
C O L L O Q U I U M M A T H E M A T I C U M
VOL. LXIII 1992 FASC. 1

ON FINITE MINIMAL NON-p-SUPERSOLUBLE GROUPS

BY

FERNANDO T UCC ILLO (NAPLES)

If F is a class of groups, then a minimal non-F-group (a dual minimal non-
F-group resp.) is a group which is not in F but any of its proper subgroups
(factor groups resp.) is in F. In many problems of classification of groups
it is sometimes useful to know structure properties of classes of minimal
non-F-groups and dual minimal non-F-groups. In fact, the literature on
group theory contains many results directed to classify some of the most
remarkable among the aforesaid classes. In particular, V. N. Semenchuk
in [12] and [13] examined the structure of minimal non-F-groups for F a
formation, proving, among other results, that if F is a saturated formation,
then the structure of finite soluble, minimal non-F-groups can be determined
provided that the structure of finite soluble, minimal non-F-groups with
trivial Frattini subgroup is known.

In this paper we use this result with regard to the formation of
p-supersoluble groups (p prime), starting from the classification of finite
soluble, minimal non-p-supersoluble groups with trivial Frattini subgroup
given by N. P. Kontorovich and V. P. Nagrebetskĭı ([10]). The second part of
this paper deals with non-soluble, minimal non-p-supersoluble finite groups.
The problem is reduced to the case of simple groups. We classify the simple,
minimal non-p-supersoluble groups, p being the smallest odd prime divisor
of the group order, and provide a characterization of minimal simple groups.

All the groups considered are finite.

1. Some preliminary results. We provide some preliminary results;
some of them are implicitly contained in the papers mentioned above, so we
omit their proofs.

1.1. Let G be a minimal non-p-supersoluble group with p = minπ(G).
Then G is soluble.

P r o o f. If p > 2, then |G| is odd and so G is soluble ([5]). If p = 2, the
statement follows from a theorem of Ito ([9]), if we recall that
2-supersolubility is equivalent to 2-nilpotency.
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1.2. Let G be a minimal non-p-supersoluble group. If Op(G) 6≤ Φ(G),
then G is soluble.

1.3. Let G be a minimal non-p-supersoluble group with a normal Sylow
subgroup. Then G is soluble and Gp is the only normal Sylow subgroup of G.

1.4. Let G be a soluble, minimal non-p-supersoluble group. Then |π(G)|
≤ 3. Moreover , if |π(G)| = 3 then Gp/G and p = maxπ(G).

1.5. Let G be a soluble, minimal non-p-supersoluble group without nor-
mal Sylow subgroups. Then p = maxπ(G).

The following propositions can be obtained using techniques similar to
those used in [1], [4], [13].

1.6. Let G be a minimal non-p-supersoluble group and Gp/G. Then:

(i) Gp/Φ(Gp) is minimal normal in G/Φ(Gp);
(ii) if M is a maximal subgroup of G whose index is a power of p, then

M = Φ(Gp)Gp′ ;
(iii) there exists a supersoluble immersion of Φ(Gp) in G;
(iv) Φ(Gp) ≤ Z(Gp) (and so the class of Gp is ≤ 2);
(v) the exponent of G′p is ≤ p;
(vi) the exponent of Gp is p if p 6= 2, and is ≤ 4 if p = 2.

1.7. Let G be a minimal non-p-supersoluble group and Gp / G. If K is
a p-complement of G, then:

(i) K ∩ CG(Gp/Φ(Gp)) = K ∩ Φ(G) = Φ(K) ∩ Φ(G);
(ii) K/K ∩ Φ(G) is minimal non-abelian or cyclic primary ;
(iii) Φ(G) = Φ(Gp)× ( �@q 6=pOq(G));
(iv) Φ(Gp) ≤ Z(G).

1.8. Let G be a soluble, minimal non-p-supersoluble group without nor-
mal Sylow subgroups. With π(G) = {p, q} (p > q) we have:

(i) G has no subgroup of index q;
(ii) G has only one subgroup M of index p;
(iii) Op(G) = Mp.

1.9. Let G be a soluble, minimal non-p-supersoluble group without nor-
mal Sylow subgroups. Using the notation of 1.8 with K = NG(Gq) and
P = Φ(Mp)(K ∩Mp), we have:

(i) Mp/P is minimal normal in G/P ;
(ii) Φ(G) = P ×Oq(G);
(iii) Φ(G) ≤ K (and so P = K ∩Mp);
(iv) K/Φ(G) is minimal non-abelian;
(v) P ≤ Z(M) (and so the class of Mp is ≤ 2);
(vi) M ′

p has exponent ≤ p;
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(vii) if Kp = P 〈c〉, then P = 〈cp〉 × Q with Q elementary abelian and
Mp = Ω(Mp)〈cp〉 where Ω(Mp) = {x ∈Mp | xp = 1}.

2. Classification of the soluble, minimal non-p-supersoluble
groups with trivial Frattini subgroup ([10]). We report this classi-
fication, modifying the notation of [10] according to that used in Section 1.

(A) Let p, q, s be primes such that q | p − 1 and s 6= q. Let K = KqKs

be the subgroup of GL(s, p) defined as follows (equating indexes modulo s):

Ks = 〈[γiδi,j+i]1≤i,j≤s〉

where γi = 1 for i = 1, . . . , s − 1 and γs is of order sk | p− 1 (k ≥ 0). If
s | q − 1, then

Kq = 〈[mti−1
δi,j ]1≤i,j≤s〉

where m is a primitive qth root of unity, 2 ≤ t ≤ q − 1 and ts ≡ 1 (mod q).
If s - , q − 1, then

Kq =
r−1

�@
t=0

〈[mi+tδi,j ]1≤i,j≤s〉

where r = exp(q, s), mq
i+t = 1 (i = 1, . . . , s; t = 0, . . . , r − 1) and mi+r =

mβ1
i . . .mβr

i+r−1 (i = 1, . . . , s), xr − βrx
r−1 − . . . − β1 being the minimal

polynomial over GF(q) of an element of GF (qr)× of order s. The holomorph
of an elementary abelian group of order ps byK will be denoted by Γ (p, q, s).
If s = p, then Γ (p, q, s) will sometimes be denoted by Γ (p, q).

(B) Let p, q be primes and h an integer such that qh | p− 1. Let K =
〈a, b〉 be the q-subgroup of GL(q, p) defined as follows (equating indexes
modulo q):

a = [m(1+qh−1)i−1
δi,j ]1≤i,j≤q , b = [δi,j+1]1≤i,j≤q

where m is a primitive qth root of unity. The holomorph of an elementary
abelian group of order pq by K will be denoted by ∆(p, q, h).

(C) Let p, q be primes such that q | p− 1 and q 6= 2. Let K be the
subgroup (extraspecial of order q3) of GL(q, p) defined as follows (equating
indexes modulo q): K = 〈a, b〉 where

a = [mli−1δi,j ]1≤i,j≤q , b = [δi,j+1]1≤i,j≤q
with mq = 1 and l a primitive qth root of unity. The holomorph of an
elementary abelian group of order pq by K will be denoted by ∆(p, q).

(D) Let p be a prime such that 4 | p− 1 and let K be the subgroup
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(' Q8) of GL(2, p) defined by

K =
〈[

m 0
0 m−1

]
,

[
0 1
−1 0

]〉
where m is a primitive 4th root of unity. The holomorph of an elementary
abelian group of order p2 by K will be denoted by Θ(p).

(E) Let p, q be different primes and m a positive integer. With n =
exp(p, qm), Λ(p, q,m) will denote the holomorph of the additive group of
the Galois field GF(pn) by the subgroup 〈τ〉 of order qm of the Singer cycle
of GL(n, p) ' AutGF(pn)(+); i.e. xτ = λx (x ∈ GF(pn)) where λ is a
primitive qmth root of unity in GF(pn).

2.1. Theorem (Kontorovich–Nagrebetskĭı [10]). Let p be a prime. A
group G is soluble, minimal non-p-supersoluble with Φ(G) = 1 if and only
if G is isomorphic to one of the following groups:

(A) Γ (p, q, s) with s = p or s | p− 1;
(B) ∆(p, q, h); (C) ∆(p, q); (D) Θ(p);
(E) Λ(p, q,m) with qm−1 | p− 1 and qm - p− 1.

3. Structure of the soluble, minimal non-p-supersoluble groups

3.1. Let G be a soluble, minimal non-p-supersoluble group without nor-
mal Sylow subgroups. With the notation of 1.9 we have P = Φ(Mp)〈cp〉.

P r o o f. Without loss of generality, assume Oq(G) = 1 (q 6= p). Since
P ≤ Z(M) (see 1.9) and G/P ' Γ (p, q) (Theorem 2.1), we can assume,
with |P | = pn (n ≥ 0), that Gq = �@

r−1
t=0 〈at〉 where

at =
[ [mi+tδi,j ]1≤i,j≤p 0

0 [δi,j ]1≤i,j≤n

]
and

c =
[ [δi,j+1]1≤i,j≤p [λi,j ]1≤i≤p,1≤j≤n

0 [γi,j ]1≤i,j≤n

]
with

(3.1) c−1atc = at+1 (t = 0, . . . , r − 2) , c−1ar−1c = aβ1
1 . . . a

βr−1
r−1

and with the same notation as in (A) of Section 2. From (3.1) it follows
that, for each t = 0, . . . , r − 1,

[δi,j−1]1≤i,j≤p[(mi+t − 1)δi,j ]1≤i,j≤p[λi,j ]1≤i≤p,1≤j≤n = 0 ,

from which we deduce

(mi+t+1 − 1)λi+1,j = 0
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for each: i = 1, . . . , p; j = 1, . . . , n; t = 0, . . . , r − 1 (equating indexes
modulo p). Since the indexes are arbitrary, as in (A) of Section 2 we conclude
that λi,j = 0 for each i = 1, . . . , p and j = 1, . . . , n. Thus G splits on P and
so, as P = Φ(G), we get P = 1.

3.2. Let G be a minimal non-p-supersoluble group such that G/Φ(G) is
one of the groups (A), (B), (C) of Theorem 2.1. Then Op(G) is abelian.

P r o o f. Without loss of generality, assume Op′(G) = 1. We examine
separately the different cases.

C a s e 1: G/Φ(G) ' Γ (p, q, s) and exp(q, s) = r > 1. We can assume
(see 3.1 and 1.6, 1.9) G = Op(G)Gq〈c〉 where Op(G) = 〈x1, . . . , xs, c

εp〉, with
ε = 0 if s 6= p, ε = 1 if s = p, and 〈x1, . . . , xs〉 of exponent p; Gq = �@

r−1
t=0 〈at〉

with

(3.2) a−1
t xiat = xmi+tyi,t

(i = 1, . . . , s; t = 0, . . . , r − 1; yi,t ∈ Φ(Op(G))〈cεp〉)

and
(3.3)
c−1xic = xi−1zi

c−1xsc = x
(γs)η

s−1 zs

(i = 1, . . . , s− 1; zi ∈ Φ(Op(G))〈cεp〉) ,
(η = 0 if s = p; η = 0, 1 if s 6= p; zs ∈ Φ(Op(G))〈cεp〉)

and with the same notation as in (A) of Section 2. As Φ(Op(G))〈cεp〉 ≤
Z(Op(G)Gq) (see 1.9), we have

a−1
t [xi, xj ]at = [xi, xj ] = [xi, xj ]mi+tmj+t

for each i, j = 1, . . . , s and t = 0, . . . , r − 1. It follows that if [xi, xj ] 6= 1
then

(3.4) mi+tmj+t ≡ 1 (mod p)

for each t = 0, . . . , r − 1. On the other hand, from (3.3) it follows that, for
every integer k, we have (equating indexes modulo s)

ck[xi, xj ]c−k = [xi+k, xj+k]
β (0 ≤ β ≤ p− 1)

for each i, j = 1, . . . , s; we deduce that if [xi, xj ] 6= 1 then also [xi+k, xj+k] 6=
1, and so, by (3.4), we obtain

(3.5) mi+kmj+k ≡ 1 (mod p)

for each integer k (equating indexes modulo s).
Now, suppose Op(G) is non-abelian. As cεp ∈ Z(G) and G/Φ(G) '

Γ (p, q, s), for any i = 1, . . . , s there exists j = 1, . . . , s such that (3.5) holds.
As k is arbitrary, it follows that m2

i ≡ 1 (mod p) for each i = 1, . . . , s and
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so, as s 6= 2, we have q = 2. We can then assume

m1 ≡ . . . ≡ mh ≡ 1
mh+1 ≡ . . . ≡ ms ≡ −1

(mod p) (1 ≤ h ≤ s− 1) .

As mimj ≡ −1 (mod p) (i = 1, . . . , h; j = h + 1, . . . , s), it follows that
[xi, xj ] = 1 for each i = 1, . . . , h and j = h+ 1, . . . , s, from which we get

1 = ck[xi, xj ]c−k = [xi+k, xj+k]

for every integer k and for each i = 1, . . . , h and j = h+ 1, . . . , s. It follows,
obviously, that [xi, xj ] = 1 for each i, j = 1, . . . , s and so Op(G) is abelian,
which contradicts the hypothesis.

C a s e 2: G/Φ(G) ' Γ (p, q, s) and s | p− 1. In this case Op(G) = Gp =
〈x1, . . . , xs〉 is of exponent p, Gq = 〈a〉 is of order q and we can assume

a−1xia = xm
ti−1

i yi (i = 1, . . . , s; yi ∈ Φ(Gp))

with the same notation as in (A) of Section 2. As Φ(Gp) ≤ Z(G), we have

a−1[xi, xj ]a = [xi, xj ] = [xi, xj ]
mti+j−2

(i, j = 1, . . . , s) .

It follows that if [xi, xj ] 6= 1 then

mti+j−2
≡ 1 (mod p) ,

from which, as m 6≡ 1 (mod p) and so exp(m, p) = q, we obtain ti+j−2 ≡
0 (mod q), which is false, since 2 ≤ t ≤ q − 1. Thus [xi, xj ] = 1 for each
i, j = 1, . . . , s, that is, Gp is abelian.

C a s e 3: G/Φ(G) ' ∆(p, q, h). As in the previous case, Op(G) = Gp =
〈x1, . . . , xq〉 is of exponent p. Moreover, Gq = 〈a, b | aqh

= bq = 1, b−1ab =
a1+qh−1〉 and we can assume

(3.6) a−1xia = x
m(1+qh−1)

i−1

i yi

b−1xib = xi−1zi

(i = 1, . . . , q; yi ∈ Φ(Gp)) ,
(i = 1, . . . , q; zi ∈ Φ(Gp)) ,

with the same notation as in (B) of Section 2. As Φ(Gp) ≤ Z(G), we have

a−1[xi, xj ]a = [xi, xj ] = [xi, xj ]m
(1+qh−1)i−1+(1+qh−1)j−1

,

from which, if [xi, xj ] 6= 1 (i < j), we obtain

m(1+qh−1)i−1((1+qh−1)j−i+1) ≡ 1 (mod p)

and so, as exp(m, p) = qh, we get (1 + qh−1)j−i + 1 ≡ 0 (mod qh), therefore,
obviously, q = 2. Thus Gp = 〈x1, x2〉, and from (3.6) we get

[x1, x2] = b−1[x1, x2]b = [x2, x1] = [x1, x2]
−1
,

hence [x1, x2] = 1, that is, Gp is abelian.
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C a s e 4: G/Φ(G) ' ∆(p, q). As in the previous cases, Op(G) = Gp =
〈x1, . . . , xq〉 is of exponent p. Gq is extraspecial of order q3 and exponent q,
and we can assume, if Gq = 〈a, b〉,

a−1xia = xml
i−1

i yi

b−1xib = xi−1zi

(i = 1, . . . , q; yi ∈ Φ(Gp)) ,
(i = 1, . . . , q; zi ∈ Φ(Gp)) ,

with the same notation as in (C) of Section 2. As Φ(Gp) ≤ Z(G), we have

[a, b]−1[xi, xj ][a, b] = [xi, xj ] = [xi, xj ]
l2
.

It follows that if [xi, xj ] 6= 1 then l2 ≡ 1 (mod p), which is false, since l 6= 1
and q 6= 2. Thus [xi, xj ] = 1, so Gp is abelian.

3.3. R e m a r k. Proposition 3.2 assures that if G is soluble, minimal
non-p-supersoluble without normal Sylow subgroups then Op(G) = Mp is
abelian (the notation is that of 1.9). As Mp = Ω(Mp)〈cp〉 we then have
Mp = N × 〈cp〉 where N is elementary abelian of order pp. Let now p and
q be primes such that q | p− 1, let K = KqKp (Kq / K) be a minimal non-
abelian group and let ψ = πσ be the homomorphism K → GL(p, p), where
π and σ are respectively the canonical homomorphism K → K/Φ(Kp) and
the immersion of K/Φ(Kp) in GL(p, p) considered in (A) of Section 2. If N
is an elementary abelian group of order pp, let G be the semidirect product
KnψN . Then G is soluble, minimal non-p-supersoluble and without normal
Sylow subgroups. Such a semidirect product will be denoted by Γ ∗(p, q, n),
where pn = |Kp| (if n = 1, then Γ ∗(p, q, n) = Γ (p, q)).

The following proposition provides the structure of the soluble, mini-
mal non-p-supersoluble groups without normal Sylow subgroups in terms of
Γ ∗(p, q, n).

3.4. Let G be a group without normal Sylow subgroups. Then G is
soluble and minimal non-p-supersoluble if and only if G/Oq(G) ' Γ ∗(p, q, n)
and Oq(G) = Φ(G)q (π(G) = {p, q}, p > q).

P r o o f. The condition is obviously sufficient. Let now G be soluble,
minimal non-p-supersoluble without normal Sylow subgroups. We have
(see 1.9 and Theorem 2.1) G/Φ(G) ' Γ (p, q), Φ(G) = Φ(Mp)〈cp〉 × Oq(G)
(see 3.1) and so, by 3.3, Φ(G) = 〈cp〉×Oq(G). Again by Remark 3.3, we get
Ω(Mp) = N × 〈cp〉 (N elementary abelian of order pp, o(c) = pn). Arguing
as in the proof of 3.1, with Oq(G) = 1 and supposing n > 1, we can assume,
as cp ∈ Z(G), that

Gq〈c〉/〈cp〉 = 〈d〉
( r−1

�@
t=0

〈at〉
)
<
'

AutΩ(Mp) = GL(p+ 1, p) ,
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where

at =
[

[mi+tδi,j ]1≤i,j≤p 0
0 1

]
, d =

[
[δi,j+1]1≤i,j≤p [λi]1≤i≤p

0 1

]
and

d−1atd = at+1 (t = 0, . . . , r − 2) , d−1ar−1d = aβ1
0 . . . aβr

r−1 ,

with the same notation as in (A) of Section 2. Arguing exactly as in the
proof of 3.1 we obtain λi = 0 for each i = 1, . . . , p, and so, obviously,
G ' Γ ∗(p, q, n).

3.5. R e m a r k. The statement of 3.2 is not true if G/Φ(G) ' Θ(p) or
Λ(p, q,m), as the following examples show.

3.5.1. Example. Let P be an extraspecial group of order p3 and
exponent p, with 4 | p − 1. With P = 〈x1, x2〉, let 〈σ, τ〉 ' Q8 be the
subgroup of AutP defined as follows:

xσ1 = xm1 , xσ2 = xm
−1

2 , xτ1 = x2 , xτ2 = x−1
1 ,

where m is a primitive 4th root of unity. The holomorph of P by 〈σ, τ〉 is
minimal non-p-supersoluble and its Sylow p-subgroup is not abelian. Such
a holomorph will be denoted by Θ∗(p).

3.5.2. Example. Let P be as in the previous example and 4 - p− 1.
Let σ be the automorphism of P defined as follows:

xσ1 = x2[x1, x2]
n1 , xσ2 = x−1

1 [x1, x2]
n2 ,

with n1 and n2 integers (between 0 and p − 1). The holomorph of P by
〈σ〉 is minimal non-p-supersoluble and its Sylow p-subgroup is not abelian.
Such a holomorph will be denoted by Λ∗(p, n1, n2).

3.5.3. Example. Further examples of soluble, minimal non-p-super-
soluble groups whose Sylow p-subgroups are not abelian are all minimal non-
p-nilpotent groups with Gp non-abelian. As a minimal non-p-supersoluble
group is minimal non-p-nilpotent if and only if G/Φ(G) ' Λ(p, q, 1), a min-
imal non-p-nilpotent group with Oq(G) = 1 (q 6= p) will be denoted by
Λ∗(p, q). The structure of minimal non-p-nilpotent groups is well known
([11]).

3.6. Let G be a minimal non-p-supersoluble group such that G/Φ(G) '
Θ(p). Then G/O2(G) is isomorphic either to Θ(p) or to Θ∗(p).

P r o o f. Let O2(G) = Op′ (G) = 1. We have Gp = 〈x1, x2〉 of exponent
p, G2 = 〈a, b〉 ' Q8, and we can assume

a−1x1a = xm1 y
n1 ,

a−1x2a = xm
−1

2 yn2 ,

b−1x1b = x2y
n3

b−1x2b = x−1
1 yn4

(y = [x1, x2]) ,
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where m is a primitive 4th root of unity and ni (i = 1, . . . , 4) are integers
(between 0 and p− 1). Since y ∈ Z(G), we get

a−2x1a
2 = x−1

1 y(m+1)n1 = b−2x1b
2 = x−1

1 yn3+n4 = (ab)−2
x1(ab)2

= x−1
1 yn4+mn3+n1+mn2

and

a−2x2a
2 = x−1

2 y(m−1+1)n2 = b−2x2b
2 = x−1

2 yn4−n3 = (ab)−2
x2(ab)2

= x−1
2 y−n3+m

−1n4+n2−m−1n1 .

It follows that if y 6= 1 then n1, . . . , n4 is a solution of the linear system

(m+ 1)ξ1 − ξ3 − ξ4 = 0 ,
(m−1 + 1)ξ2 + ξ3 − ξ4 = 0 ,
ξ1 +mξ2 + (m− 1)ξ3 = 0 ,

m−1ξ1 +m−1ξ2 + ξ3 −m−1ξ4 = 0 ,

which, as its matrix is non-singular, has only the trivial solution; hence,
obviously, G ' Θ(p) or Θ∗(p).

3.7. Let G be a minimal non-p-supersoluble group such that G/Φ(G) '
Λ(p, q,m) with m > 1. Then either G/Oq(G) ' Λ(p, q,m) or G/O2(G) '
Λ∗(p, n1, n2).

P r o o f. Let Oq(G) = 1. As m > 1, and so exp(p, qm) = q, we have
Gp = 〈x1, . . . , xq〉 and, if Gp is abelian, then G ' Λ(p, q,m). Let now Gp be
non-abelian and so (see 1.6) special of exponent p. Then (see, for instance
[6], Th. 6.5) qm divides pr + 1 for some integer r ≤ q/2. As m > 1, we get
q = 2 and so Gp is extraspecial of order p3 (and exponent p). We can then
assume Gp = 〈x1, x2〉, G2 = 〈b〉 with

b−1x1b = x2y
n1 , b−1x2b = xβ1

1 xβ2
2 yn2 (y = [x1, x2]) ,

where n1 and n2 are integers (between 0 and p − 1) and x2 − β2x − β1 ∈
GF(p)[x] is the minimal polynomial of an element λ of GF(p2) of order 2m.
We have obviously λ2 ∈ GF(p). On the other hand, as y ∈ Z(G), we get

[x1, x2] = b−1[x1, x2]b = [x2, x
β1
1 ] = [x1, x2]

−β1 ,

from which we deduce β1 = −1. It follows that m = 2 and so G '
Λ∗(p, n1, n2).

From the results of this section a theorem follows that provides the struc-
ture of soluble, minimal non-p-supersoluble groups.

3.8. Theorem. Let p be a prime. A group G is soluble and minimal
non-p-supersoluble if and only if Op′(G) = Φ(G)p′ and G/Op′(G) is isomor-
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phic to one of the following groups:

(a) Γ (p, q, s) , s | p− 1 ; (b) Γ ∗(p, q, n) ;
(c) ∆(p, q, h) ; (d) ∆(p, q) ;
(e) Θ(p) ; (f) Θ∗(p) ;

(g) Λ(p, q,m) , qm−1 | p− 1 , qm - p− 1 , m > 1 ;
(h) Λ∗(p, n1, n2) ; (i) Λ∗(p, q) .

4. Non-soluble, minimal non-p-supersoluble groups. Minimal
non-p-supersoluble groups are not necessarily soluble. For instance,
PSL(2, p) (p prime > 3) is minimal non-p-supersoluble. Now we show how
the study of non-soluble, minimal non-p-supersoluble groups can be reduced
to that of simple groups.

From 1.2 we deduce immediately the following proposition.

4.1. Let G be a non-soluble, minimal non-p-supersoluble group. Then
F (G) = Φ(G).

4.2. Let G be a non-soluble, minimal non-p-supersoluble group. Then
G/Φ(G) is simple.

P r o o f. Let G be a counterexample of least order and so Φ(G) = 1. We
have, by 4.1, Op(G) = 1. If N is a minimal normal subgroup of G, from this
it follows that N is a p′-group. If G= MN (M maximal in G) we find that
G is p-supersoluble: a contradiction.

4.3. Let G be a non-soluble, minimal non-p-supersoluble group. Then
Op(G) ≤ Z(G).

P r o o f. If C = CG(Op(G)) < G, we have, by 4.2, C ≤ Φ(G). Let M be
a maximal subgroup of G. Since there exists a supersoluble immersion of
Op(G) in M , we conclude that M/C is supersoluble; hence G/C is soluble,
which contradicts the hypothesis.

From 4.2 and 4.3 we immediately deduce the following theorem.

4.4. Theorem. Let G be a non-soluble group and let p be an odd prime.
Then G is minimal non-p-supersoluble if and only if G/Φ(G) is simple,
minimal non-p-supersoluble and Op(G) ≤ Z(G).

The next results provide a classification of simple, minimal non-p-super-
soluble groups if p is the smallest odd prime that divides the order of the
group. In the proof of one of the propositions we use the classification of
the finite simple groups.

4.5. Let G be a minimal non-3-supersoluble group. Then all proper
subgroups of G are soluble.
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P r o o f. Let G be a counterexample of least order. Since G/Φ(G) is,
as G, minimal non-3-supersoluble, we have obviously Φ(G) = 1 and so
O3′(G) = 1, and, by 4.1, O3(G) = 1. If N is a minimal normal subgroup
of G and N 6= G, we have obviously 3 - |N |, which is false, as O3′(G) = 1.
Thus G is simple. Since G is not a minimal simple group, let H be a proper
simple non-abelian subgroup of G. As H is 3-supersoluble, we have 3 - |H|,
and therefore H is isomorphic to a Suzuki group Sz(22n+1). Thus the proper
simple non-abelian subgroups of G are isomorphic to Suzuki groups; from
this, using the classification of the finite simple groups (see for instance [2]),
it follows that G itself is a Suzuki group and so G is 3-supersoluble, since
3 - |G|: a contradiction.

4.6. The Suzuki group Sz(22n+1) is minimal non-5-supersoluble if and
only if 2n+ 1 is prime.

P r o o f. If 2n+ 1 is not prime, denote by 2m+ 1 a proper divisor (6= 1)
of 2n + 1. Then Sz(22n+1) has a subgroup isomorphic to Sz(22m+1) (see
for instance [8]), which is not 5-supersoluble. Conversely, let 2n+ 1 = q be
prime. Then (see for instance [8]) the only non-supersoluble subgroups of
Sz(2q) are Frobenius groups whose kernel are 2-groups (of order 22q) and
whose complements are cyclic (of order 2q − 1). Such groups are obviously
5-supersoluble, and therefore Sz(2q) is minimal non-5-supersoluble.

4.7. Let G be a minimal non-p-supersoluble group, where p is the small-
est odd prime divisor of |G|. Then all proper subgroups of G are soluble. In
particular , if G is simple, then G is a minimal simple group.

P r o o f. If p = 3, the statement follows from 4.5. Let now p ≥ 5 and let
G be a counterexample of least order. By similar arguments to the proof of
4.5 we show that G is simple, and therefore, as 3 - |G|, G is a Suzuki group
Sz(22n+1). We then have p = 5. Since G is not a minimal simple group,
2n+ 1 is not prime, which contradicts 4.6.

4.8. Theorem. Let G be a simple non-abelian group. Then G is minimal
non-p-supersoluble with p the smallest odd prime divisor of |G| if and only
if G is isomorphic to one of the following groups:

(i) PSL(2, 2q), q prime;
(ii) PSL(2, q), q prime > 3 and q2 + 1 ≡ 0 (mod 5);
(iii) Sz(2q), q prime (6= 2).

Moreover , the groups (i)–(iii) are, up to isomorphism, the only simple, mini-
mal non-s-supersoluble groups for every odd prime s that divides their order.

P r o o f. A direct analysis (see for instance [7] and [8]) proves that the
groups (i)–(iii) are minimal non-s-supersoluble for every odd prime s that
divides their order. Let now G be simple and minimal non-p-supersoluble,
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with p = minπ(G) \ {2}. By 4.7, G is a minimal simple group. The clas-
sification of the minimal simple groups due to J. G. Thompson ([15]) pro-
vides, besides the groups (i)–(iii), the groups PSL(2, 3q), q odd prime, and
PSL(3, 3).

We can exclude PSL(2, 3q), because a Sylow 3-subgroup of PSL(2, 3q)
is minimal normal in its normalizer (see for instance [7]) and therefore the
latter is not 3-supersoluble. As far as PSL(3, 3) is concerned, if we regard
it as an automorphisms group of the projective plane Π over GF(3), the
stabilizer Gα (Gr) of a point (of a line) of Π is isomorphic to the complete
holomorph of an elementary abelian group P of order 32 (AutP ' GL(2, 3)
is the stabilizer in Gα (in Gr) of a line (a point) not containing α (not
belonging to r)). Such subgroups are obviously non-3-supersoluble and so
PSL(3, 3) is not minimal non-3-supersoluble.

The following theorem provides a characterization of minimal simple
groups.

4.9. Let G be a simple non-abelian group. Then G is minimal non-p-
supersoluble for every prime p ≥ 5 that divides its order if and only if G is
a minimal simple group.

P r o o f. A direct analysis proves that the minimal simple groups are
minimal non-p-supersoluble for every prime p ≥ 5 that divides their order.
Vice versa, let G be simple and minimal non-p-supersoluble for every prime
p ≥ 5 that divides its order. Let ω = {2, 3}. Then H/Oω(H) is supersoluble
for every proper subgroup H of G. It follows that H is soluble and therefore
G is a minimal simple group.
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