangle$ of order $q^{m}$ of the Singer cycle of $\operatorname{GL}(n, p) \simeq \operatorname{AutGF}\left(p^{n}\right)(+)$; i.e. $x^{\tau}=\lambda x\left(x \in \operatorname{GF}\left(p^{n}\right)\right)$ where $\lambda$ is a primitive $q^{m}$ th root of unity in $\mathrm{GF}\left(p^{n}\right)$.
2.1. Theorem (Kontorovich-Nagrebetskiĭ [10]). Let p be a prime. A group $G$ is soluble, minimal non-p-supersoluble with $\Phi(G)=1$ if and only if $G$ is isomorphic to one of the following groups:
(A) $\Gamma(p, q, s)$ with $s=p$ or $s \mid p-1$;
(B) $\Delta(p, q, h)$;
(C) $\Delta(p, q)$;
(D) $\Theta(p)$;
(E) $\Lambda(p, q, m)$ with $q^{m-1} \mid p-1$ and $q^{m} \nmid p-1$.

## 3. Structure of the soluble, minimal non- $p$-supersoluble groups

3.1. Let $G$ be a soluble, minimal non-p-supersoluble group without normal Sylow subgroups. With the notation of 1.9 we have $P=\Phi\left(M_{p}\right)\left\langle c^{p}\right\rangle$.

Proof. Without loss of generality, assume $O_{q}(G)=1(q \neq p)$. Since $P \leq Z(M)$ (see 1.9) and $G / P \simeq \Gamma(p, q)$ (Theorem 2.1), we can assume, with $|P|=p^{n}(n \geq 0)$, that $G_{q}=X_{t=0}^{r-1}\left\langle a_{t}\right\rangle$ where

$$
a_{t}=\left[\begin{array}{cc}
{\left[m_{i+t} \delta_{i, j}\right]_{1 \leq i, j \leq p}} & 0 \\
0 & {\left[\delta_{i, j}\right]_{1 \leq i, j \leq n}}
\end{array}\right]
$$

and

$$
c=\left[\begin{array}{cc}
{\left[\delta_{i, j+1}\right]_{1 \leq i, j \leq p}} & {\left[\lambda_{i, j}\right]_{1 \leq i \leq p, 1 \leq j \leq n}} \\
0 & {\left[\gamma_{i, j}\right]_{1 \leq i, j \leq n}}
\end{array}\right]
$$

with

$$
\begin{equation*}
c^{-1} a_{t} c=a_{t+1} \quad(t=0, \ldots, r-2), \quad c^{-1} a_{r-1} c=a_{1}^{\beta_{1}} \ldots a_{r-1}^{\beta_{r-1}} \tag{3.1}
\end{equation*}
$$

and with the same notation as in (A) of Section 2. From (3.1) it follows that, for each $t=0, \ldots, r-1$,

$$
\left[\delta_{i, j-1}\right]_{1 \leq i, j \leq p}\left[\left(m_{i+t}-1\right) \delta_{i, j}\right]_{1 \leq i, j \leq p}\left[\lambda_{i, j}\right]_{1 \leq i \leq p, 1 \leq j \leq n}=0,
$$

from which we deduce

$$
\left(m_{i+t+1}-1\right) \lambda_{i+1, j}=0
$$

for each: $i=1, \ldots, p ; j=1, \ldots, n ; t=0, \ldots, r-1$ (equating indexes modulo $p$ ). Since the indexes are arbitrary, as in (A) of Section 2 we conclude that $\lambda_{i, j}=0$ for each $i=1, \ldots, p$ and $j=1, \ldots, n$. Thus $G$ splits on $P$ and so, as $P=\Phi(G)$, we get $P=1$.
3.2. Let $G$ be a minimal non-p-supersoluble group such that $G / \Phi(G)$ is one of the groups (A), (B), (C) of Theorem 2.1. Then $O_{p}(G)$ is abelian.

Proof. Without loss of generality, assume $O_{p^{\prime}}(G)=1$. We examine separately the different cases.

Case 1: $G / \Phi(G) \simeq \Gamma(p, q, s)$ and $\exp (q, s)=r>1$. We can assume (see 3.1 and 1.6, 1.9) $G=O_{p}(G) G_{q}\langle c\rangle$ where $O_{p}(G)=\left\langle x_{1}, \ldots, x_{s}, c^{\varepsilon p}\right\rangle$, with $\varepsilon=0$ if $s \neq p, \varepsilon=1$ if $s=p$, and $\left\langle x_{1}, \ldots, x_{s}\right\rangle$ of exponent $p ; G_{q}=X_{t=0}^{r-1}\left\langle a_{t}\right\rangle$ with
(3.2) $\quad a_{t}^{-1} x_{i} a_{t}=x^{m_{i+t}} y_{i, t}$

$$
\left(i=1, \ldots, s ; t=0, \ldots, r-1 ; y_{i, t} \in \Phi\left(O_{p}(G)\right)\left\langle c^{\varepsilon p}\right\rangle\right)
$$

and
(3.3)

$$
\begin{array}{ll}
c^{-1} x_{i} c=x_{i-1} z_{i} & \left(i=1, \ldots, s-1 ; z_{i} \in \Phi\left(O_{p}(G)\right)\left\langle c^{\varepsilon p}\right\rangle\right) \\
c^{-1} x_{s} c=x_{s-1}^{\left(\gamma_{s}\right)^{\eta}} z_{s} & \left(\eta=0 \text { if } s=p ; \eta=0,1 \text { if } s \neq p ; z_{s} \in \Phi\left(O_{p}(G)\right)\left\langle c^{\varepsilon p}\right\rangle\right)
\end{array}
$$

and with the same notation as in (A) of Section 2. As $\Phi\left(O_{p}(G)\right)\left\langle c^{\varepsilon p}\right\rangle \leq$ $Z\left(O_{p}(G) G_{q}\right)$ (see 1.9), we have

$$
a_{t}^{-1}\left[x_{i}, x_{j}\right] a_{t}=\left[x_{i}, x_{j}\right]=\left[x_{i}, x_{j}\right]^{m_{i+t} m_{j+t}}
$$

for each $i, j=1, \ldots, s$ and $t=0, \ldots, r-1$. It follows that if $\left[x_{i}, x_{j}\right] \neq 1$ then

$$
\begin{equation*}
m_{i+t} m_{j+t} \equiv 1(\bmod p) \tag{3.4}
\end{equation*}
$$

for each $t=0, \ldots, r-1$. On the other hand, from (3.3) it follows that, for every integer $k$, we have (equating indexes modulo $s$ )

$$
c^{k}\left[x_{i}, x_{j}\right] c^{-k}=\left[x_{i+k}, x_{j+k}\right]^{\beta} \quad(0 \leq \beta \leq p-1)
$$

for each $i, j=1, \ldots, s$; we deduce that if $\left[x_{i}, x_{j}\right] \neq 1$ then also $\left[x_{i+k}, x_{j+k}\right] \neq$ 1 , and so, by (3.4), we obtain

$$
\begin{equation*}
m_{i+k} m_{j+k} \equiv 1(\bmod p) \tag{3.5}
\end{equation*}
$$

for each integer $k$ (equating indexes modulo $s$ ).
Now, suppose $O_{p}(G)$ is non-abelian. As $c^{\varepsilon p} \in Z(G)$ and $G / \Phi(G) \simeq$ $\Gamma(p, q, s)$, for any $i=1, \ldots, s$ there exists $j=1, \ldots, s$ such that (3.5) holds. As $k$ is arbitrary, it follows that $m_{i}^{2} \equiv 1(\bmod p)$ for each $i=1, \ldots, s$ and
so, as $s \neq 2$, we have $q=2$. We can then assume

$$
\begin{aligned}
& m_{1} \equiv \ldots \equiv m_{h} \equiv 1 \\
& m_{h+1} \equiv \ldots \equiv m_{s} \equiv-1
\end{aligned} \quad(\bmod p) \quad(1 \leq h \leq s-1)
$$

As $m_{i} m_{j} \equiv-1(\bmod p)(i=1, \ldots, h ; j=h+1, \ldots, s)$, it follows that $\left[x_{i}, x_{j}\right]=1$ for each $i=1, \ldots, h$ and $j=h+1, \ldots, s$, from which we get

$$
1=c^{k}\left[x_{i}, x_{j}\right] c^{-k}=\left[x_{i+k}, x_{j+k}\right]
$$

for every integer $k$ and for each $i=1, \ldots, h$ and $j=h+1, \ldots, s$. It follows, obviously, that $\left[x_{i}, x_{j}\right]=1$ for each $i, j=1, \ldots, s$ and so $O_{p}(G)$ is abelian, which contradicts the hypothesis.

Case 2: $G / \Phi(G) \simeq \Gamma(p, q, s)$ and $s \mid p-1$. In this case $O_{p}(G)=G_{p}=$ $\left\langle x_{1}, \ldots, x_{s}\right\rangle$ is of exponent $p, G_{q}=\langle a\rangle$ is of order $q$ and we can assume

$$
a^{-1} x_{i} a=x_{i}^{m^{t^{i-1}}} y_{i} \quad\left(i=1, \ldots, s ; y_{i} \in \Phi\left(G_{p}\right)\right)
$$

with the same notation as in (A) of Section 2. As $\Phi\left(G_{p}\right) \leq Z(G)$, we have

$$
a^{-1}\left[x_{i}, x_{j}\right] a=\left[x_{i}, x_{j}\right]=\left[x_{i}, x_{j}\right]^{m^{t^{i+j-2}}} \quad(i, j=1, \ldots, s) .
$$

It follows that if $\left[x_{i}, x_{j}\right] \neq 1$ then

$$
m^{t^{i+j-2}} \equiv 1(\bmod p)
$$

from which, as $m \not \equiv 1(\bmod p)$ and so $\exp (m, p)=q$, we obtain $t^{i+j-2} \equiv$ $0(\bmod q)$, which is false, since $2 \leq t \leq q-1$. Thus $\left[x_{i}, x_{j}\right]=1$ for each $i, j=1, \ldots, s$, that is, $G_{p}$ is abelian.

Case 3: $G / \Phi(G) \simeq \Delta(p, q, h)$. As in the previous case, $O_{p}(G)=G_{p}=$ $\left\langle x_{1}, \ldots, x_{q}\right\rangle$ is of exponent $p$. Moreover, $G_{q}=\langle a, b| a^{q^{h}}=b^{q}=1, b^{-1} a b=$ $\left.a^{1+q^{h-1}}\right\rangle$ and we can assume

$$
\begin{align*}
a^{-1} x_{i} a & =x_{i}^{m\left(1+q^{h-1}\right)^{i-1}} y_{i} & & \left(i=1, \ldots, q ; y_{i} \in \Phi\left(G_{p}\right)\right),  \tag{3.6}\\
b^{-1} x_{i} b & =x_{i-1} z_{i} & & \left(i=1, \ldots, q ; z_{i} \in \Phi\left(G_{p}\right)\right),
\end{align*}
$$

with the same notation as in (B) of Section 2. As $\Phi\left(G_{p}\right) \leq Z(G)$, we have

$$
a^{-1}\left[x_{i}, x_{j}\right] a=\left[x_{i}, x_{j}\right]=\left[x_{i}, x_{j}\right]^{m^{\left(1+q^{h-1}\right)^{i-1}+\left(1+q^{h-1}\right)^{j-1}}},
$$

from which, if $\left[x_{i}, x_{j}\right] \neq 1(i<j)$, we obtain

$$
m^{\left(1+q^{h-1}\right)^{i-1}\left(\left(1+q^{h-1}\right)^{j-i}+1\right)} \equiv 1(\bmod p)
$$

and so, as $\exp (m, p)=q^{h}$, we get $\left(1+q^{h-1}\right)^{j-i}+1 \equiv 0\left(\bmod q^{h}\right)$, therefore, obviously, $q=2$. Thus $G_{p}=\left\langle x_{1}, x_{2}\right\rangle$, and from (3.6) we get

$$
\left[x_{1}, x_{2}\right]=b^{-1}\left[x_{1}, x_{2}\right] b=\left[x_{2}, x_{1}\right]=\left[x_{1}, x_{2}\right]^{-1}
$$

hence $\left[x_{1}, x_{2}\right]=1$, that is, $G_{p}$ is abelian.

Case 4: $G / \Phi(G) \simeq \Delta(p, q)$. As in the previous cases, $O_{p}(G)=G_{p}=$ $\left\langle x_{1}, \ldots, x_{q}\right\rangle$ is of exponent $p . G_{q}$ is extraspecial of order $q^{3}$ and exponent $q$, and we can assume, if $G_{q}=\langle a, b\rangle$,

$$
\begin{aligned}
a^{-1} x_{i} a & =x_{i}^{m l^{i-1}} y_{i} & & \left(i=1, \ldots, q ; y_{i} \in \Phi\left(G_{p}\right)\right), \\
b^{-1} x_{i} b & =x_{i-1} z_{i} & & \left(i=1, \ldots, q ; z_{i} \in \Phi\left(G_{p}\right)\right),
\end{aligned}
$$

with the same notation as in (C) of Section 2. As $\Phi\left(G_{p}\right) \leq Z(G)$, we have

$$
[a, b]^{-1}\left[x_{i}, x_{j}\right][a, b]=\left[x_{i}, x_{j}\right]=\left[x_{i}, x_{j}\right]^{l^{2}}
$$

It follows that if $\left[x_{i}, x_{j}\right] \neq 1$ then $l^{2} \equiv 1(\bmod p)$, which is false, since $l \neq 1$ and $q \neq 2$. Thus $\left[x_{i}, x_{j}\right]=1$, so $G_{p}$ is abelian.
3.3. Remark. Proposition 3.2 assures that if $G$ is soluble, minimal non- $p$-supersoluble without normal Sylow subgroups then $O_{p}(G)=M_{p}$ is abelian (the notation is that of 1.9). As $M_{p}=\Omega\left(M_{p}\right)\left\langle c^{p}\right\rangle$ we then have $M_{p}=N \times\left\langle c^{p}\right\rangle$ where $N$ is elementary abelian of order $p^{p}$. Let now $p$ and $q$ be primes such that $q \mid p-1$, let $K=K_{q} K_{p}\left(K_{q} \triangleleft K\right)$ be a minimal nonabelian group and let $\psi=\pi \sigma$ be the homomorphism $K \rightarrow \mathrm{GL}(p, p)$, where $\pi$ and $\sigma$ are respectively the canonical homomorphism $K \rightarrow K / \Phi\left(K_{p}\right)$ and the immersion of $K / \Phi\left(K_{p}\right)$ in $\mathrm{GL}(p, p)$ considered in (A) of Section 2. If $N$ is an elementary abelian group of order $p^{p}$, let $G$ be the semidirect product $K \ltimes_{\psi} N$. Then $G$ is soluble, minimal non- $p$-supersoluble and without normal Sylow subgroups. Such a semidirect product will be denoted by $\Gamma^{*}(p, q, n)$, where $p^{n}=\left|K_{p}\right|$ (if $n=1$, then $\left.\Gamma^{*}(p, q, n)=\Gamma(p, q)\right)$.

The following proposition provides the structure of the soluble, minimal non- $p$-supersoluble groups without normal Sylow subgroups in terms of $\Gamma^{*}(p, q, n)$.
3.4. Let $G$ be a group without normal Sylow subgroups. Then $G$ is soluble and minimal non-p-supersoluble if and only if $G / O_{q}(G) \simeq \Gamma^{*}(p, q, n)$ and $O_{q}(G)=\Phi(G)_{q}(\pi(G)=\{p, q\}, p>q)$.

Proof. The condition is obviously sufficient. Let now $G$ be soluble, minimal non- $p$-supersoluble without normal Sylow subgroups. We have (see 1.9 and Theorem 2.1) $G / \Phi(G) \simeq \Gamma(p, q), \Phi(G)=\Phi\left(M_{p}\right)\left\langle c^{p}\right\rangle \times O_{q}(G)$ (see 3.1) and so, by 3.3, $\Phi(G)=\left\langle c^{p}\right\rangle \times O_{q}(G)$. Again by Remark 3.3, we get $\Omega\left(M_{p}\right)=N \times\left\langle c^{p}\right\rangle\left(N\right.$ elementary abelian of order $\left.p^{p}, o(c)=p^{n}\right)$. Arguing as in the proof of 3.1, with $O_{q}(G)=1$ and supposing $n>1$, we can assume, as $c^{p} \in Z(G)$, that

$$
G_{q}\langle c\rangle /\left\langle c^{p}\right\rangle=\langle d\rangle\left(\underset{t=0}{r-1}\left\langle a_{t}\right\rangle\right) \lesssim \operatorname{Aut} \Omega\left(M_{p}\right)=\operatorname{GL}(p+1, p),
$$

where

$$
a_{t}=\left[\begin{array}{cc}
{\left[m_{i+t} \delta_{i, j}\right]_{1 \leq i, j \leq p}} & 0 \\
0 & 1
\end{array}\right], \quad d=\left[\begin{array}{cc}
{\left[\delta_{i, j+1}\right]_{1 \leq i, j \leq p}} & {\left[\lambda_{i}\right]_{1 \leq i \leq p}} \\
0 & 1
\end{array}\right]
$$

and

$$
d^{-1} a_{t} d=a_{t+1} \quad(t=0, \ldots, r-2), \quad d^{-1} a_{r-1} d=a_{0}^{\beta_{1}} \ldots a_{r-1}^{\beta_{r}}
$$

with the same notation as in (A) of Section 2. Arguing exactly as in the proof of 3.1 we obtain $\lambda_{i}=0$ for each $i=1, \ldots, p$, and so, obviously, $G \simeq \Gamma^{*}(p, q, n)$.
3.5. Remark. The statement of 3.2 is not true if $G / \Phi(G) \simeq \Theta(p)$ or $\Lambda(p, q, m)$, as the following examples show.
3.5.1. Example. Let $P$ be an extraspecial group of order $p^{3}$ and exponent $p$, with $4 \mid p-1$. With $P=\left\langle x_{1}, x_{2}\right\rangle$, let $\langle\sigma, \tau\rangle \simeq Q_{8}$ be the subgroup of Aut $P$ defined as follows:

$$
x_{1}^{\sigma}=x_{1}^{m}, \quad x_{2}^{\sigma}=x_{2}^{m^{-1}}, \quad x_{1}^{\tau}=x_{2}, \quad x_{2}^{\tau}=x_{1}^{-1}
$$

where $m$ is a primitive 4 th root of unity. The holomorph of $P$ by $\langle\sigma, \tau\rangle$ is minimal non- $p$-supersoluble and its Sylow $p$-subgroup is not abelian. Such a holomorph will be denoted by $\Theta^{*}(p)$.
3.5.2. Example. Let $P$ be as in the previous example and $4 \nmid p-1$. Let $\sigma$ be the automorphism of $P$ defined as follows:

$$
x_{1}^{\sigma}=x_{2}\left[x_{1}, x_{2}\right]^{n_{1}}, \quad x_{2}^{\sigma}=x_{1}^{-1}\left[x_{1}, x_{2}\right]^{n_{2}},
$$

with $n_{1}$ and $n_{2}$ integers (between 0 and $p-1$ ). The holomorph of $P$ by $\langle\sigma\rangle$ is minimal non- $p$-supersoluble and its Sylow $p$-subgroup is not abelian. Such a holomorph will be denoted by $\Lambda^{*}\left(p, n_{1}, n_{2}\right)$.
3.5.3. Example. Further examples of soluble, minimal non- $p$-supersoluble groups whose Sylow $p$-subgroups are not abelian are all minimal non-$p$-nilpotent groups with $G_{p}$ non-abelian. As a minimal non- $p$-supersoluble group is minimal non- $p$-nilpotent if and only if $\mathrm{G} / \Phi(G) \simeq \Lambda(p, q, 1)$, a minimal non- $p$-nilpotent group with $O_{q}(G)=1(q \neq p)$ will be denoted by $\Lambda^{*}(p, q)$. The structure of minimal non- $p$-nilpotent groups is well known ([11]).
3.6. Let $G$ be a minimal non-p-supersoluble group such that $G / \Phi(G) \simeq$ $\Theta(p)$. Then $G / O_{2}(G)$ is isomorphic either to $\Theta(p)$ or to $\Theta^{*}(p)$.

Proof. Let $O_{2}(G)=O_{p^{\prime}}(G)=1$. We have $G_{p}=\left\langle x_{1}, x_{2}\right\rangle$ of exponent $p, G_{2}=\langle a, b\rangle \simeq Q_{8}$, and we can assume

$$
\begin{array}{ll}
a^{-1} x_{1} a=x_{1}^{m} y^{n_{1}}, & b^{-1} x_{1} b=x_{2} y^{n_{3}} \\
a^{-1} x_{2} a=x_{2}^{m^{-1}} y^{n_{2}}, & b^{-1} x_{2} b=x_{1}^{-1} y^{n_{4}}
\end{array} \quad\left(y=\left[x_{1}, x_{2}\right]\right),
$$

where $m$ is a primitive 4 th root of unity and $n_{i}(i=1, \ldots, 4)$ are integers (between 0 and $p-1$ ). Since $y \in Z(G)$, we get

$$
\begin{aligned}
a^{-2} x_{1} a^{2} & =x_{1}^{-1} y^{(m+1) n_{1}}=b^{-2} x_{1} b^{2}=x_{1}^{-1} y^{n_{3}+n_{4}}=(a b)^{-2} x_{1}(a b)^{2} \\
& =x_{1}^{-1} y^{n_{4}+m n_{3}+n_{1}+m n_{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
a^{-2} x_{2} a^{2} & =x_{2}^{-1} y^{\left(m^{-1}+1\right) n_{2}}=b^{-2} x_{2} b^{2}=x_{2}^{-1} y^{n_{4}-n_{3}}=(a b)^{-2} x_{2}(a b)^{2} \\
& =x_{2}^{-1} y^{-n_{3}+m^{-1} n_{4}+n_{2}-m^{-1} n_{1}} .
\end{aligned}
$$

It follows that if $y \neq 1$ then $n_{1}, \ldots, n_{4}$ is a solution of the linear system

$$
\begin{gathered}
(m+1) \xi_{1}-\xi_{3}-\xi_{4}=0 \\
\left(m^{-1}+1\right) \xi_{2}+\xi_{3}-\xi_{4}=0 \\
\xi_{1}+m \xi_{2}+(m-1) \xi_{3}=0 \\
m^{-1} \xi_{1}+m^{-1} \xi_{2}+\xi_{3}-m^{-1} \xi_{4}=0
\end{gathered}
$$

which, as its matrix is non-singular, has only the trivial solution; hence, obviously, $G \simeq \Theta(p)$ or $\Theta^{*}(p)$.
3.7. Let $G$ be a minimal non-p-supersoluble group such that $G / \Phi(G) \simeq$ $\Lambda(p, q, m)$ with $m>1$. Then either $G / O_{q}(G) \simeq \Lambda(p, q, m)$ or $G / O_{2}(G) \simeq$ $\Lambda^{*}\left(p, n_{1}, n_{2}\right)$.

Proof. Let $O_{q}(G)=1$. As $m>1$, and so $\exp \left(p, q^{m}\right)=q$, we have $G_{p}=\left\langle x_{1}, \ldots, x_{q}\right\rangle$ and, if $G_{p}$ is abelian, then $G \simeq \Lambda(p, q, m)$. Let now $G_{p}$ be non-abelian and so (see 1.6) special of exponent $p$. Then (see, for instance [6], Th. 6.5) $q^{m}$ divides $p^{r}+1$ for some integer $r \leq q / 2$. As $m>1$, we get $q=2$ and so $G_{p}$ is extraspecial of order $p^{3}$ (and exponent $p$ ). We can then assume $G_{p}=\left\langle x_{1}, x_{2}\right\rangle, G_{2}=\langle b\rangle$ with

$$
b^{-1} x_{1} b=x_{2} y^{n_{1}}, \quad b^{-1} x_{2} b=x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} y^{n_{2}} \quad\left(y=\left[x_{1}, x_{2}\right]\right),
$$

where $n_{1}$ and $n_{2}$ are integers (between 0 and $p-1$ ) and $x^{2}-\beta_{2} x-\beta_{1} \in$ $\mathrm{GF}(p)[x]$ is the minimal polynomial of an element $\lambda$ of $\mathrm{GF}\left(p^{2}\right)$ of order $2^{m}$. We have obviously $\lambda^{2} \in \operatorname{GF}(p)$. On the other hand, as $y \in Z(G)$, we get

$$
\left[x_{1}, x_{2}\right]=b^{-1}\left[x_{1}, x_{2}\right] b=\left[x_{2}, x_{1}^{\beta_{1}}\right]=\left[x_{1}, x_{2}\right]^{-\beta_{1}}
$$

from which we deduce $\beta_{1}=-1$. It follows that $m=2$ and so $G \simeq$ $\Lambda^{*}\left(p, n_{1}, n_{2}\right)$.

From the results of this section a theorem follows that provides the structure of soluble, minimal non- $p$-supersoluble groups.
3.8. Theorem. Let $p$ be a prime. A group $G$ is soluble and minimal non-p-supersoluble if and only if $O_{p^{\prime}}(G)=\Phi(G)_{p^{\prime}}$ and $G / O_{p^{\prime}}(G)$ is isomor-
phic to one of the following groups:
(a) $\Gamma(p, q, s), s \mid p-1 ; \quad$ (b) $\Gamma^{*}(p, q, n)$;
(c) $\Delta(p, q, h)$;
(d) $\Delta(p, q)$;
(e) $\Theta(p)$;
(f) $\Theta^{*}(p)$;
(g) $\Lambda(p, q, m), q^{m-1} \mid p-1, q^{m} \nmid p-1, m>1$;
(h) $\Lambda^{*}\left(p, n_{1}, n_{2}\right)$;
(i) $\Lambda^{*}(p, q)$.
4. Non-soluble, minimal non- $p$-supersoluble groups. Minimal non- $p$-supersoluble groups are not necessarily soluble. For instance, $\operatorname{PSL}(2, p)(p$ prime $>3)$ is minimal non- $p$-supersoluble. Now we show how the study of non-soluble, minimal non- $p$-supersoluble groups can be reduced to that of simple groups.

From 1.2 we deduce immediately the following proposition.
4.1. Let $G$ be a non-soluble, minimal non-p-supersoluble group. Then $F(G)=\Phi(G)$.
4.2. Let $G$ be a non-soluble, minimal non-p-supersoluble group. Then $G / \Phi(G)$ is simple.

Proof. Let $G$ be a counterexample of least order and so $\Phi(G)=1$. We have, by 4.1, $O_{p}(G)=1$. If $N$ is a minimal normal subgroup of $G$, from this it follows that $N$ is a $p^{\prime}$-group. If $\mathrm{G}=M N$ ( $M$ maximal in $G$ ) we find that $G$ is $p$-supersoluble: a contradiction.
4.3. Let $G$ be a non-soluble, minimal non-p-supersoluble group. Then $O_{p}(G) \leq Z(G)$.

Proof. If $C=C_{G}\left(O_{p}(G)\right)<G$, we have, by $4.2, C \leq \Phi(G)$. Let $M$ be a maximal subgroup of $G$. Since there exists a supersoluble immersion of $O_{p}(G)$ in $M$, we conclude that $M / C$ is supersoluble; hence $G / C$ is soluble, which contradicts the hypothesis.

From 4.2 and 4.3 we immediately deduce the following theorem.
4.4. Theorem. Let $G$ be a non-soluble group and let $p$ be an odd prime. Then $G$ is minimal non-p-supersoluble if and only if $G / \Phi(G)$ is simple, minimal non-p-supersoluble and $O_{p}(G) \leq Z(G)$.

The next results provide a classification of simple, minimal non- $p$-supersoluble groups if $p$ is the smallest odd prime that divides the order of the group. In the proof of one of the propositions we use the classification of the finite simple groups.
4.5. Let $G$ be a minimal non-3-supersoluble group. Then all proper subgroups of $G$ are soluble.

Proof. Let $G$ be a counterexample of least order. Since $G / \Phi(G)$ is, as $G$, minimal non-3-supersoluble, we have obviously $\Phi(G)=1$ and so $O_{3^{\prime}}(G)=1$, and, by 4.1, $O_{3}(G)=1$. If $N$ is a minimal normal subgroup of $G$ and $N \neq G$, we have obviously $3 \nmid|N|$, which is false, as $O_{3^{\prime}}(G)=1$. Thus $G$ is simple. Since $G$ is not a minimal simple group, let $H$ be a proper simple non-abelian subgroup of $G$. As $H$ is 3 -supersoluble, we have $3 \nmid|H|$, and therefore $H$ is isomorphic to a Suzuki group $S_{z}\left(2^{2 n+1}\right)$. Thus the proper simple non-abelian subgroups of $G$ are isomorphic to Suzuki groups; from this, using the classification of the finite simple groups (see for instance [2]), it follows that $G$ itself is a Suzuki group and so $G$ is 3 -supersoluble, since $3 \nmid|G|$ : a contradiction.
4.6. The Suzuki group $S_{z}\left(2^{2 n+1}\right)$ is minimal non-5-supersoluble if and only if $2 n+1$ is prime.

Proof. If $2 n+1$ is not prime, denote by $2 m+1$ a proper divisor $(\neq 1)$ of $2 n+1$. Then $S_{z}\left(2^{2 n+1}\right)$ has a subgroup isomorphic to $S_{z}\left(2^{2 m+1}\right)$ (see for instance [8]), which is not 5 -supersoluble. Conversely, let $2 n+1=q$ be prime. Then (see for instance [8]) the only non-supersoluble subgroups of $S_{z}\left(2^{q}\right)$ are Frobenius groups whose kernel are 2-groups (of order $2^{2 q}$ ) and whose complements are cyclic (of order $2^{q}-1$ ). Such groups are obviously 5 -supersoluble, and therefore $S_{z}\left(2^{q}\right)$ is minimal non- 5 -supersoluble.
4.7. Let $G$ be a minimal non-p-supersoluble group, where $p$ is the smallest odd prime divisor of $|G|$. Then all proper subgroups of $G$ are soluble. In particular, if $G$ is simple, then $G$ is a minimal simple group.

Proof. If $p=3$, the statement follows from 4.5. Let now $p \geq 5$ and let $G$ be a counterexample of least order. By similar arguments to the proof of 4.5 we show that $G$ is simple, and therefore, as $3 \nmid|G|, G$ is a Suzuki group $S_{z}\left(2^{2 n+1}\right)$. We then have $p=5$. Since $G$ is not a minimal simple group, $2 n+1$ is not prime, which contradicts 4.6.
4.8. Theorem. Let $G$ be a simple non-abelian group. Then $G$ is minimal non-p-supersoluble with $p$ the smallest odd prime divisor of $|G|$ if and only if $G$ is isomorphic to one of the following groups:
(i) $\operatorname{PSL}\left(2,2^{q}\right), q$ prime;
(ii) $\operatorname{PSL}(2, q), q$ prime $>3$ and $q^{2}+1 \equiv 0(\bmod 5)$;
(iii) $S_{z}\left(2^{q}\right)$, $q$ prime $(\neq 2)$.

Moreover, the groups (i)-(iii) are, up to isomorphism, the only simple, minimal non-s-supersoluble groups for every odd prime s that divides their order.

Proof. A direct analysis (see for instance [7] and [8]) proves that the groups (i)-(iii) are minimal non- $s$-supersoluble for every odd prime $s$ that divides their order. Let now $G$ be simple and minimal non- $p$-supersoluble,
with $p=\min \pi(G) \backslash\{2\}$. By $4.7, G$ is a minimal simple group. The classification of the minimal simple groups due to J. G. Thompson ([15]) provides, besides the groups (i)-(iii), the groups PSL $\left(2,3^{q}\right), q$ odd prime, and $\operatorname{PSL}(3,3)$.

We can exclude $\operatorname{PSL}\left(2,3^{q}\right)$, because a Sylow 3-subgroup of $\operatorname{PSL}\left(2,3^{q}\right)$ is minimal normal in its normalizer (see for instance [7]) and therefore the latter is not 3 -supersoluble. As far as $\operatorname{PSL}(3,3)$ is concerned, if we regard it as an automorphisms group of the projective plane $\Pi$ over $\mathrm{GF}(3)$, the stabilizer $G_{\alpha}\left(G_{r}\right)$ of a point (of a line) of $\Pi$ is isomorphic to the complete holomorph of an elementary abelian group $P$ of order $3^{2}$ (Aut $P \simeq \operatorname{GL}(2,3)$ is the stabilizer in $G_{\alpha}$ (in $G_{r}$ ) of a line (a point) not containing $\alpha$ (not belonging to $r$ )). Such subgroups are obviously non-3-supersoluble and so $\operatorname{PSL}(3,3)$ is not minimal non-3-supersoluble.

The following theorem provides a characterization of minimal simple groups.
4.9. Let $G$ be a simple non-abelian group. Then $G$ is minimal non-psupersoluble for every prime $p \geq 5$ that divides its order if and only if $G$ is a minimal simple group.

Proof. A direct analysis proves that the minimal simple groups are minimal non- $p$-supersoluble for every prime $p \geq 5$ that divides their order. Vice versa, let $G$ be simple and minimal non- $p$-supersoluble for every prime $p \geq 5$ that divides its order. Let $\omega=\{2,3\}$. Then $H / O_{\omega}(H)$ is supersoluble for every proper subgroup $H$ of $G$. It follows that $H$ is soluble and therefore $G$ is a minimal simple group.

## REFERENCES

[1] R. Carter, B. Fisher and T. Hawkes, Extreme classes of finite soluble groups, J. Algebra 9 (1968), 285-313.
[2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford 1985.
[3] E. L. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Teubner, Leipzig 1901 (Dover reprint 1958).
[4] K. Doerk, Minimal nicht überauflösbare, endliche Gruppen, Math. Z. 91 (1966), 198-205.
[5] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029.
[6] D. Gorenstein, Finite Groups, Harper and Row, New York 1968
[7] B. Huppert, Endliche Gruppen I, Springer, Berlin 1967.
[8] B. Huppert and N. Blackburn, Finite Groups III, Springer, Berlin 1982.
[9] N. Ito, Note on (LM)-groups of finite orders, Kōdai Math. Sem. Reports 1951, 1-6.
[10] N. P. Kontorovich and V. P. Nagrebetskiĭ, Finite minimal non-p-supersolvable groups, Ural. Gos. Univ. Mat. Zap. 9 (1975), 53-59, 134-135 (in Russian).
[11] L. Rédei, Die endlichen einstufig nichtnilpotenten Gruppen, Publ. Math. Debrecen 4 (1956), 303-324.
[12] V. N. Semenchuk, Minimal non- $\mathfrak{F}$-groups, Dokl. Akad. Nauk BSSR 22 (7) (1978), 596-599 (in Russian).
[13] -, Minimal non-F-groups, Algebra i Logika 18 (3) (1979), 348-382 (in Russian); English transl.: Algebra and Logic 18 (3) (1979), 214-233.
[14] M. Suzuki, On a class of doubly transitive groups, Ann. of Math. 75 (1962), 105145.
[15] J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437.

DIPARTIMENTO DI MATEMATICA E APPLICAZIONI "RENATO CACCIOPPOLI"
UNIVERSITÀ DI NAPOLI
VIA MEZZOCANNONE, 8
I-80134 NAPOLI, ITALY

