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Abstract. We study the distribution of the outliers in the spectrum of finite rank deformations of Wigner random matrices under
the assumption that the absolute values of the off-diagonal matrix entries have uniformly bounded fifth moment and the abso-
lute values of the diagonal entries have uniformly bounded third moment. Using our recent results on the fluctuation of resolvent
entries (On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries, Unpub-
lished manuscript; Fluctuations of matrix entries of regular functions of Wigner matrices, Unpublished manuscript) and ideas from
(Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices, Unpublished manuscript), we extend the
results by Capitaine, Donati-Martin, and Féral (Ann. Probab. 37 (2009) 1–47; Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012)
107–133).

Résumé. Nous étudions la distribution des valeurs propres qui sortent de l’amas du spectre de matrices de Wigner deformées
par une matrice de rang fini sous l’hypothèse que les valeurs absolues des éléments non diagonaux aient un moment d’ordre
cinq uniformément borné et que valeurs absolues des éléments diagonaux aient un moment d’ordre trois uniformément borné.
En utilisant des travaux récents (On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically
distributed entries, Unpublished manuscript; Fluctuations of matrix entries of regular functions of Wigner matrices, Unpublished
manuscript) et des idées de (Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices, Unpublished
manuscript), nous étendons les résultats de Capitaine, Donati-Martin et Féral (Ann. Probab. 37 (2009) 1–47; Ann. Inst. Henri
Poincaré Probab. Stat. 48 (2012) 107–133).
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1. Introduction and formulation of main results

Let XN = 1√
N

WN be a random real symmetric (Hermitian) Wigner matrix with independent entries up from the
diagonal. In the real symmetric case, we assume that the off-diagonal entries

(WN)ij , 1 ≤ i < j ≤ N, (1.1)

are independent random variables such that

E(WN)ij = 0, V(WN)ij = σ 2, m5 := sup
i �=j,N

E
∣∣(WN)ij

∣∣5
< ∞, (1.2)
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where Eξ denotes the mathematical expectation and Vξ the variance of a random variable ξ . The diagonal entries

(WN)ii , 1 ≤ i ≤ N, (1.3)

are independent random variables (that are also independent from the off-diagonal entries), such that

E(WN)ii = 0, c3 := sup
i,N

E
∣∣(WN)ii

∣∣3
< ∞. (1.4)

In a similar fashion, in the Hermitian case, we assume that the off-diagonal entries

Re(WN)ij , Im(WN)ij , 1 ≤ i < j ≤ N, (1.5)

are independent random variables such that

E(WN)ij = 0, V
[
Re(WN)ij

] = V
[
Im(WN)ij

] = σ 2

2
, m5 := sup

i �=j,N

E
∣∣(WN)ij

∣∣5
< ∞. (1.6)

The diagonal entries

(WN)ii , 1 ≤ i ≤ N, (1.7)

are independent centered random variables, independent from the off-diagonal entries, with uniformly bounded third
moment of the absolute values.

For a real symmetric (Hermitian) matrix M of order N, its empirical distribution of the eigenvalues is defined as
μM = 1

N

∑N
i=1 δλi

, where λ1 ≥ · · · ≥ λN are the (ordered) eigenvalues of M . Wigner semicircle law (see e.g. [1,2,7])
states that almost surely the empirical distribution μXN

of a random real symmetric (Hermitian) Wigner matrix XN

converges weakly to the nonrandom limiting distribution μsc. The limiting distribution μsc is known as the semicircle
distribution. It is absolutely continuous with respect to the Lebesgue measure and has the compact support [−2σ,2σ ].
The density of the Wigner semicircle distribution is given by

dμsc

dx
(x) = 1

2πσ 2

√
4σ 2 − x21[−2σ,2σ ](x). (1.8)

Wigner semicircle law can be reformulated as follows. For any bounded continuous test function ϕ : R → R, the linear
statistics

1

N

N∑
i=1

ϕ(λi) = 1

N
Tr

(
ϕ(XN)

) =: trN
(
ϕ(XN)

)

converges to
∫

ϕ(x)dμsc(dx) almost surely; here and throughout the paper, we use the notation trN = 1
N

Tr to denote
the normalized trace.

The Stieltjes transform of the semicircle law is

gσ (z) :=
∫

dμsc(x)

z − x
= z − √

z2 − 4σ 2

2σ 2
, z ∈ C \ [−2σ,2σ ]. (1.9)

It is the solution to

σ 2g2
σ (z) − zgσ (z) + 1 = 0 (1.10)

that decays to 0 as |z| → ∞.
In this paper, we study the fluctuations of the outliers in the spectrum of finite-dimensional deformations of Wigner

matrices. Starting with the pioneering work by Füredi and Komlós [19], there have been several results on finite
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rank perturbations of matrices with i.i.d. entries, in particular [8–13,18,24,27,32]. We also note several papers on the
eigenvalues of sample covariance matrices of spiked population models ([3,5,6,26]).

This manuscript can be viewed as a companion paper to our recent works [25] and [28] on the non-Gaussian
fluctuation of the matrix entries of regular functions of Wigner matrices. However, no knowledge of the machinery
used in [25] and [28] is required, and the paper can be read independently from these papers.

Let us consider a deformed Wigner matrix

MN := 1√
N

WN + AN = XN + AN. (1.11)

Here WN is a random real symmetric (Hermitian) Wigner matrix as defined in (1.1)–(1.4) ((1.5)–(1.7)), and AN is a
deterministic Hermitian matrix of fixed finite rank r. We assume that the eigenvalues of AN and their multiplicities
are fixed. Let

θ1 > · · · > θj0 = 0 > · · · > θJ

be the eigenvalues of AN each with fixed multiplicity kj . Clearly, the eigenvalue θj0 = 0 has multiplicity N − r and∑
j �=j0

kj = r.

The first theorem of this section, Theorem 1.1, concerns the convergence of the extreme eigenvalues of the de-

formed random matrix. Let us denote ρθ = θ + σ 2

θ
. We shall use the shorthand notation ρj for ρθj

. Theorem 1.1 was
originally proved by Capitaine, Donati-Martin and Feral in [11] in the case when the common marginal distribution
of the matrix entries is symmetric and satisfies a Poincaré inequality.

Theorem 1.1. Let XN = 1√
N

WN be a random real symmetric (Hermitian) Wigner matrix satisfying (1.1)–(1.4) (re-

spectively (1.5)–(1.7)). Let Jσ+ be the number of j ’s such that θj > σ and Jσ− be the number of j ’s such that
θj < −σ .

(a) For all j = 1, . . . , Jσ+ and i = 1, . . . , kj , λk1+···+kj−1+i → ρj ,

(b) λk1+···+kJ
σ+ +1 → 2σ,

(c) λk1+···+kJ−J
σ− → −2σ,

(d) for all j = J − Jσ− + 1, . . . , J and i = 1, . . . , kj , λk1+···+kj−1+i → ρj .

The convergence is in probability.

In other words, the first k1 largest eigenvalues of MN converge to ρ1, the next k2 largest eigenvalues converge
to ρ2, . . . , the Jσ+ th bunch of the largest eigenvalues converge to ρJσ+ , the next largest eigenvalue converges to 2σ

(since it corresponds to a nonnegative eigenvalue of AN which is not bigger than σ ), etc.

Remark 1.1. If random variables (WN)ij , 1 ≤ i ≤ j ≤ N, satisfy a Poincaré inequality (1.12) with constant υi,j,N

uniformly bounded from zero, υi,j,N ≥ υ > 0, the convergence holds with probability one.

We recall that a probability measure P on R
M satisfies a Poincaré inequality with constant υ > 0 if, for all contin-

uously differentiable functions f : RM → C,

VP(f ) = EP

(∣∣f (x) − EP

(
f (x)

)∣∣2) ≤ 1

υ
EP

[∣∣∇f (x)
∣∣2]

. (1.12)

Note that the Poincaré inequality tensorizes and the probability measures satisfying the Poincaré inequality have
subexponential tails ([1,20]). In particular, if the marginal distributions of the matrix entries of WN satisfy the Poincaré
inequality with constant υ > 0, then the joint distribution of (WN)ij ,1 ≤ i ≤ j ≤ N, also satisfies the Poincaré
inequality with the same constant υ. By a standard scaling argument, we note that if the marginal distributions of the
matrix entries of WN satisfy the Poincaré inequality with υ > 0 then the marginal distributions of the matrix entries
of XN = 1√

N
WN satisfy the Poincaré inequality with constant Nυ.
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Theorem 1.1 follows from Theorem 1.2 formulated below. Theorem 1.2 is concerned with the distribution of the
outliers, i.e. the eigenvalues of MN corresponding to θj > σ. Namely, we are interested in the fluctuation of the outliers
around ρj , 1 ≤ j ≤ Jσ+ . Let us consider a fixed eigenvalue θj of AN such that θj > σ. In general, if one does not
assume some additional information about the structure of the eigenvectors of AN corresponding to θj , the sequence
of random vectors(√

N(λk1+···+kj−1+i − ρj ), i = 1, . . . , kj

)
(1.13)

does not converge in distribution as N → ∞ (see Theorems 1.3 and 1.5 below). However, one can prove that the
sequence (1.13) is bounded in probability (tight). We recall that a sequence {ξN }N≥1 of R

m-dimensional random
vectors is bounded in probability if for any ε > 0 there exists L(ε) that does not depend on N such that P(|ξN | >

L(ε)) < ε for all N ≥ 1.

Theorem 1.2. Let XN = 1√
N

WN be a random real symmetric (Hermitian) Wigner matrix defined in (1.1)–(1.4) (re-

spectively (1.5)–(1.7)). Let 1 ≤ j ≤ Jσ+ , so the eigenvalue θj of AN satisfies θj > σ . Then the sequence of random
vectors(√

N(λk1+···+kj−1+i − ρj ), i = 1, . . . , kj

)
(1.14)

is bounded in probability. In addition, if the marginal distributions of the matrix entries of WN satisfy the Poincaré
inequality (1.12) with constant υi,j,N uniformly bounded from zero, the following holds with probability 1

λk1+···+kj−1+i − ρj = O

(
logN√

N

)
, i = 1, . . . , kj . (1.15)

Remark 1.2. Theorem 1.2 clearly implies parts (a) and (d) of Theorem 1.1. To see that parts (b) and (c) of Theorem 1.1
also follow, we note that for any fixed positive integer l ≥ 1 the lth largest eigenvalue of XN converges in probability
to 2σ. This is a simple consequence of the convergence of the largest eigenvalue of XN to 2σ and the semicircle law.
Then the interlacing property and Theorem 1.2 imply the desired result.

Remark 1.3. The bound (1.15) means that there exists a sufficiently large deterministic constant C = C(σ,υ, θ1, . . . ,

θr ) > 0, such that with probability 1

|λk1+···+kj−1+i − ρj | ≤ C logN√
N

, i = 1, . . . , kj ,

for all but finitely many N.

To study the fluctuations of the outliers in more detail, we consider two special cases following [12].

Case A (“The eigenvectors don’t spread out”): The orthonormal eigenvectors of AN corresponding to θj depend
on a finite number Kj of canonical basis vectors of C

N (without loss of generality we can assume those canonical
vectors to be e1, . . . , eKj

), and their coordinates are independent of N.

Case B (“The eigenvectors are delocalized”): The l∞ norm of every orthonormal eigenvector of AN corresponding
to θj goes to zero as N → ∞.

Following [12], we denote by kσ+ = k1 +· · ·+kJσ+ the number of positive eigenvalues of AN bigger than σ (count-
ing with multiplicities) and by k ≥ kσ+ the minimal number of canonical basis vectors e1, . . . , eN of C

N required to
span all the eigenvectors corresponding to the eigenvalues θ1, . . . , θJσ+ .

We also denote

cθj
:= θ2

j

θ2
j − σ 2

. (1.16)

The next theorem is a consequence of Proposition 1.1 below and Theorems 1.1 and 1.5 in [28]. We use a standard
notation β = 1 in the real symmetric case and β = 2 in the Hermitian case.
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Theorem 1.3. Let XN = 1√
N

WN be a random real symmetric (Hermitian) Wigner matrix defined in (1.1)–(1.4) (re-

spectively (1.5)–(1.7)) such that the off-diagonal entries (WN)ij ,1 ≤ i < j ≤ N, are i.i.d. real (complex) random
variables with probability distribution μ and the diagonal entries (WN)ii ,1 ≤ i < N, are i.i.d. random variables with
probability distribution μ1. In Case A, the kj -dimensional vector

(
cθj

√
N(λk1+···+kj−1+i

− ρj ), i = 1, . . . , kj

)
converges in distribution to the distribution of the ordered eigenvalues of the kj × kj random matrix Vj defined as

Vj := U∗
j (Wj + Hj)Uj , (1.17)

where

(i) Wj is a Wigner random matrix of size Kj with the same marginal distribution of the matrix entries as WN,

(ii) Hj is a real symmetric (Hermitian) Gaussian matrix of size Kj , independent of Wj, with centered independent
entries Hst ,1 ≤ s ≤ t ≤ Kj (ReHst ,ImHst ,1 ≤ s < t ≤ Kj ,Hpp,1 ≤ p ≤ Kj , in the Hermitian case), with the
variance of the entries given by

E
(
H 2

ss

) = κ4(μ)

θ2
j

+ 2

β

σ 4

θ2
j − σ 2

, s = 1, . . . ,Kj , (1.18)

E
(
H 2

st

) = σ 4

θ2
j − σ 2

, 1 ≤ s < t ≤ Kj , in the real symmetric case, (1.19)

E
(
(ReHst )

2) = E
(
(ImHst )

2) = σ 4

2(θ2
j − σ 2)

, 1 ≤ s < t ≤ Kj , in the Hermitian case, (1.20)

where

κ4(μ) :=
∫

|x|4 dμ(x) − (4 − β)

(∫
|x|2 dμ(x)

)2

, (1.21)

is the fourth cumulant of μ, and
(iii) Uj is a Kj × kj such that the (Kj -dimensional) columns of Uj are written from the first Kj coordinates of

the orthonormal eigenvectors corresponding to θj .

In [12], Theorem 1.3 was proved for symmetric marginal distribution satisfying the Poincaré inequality (1.12)
under an additional technical assumption that k = o(

√
N), where k is defined in the paragraph above (1.16).

Using Theorems 4.1 and 4.2 from [25], one can extend the results of Theorem 1.3 to the case when the entries
of WN are not identically distributed provided the distribution of the entries (WN)il , 1 ≤ i, l ≤ Kj , does not depend
on N.

Theorem 1.4. Let XN = 1√
N

WN be a random real symmetric (Hermitian) Wigner matrix defined in (1.1)–(1.4) (re-

spectively (1.5)–(1.7)) such that the distribution of the entries (WN)il,1 ≤ i, l ≤ Kj , does not depend on N. Let us
assume that the limits

m4(i) := lim
N→∞

1

N

∑
l:l �=i

E
∣∣(WN)il

∣∣4 (1.22)

exist for 1 ≤ i ≤ Kj .

Then in Case A, the results of Theorem 1.3 hold with κ4(μ) in (1.18) replaced by

κ4(s) := m4(s) − (4 − β)σ 2, s = 1, . . . ,Kj . (1.23)
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The next theorem deals with the Case B.

Theorem 1.5. Let XN = 1√
N

WN be a random real symmetric (Hermitian) Wigner matrix defined in (1.1)–(1.4) (re-

spectively (1.5)–(1.7)) such that the off-diagonal entries (WN)ij ,1 ≤ i < j ≤ N, are i.i.d. random variables with
probability distribution μ and the diagonal entries (WN)ii ,1 ≤ i < N, are i.i.d. random variables with probability
distribution μ1. In Case B, the kj -dimensional vector

(
cθj

√
N(λk1+···+kj−1+i − ρj ), i = 1, . . . , kj

)
converges in distribution to the distribution of the (ordered) eigenvalues of a kj × kj GOE (GUE) matrix with the

variance of the matrix entries given by
θ2
j σ 2

θ2
j −σ 2 provided k = o(

√
N).

Remark 1.4. We recall that k has been defined above as the minimal number of canonical basis vectors e1, . . . , eN

required to span the eigenvectors corresponding to the eigenvalues θ1, . . . , θJσ+ .

Theorem 1.5 is an immediate extension of the result of Capitaine, Donati-Martin and Féral from [12] to our setting
since their arguments apply essentially unchanged as soon as Theorem 1.1 is established.

It should be noted that Benaych-Georges, Guionnet and Maida consider in [9] perturbations of a random Wigner
matrix by a finite rank random matrix with eigenvectors that are either independent copies of a random vector v with
i.i.d. centered components satisfying the log-Sobolev inequality or are obtained by Gram–Schmidt orthonormalization
of such independent copies. The distribution of the outliers is given in Proposition 5.3. of [9]. Let us denote the
distribution of the first component of v by ν. If the fourth cumulant κ4(ν) of ν vanishes, the limiting distribution of
the outliers is similar to the result of Theorem 1.5, and given by the distribution of the ordered eigenvalues of a GOE
(GUE) matrix. If the fourth cumulant does not vanish, one has to add a diagonal matrix with i.i.d. real Gaussian entries
to a GOE (GUE) matrix.

One of the most important results of [9,10] concerns the distribution of the “sticking” eigenvalues (i.e. the eigen-
values that correspond to |θj | < σ). In Theorem 5.3 of [9], Benaych-Georges, Guionnet and Maida prove that their
limiting distribution is given by the Tracy–Widom law.

Let us briefly describe a key ingredient of the proofs of Theorems 1.2–1.4. We use the notation

RN(z) := (zIN − XN)−1, z ∈ C \ [−2σ,2σ ], (1.24)

for the resolvent of XN. Clearly, RN(z) is well defined for z ∈ C \ R. Since the spectral norm of XN converges to
2σ in probability (see e.g. [4], and Proposition 2.1 in [25]), RN(x) is well defined for a fixed x ∈ R \ [−2σ,2σ ]
with probability going to one. Since our results will deal with the limiting distribution of random variables√

N(〈u,RN(x)v〉 − gσ (x)〈u,v〉) in the limit N → ∞, this should not lead to ambiguity.
Let us consider a fixed eigenvalue θj of AN such that θj > σ and denote by v(1), . . . , v(kj ) the orthonormal eigen-

vectors of AN that correspond to the eigenvalue θj . Denote by Ξ
(j)
N the kj × kj matrix with the entries

Ξ
(j)
il := √

N
(〈
v(i),RN(ρj )v

(l)
〉 − gσ (ρj )δil

) = √
N

(〈
v(i),RN(ρj )v

(l)
〉 − 1

θj

δil

)
, (1.25)

where we recall that ρj = θj + σ 2

θj
. The following proposition plays an important part in our proofs.

Proposition 1.1. Let y1 ≥ · · · ≥ ykj
be the ordered eigenvalues of the matrix Ξ

(j)
N . Then

√
N(λk1+···+kj−1+i − ρj ) + 1

g′
σ (ρj )

yi → 0, i = 1, . . . , kj , (1.26)

in probability.
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Remark 1.5. A simple computation gives

− 1

g′
σ (ρj )

= θ2
j − σ 2. (1.27)

It should be mentioned that the key part of the proof of Proposition 1.1 is a lemma from [9] which is stated as
Lemma 4.2 in Section 4. Proposition 1.1 indicates that the question of the limiting distribution of the outliers of the
spectrum of the deformed Wigner matrix MN can be reduced to the question about the limiting distribution of the
entries of (1.25).

Let us denote by 〈u,v〉 = ∑N
1 ūivi the standard Euclidean scalar product in CN. The next theorem deals with

the values of the sesquilinear form 〈u(N), f (XN)v(N)〉 where f is a sufficiently nice test function on R and u(N),
v(N) ∈ C

N are nonrandom unit vectors in C
N , i.e.∥∥u(N)

∥∥ = ∥∥v(N)
∥∥ = 1, N ≥ 1,

where

‖u‖2 = 〈u,u〉 =
N∑
1

|ui |2.

Without additional assumptions on u(N) and v(N), the sequence
√

N
(〈
u(N), f (XN)v(N)

〉 − E
〈
u(N), f (XN)v(N)

〉)
does not necessarily converge in distribution. However, one can show that it is tight.

We say that a function f : I ⊂ R → R belongs to Cn(I) if f and its first n derivatives are continuous on I. Define

‖f ‖Cn(I) := max

(∣∣∣∣dlf

dxl
(x)

∣∣∣∣, x ∈ I,0 ≤ l ≤ n

)
.

We use the notation Cn
c (R) for the space of n times continuously differentiable functions on R with compact support.

Define

‖f ‖n,1 := max

(∫ ∞

−∞
∣∣dkf/dxk(x)

∣∣dx,0 ≤ k ≤ n

)
, (1.28)

‖f ‖n,1,+ := max

(∫
R

(|x| + 1
)∣∣∣∣dlf

dxl
(x)

∣∣∣∣dx,0 ≤ l ≤ n

)
. (1.29)

We recall that a function f : R → R is called Lipschitz continuous on an interval I ⊂ R if there exists a constant C

such that∣∣f (x) − f (y)
∣∣ ≤ C|x − y| for all x, y ∈ I. (1.30)

We define

|f |L,R = sup
x �=y

|f (x) − f (y)|
|x − y| (1.31)

and

|f |L,δ = sup
x �=y,x,y∈[−2σ−δ,2σ+δ]

|f (x) − f (y)|
|x − y| . (1.32)

Theorem 1.6. Let XN = 1√
N

WN be a random real symmetric (Hermitian) Wigner matrix defined in (1.1)–(1.4) (re-

spectively (1.5)–(1.7)). Then the following statements hold:
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(i) If f : R → R is a C5(R) function such that ‖f ‖5,1 is finite, and u(N), v(N) ∈ CN,N ≥ 1, are two nonrandom
sequences of unit vectors (in standard Euclidean norm), then there exists a constant Const(σ 2,m5, c3) such that

V
(〈
u(N), f (XN)v(N)

〉) ≤ Const
‖f ‖5,1

N
. (1.33)

In particular, the sequence
√

N(〈u(N), f (XN)v(N)〉 − E〈u(N), f (XN)v(N)〉) is bounded in probability.
(ii) If f ∈ C8

c (R), with supp(f ) ⊂ [−L,+L], where L is some positive number then there exists a constant
Const(L,σ 2,m5, c3) such that∣∣∣∣E〈

u(N), f (XN)v(N)
〉 − 〈

u(N), v(N)
〉 ∫ 2σ

−2σ

f (x)dμsc(dx)

∣∣∣∣
≤ Const

(
L,σ 2,m5, c3

)‖f ‖C8([−L,+L])
1√
N

. (1.34)

If, in addition, f ∈ C9(R) and ‖f ‖9,1,+ is finite, then

∣∣∣∣E〈
u(N), f (XN)v(N)

〉 − 〈
u(N), v(N)

〉 ∫ 2σ

−2σ

f (x)dμsc(dx)

∣∣∣∣ ≤ Const
(
σ 2,m5, c3

)‖f ‖9,1,+
1√
N

, (1.35)

where Const(σ 2,m5, c3) depends on σ 2, m5 and c3.

(iii) If the marginal distributions of the entries of WN satisfy the Poincaré inequality (1.12) with a uniform constant
υ > 0, and f is a Lipschitz continuous function on [−2σ − δ,2σ + δ] that satisfies a subexponential growth condition∣∣f (x)

∣∣ ≤ a exp
(
b|x|) for all x ∈ R (1.36)

for some positive constants a and b, then

P
(∣∣〈u(N), f (XN)v(N)

〉 − E
〈
u(N), f (XN)v(N)

〉∣∣ ≥ t
)

≤ 2K exp

(
−

√
υNt

2|f |L,δ

)
+ (

2K + o(1)
)

exp

(
−

√
υN

2
δ

)
, (1.37)

where |f |L,δ is defined in (1.32),

K = −
∑
i≥0

2i log
(
1 − 2−14−i

)
, (1.38)

and υ is the constant in the Poincaré inequality (1.12).
(iv) If the marginal distributions of the entries of WN satisfy the Poincaré inequality (1.12) with a uniform constant

υ > 0, and f is a Lipschitz continuous function on R, then

P
(∣∣〈u(N), f (XN)v(N)

〉 − E
〈
u(N), f (XN)v(N)

〉∣∣ ≥ t
)

≤ 2K exp

(
−

√
υNt

2|f |L,R

)
, (1.39)

where |f |L,R is defined in (1.31).
(v) If the marginal distributions of the entries of WN satisfy the Poincaré inequality (1.12) with a uniform constant

υ > 0, f ∈ C8(R), and f satisfies the subexponential growth condition (1.36), then

E
〈
u(N), f (XN)v(N)

〉 = 〈
u(N), v(N)

〉 ∫ 2σ

−2σ

f (x)dμsc(dx) + O

(
1√
N

)
. (1.40)
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We finish this section by formulating our last theorem, Theorem 1.7, which allows us to extend Theorem 1.3 (see
Remark 5.1 in Section 5). Assume that the off-diagonal entries (WN)ij , 1 ≤ i < j ≤ N, are i.i.d. random variables
with probability distribution μ and the diagonal entries (WN)ii , 1 ≤ i < N, are i.i.d. random variables with probability
distribution μ1.

Let us consider u(N), v(N) ∈ C
N that are independent of N for all N ≥ N0, in a sense that only a fixed finite

number of the coordinates of u(N), v(N) are nonzero and the coordinates do not change with N for N ≥ N0. In this
case, we can write u(N) = u,v(N) = v, with the understanding that as the dimension N grows, one just adds more
zero coordinates to u and v. As an immediate consequence of the results of Theorem 1.1 (real symmetric case) and
Theorem 1.5 (Hermitian case) in [28], the random sequence

√
N

(〈
u,RN(z)v

〉 − gσ (z)〈u,v〉) (1.41)

converges in distribution as N → ∞. Without loss of generality, we will consider the real symmetric case; the Hermi-
tian case is essentially identical. Let m be an arbitrary fixed positive integer. Denote by R(m)(z) the m × m upper-left
corner of the matrix RN(z). Theorem 1.1 in [28] states that a matrix-valued random field

ΥN(z) = √
N

(
R(m)(z) − gσ (z)Im

)
, z ∈ C \ [−2σ,2σ ], (1.42)

with values in the space of complex symmetric m × m matrices, converges in finite-dimensional distributions to a
random field

Υ (z) = g2
σ (z)

(
W(m) + Y(z)

)
, (1.43)

where W(m) is the m × m upper-left corner submatrix of a Wigner matrix WN , gσ (z) is the Stieltjes transform (1.9)
of the Wigner semicircle law, and

Y(z) = (
Yij (z)

)
, Yij (z) = Yji(z), 1 ≤ i, j ≤ m,

is a Gaussian random field with the covariance matrix given by the formulas (1.18)–(1.23) in the real-symmetric case
and (1.50)–(1.55) in the Hermitian case in [28]. It is important to note that Yij (z),1 ≤ i ≤ j ≤ m, are independent
random processes for different indices (ij).

Let us extend the definition of Υ (z) to that of an infinite-dimensional matrix Υ (z)pq,1 ≤ p,q < ∞, using the
formulas (1.18)–(1.23) (respectively (1.50)–(1.55)) from [28]. Thus, the r.h.s. in (1.43) defines now the m × m upper-
left corner of the infinite matrix Υ (z). Then Theorem 1.1 of [28] implies that

√
N

(〈
u,RN(z)v

〉 − gσ (z)〈u,v〉) → 〈
u,Υ (z)v

〉
, (1.44)

in distribution.
Let u,v ∈ l2(N). It follows from the Kolmogorov three-series theorem (see e.g. [16]) that 〈u,Υ (θj )v〉 is well

defined as an infinite sum of centered random variables with summable variances. For our analysis of the outliers in
the spectrum of finite-rank deformations of Wigner matrices, it will be useful to have the following result.

Theorem 1.7. Let XN = 1√
N

WN be a random real symmetric (Hermitian) Wigner matrix defined in (1.1)–(1.4) (re-

spectively (1.5)–(1.7)) such that the off-diagonal entries (WN)ij ,1 ≤ i < j ≤ N, are i.i.d. random variables with
probability distribution μ and the diagonal entries (WN)ii ,1 ≤ i < N, are i.i.d. random variables with probability
distribution μ1.

Let l be a fixed positive integer, u1, . . . , ul, be a collection of nonrandom vectors in l2(N), and let u
(N)
p ,1 ≤ p ≤ l,

denote the projection of up onto the subspace spanned by the first N standard basis vectors e1, . . . , eN . Then the joint
distribution of

√
N

(〈
u(N)

p ,RN(z)u(N)
q

〉 − gσ (z)
〈
u(N)

p ,u(N)
q

〉)
, 1 ≤ p,q ≤ l,

converges weakly to the joint distribution of 〈up,Υ (z)uq〉,1 ≤ p,q ≤ l.
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The rest of the paper is organized as follows. Section 2 is devoted to the estimates on the mathematical expectation
and the variance of the values of the resolvent sesquilinear form 〈u(N),RN(z)v(N)〉, where u(N), v(N) are arbitrary
nonrandom unit vectors in C

N. Using the estimates obtained in Section 2, we prove Theorem 1.6 in Section 3. Theo-
rem 1.2 is proved in Section 4. Finally, Theorems 1.3, 1.4 and 1.7 are proved in Section 5. In the Appendix, we discuss
tools used throughout the paper.

2. Mathematical expectation and variance of resolvent sesquilinear form

This section is devoted to the proof of the main building block Theorem 1.6, namely Proposition 2.1.
Without loss of generality, we can restrict our attention to the real symmetric case. Let u(N) = (u1, . . . , uN), v(N) =

(v1, . . . , vN) be nonrandom unit vectors in C
N. When it does not lead to ambiguity, we will omit the superscript in

u(N) and v(N). Define

ηN := 〈
u(N),RN(z)v(N)

〉 = ∑
ij

ūiRij vj . (2.1)

When it does not lead to ambiguity we will use the shorthand notation, Rij , for the ij th entry (RN(z))ij , of the
resolvent matrix RN(z).

Proposition 2.1. Let XN = 1√
N

WN be a random real symmetric (Hermitian) Wigner matrix defined in (1.1)–(1.4)

((1.5)–(1.7)), RN(z) = (zIN − XN)−1, z ∈ C \ R, and u(N) = (u1, . . . , uN), v(N) = (v1, . . . , vN) be nonrandom unit
vectors in C

N. Then

EηN = E
〈
u(N),RN(z)v(N)

〉 = gσ (z)
〈
u(N), v(N)

〉 + O

(
1

|Im z|7√N

)
, (2.2)

uniformly on bounded subsets of C \ R,

E
〈
u(N),RN(z)v(N)

〉 = gσ (z)
〈
u(N), v(N)

〉 + O

((|z| + M
)P8(|Im z|−1)√

N

)
, (2.3)

VηN = V
〈
u(N),RN(z)v(N)

〉 = O

(
P8(|Im z|−1)

N

)
, (2.4)

uniformly on C \ R, where Pl(x), l ≥ 1, denotes a polynomial of degree l with fixed positive coefficients, and M is
some constant.

Remark 2.1. In the case when u(N) and v(N) are standard basis vectors, u = ei, v = ej , the mathematical expec-
tation and the variance of 〈u(N),RN(z)v(N)〉 have been studied in [28]. In particular, it has been shown there in
Proposition 2.1 and (3.27) that

ERii = gσ (z) + O

(
1

|Im z|6N
)

, (2.5)

uniformly on bounded subsets of C \ R, and

ERii = gσ (z) + O

((|z| + M
)P7(|Im z|−1)

N

)
, (2.6)

ERij = O

(
P5(|Im z|−1)

N

)
, ERij = O

(
P9(|Im z|−1)

N3/2

)
, i �= j, (2.7)

VRij = O

(
P6(|Im z|−1)

N

)
, 1 ≤ i, j ≤ N, (2.8)

uniformly on C \ R.
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Remark 2.2. In [17], Erdös, Yau and Yin studied generalized Wigner matrices (defined at the beginning of Section 2
of [17]), and obtained the following estimates provided the marginal distributions have subexponential tails

P

{
max

i

∣∣Rii(z) − gσ (z)
∣∣ ≥ (logN)l

(N |Im z|)1/3

}
≤ C exp

[−c(logN)φl
]
, (2.9)

P

{
max
i �=j

|Rij (z)| ≥ (logN)l

(N |Im z|)1/2

}
≤ C exp

[−c(logN)φl
]
, (2.10)

where 0 < φ < 1,C ≥ 1, c > 0 are some constants, 4/φ ≤ l ≤ C logN/ log logN, N−1(logN)10l < Im z ≤
10, |Re z| ≤ 5σ, and N is sufficiently large.

Remark 2.3. It follows from our proofs that the error term on the r.h.s. of (2.2) can be replaced by O(
min(‖u‖1,‖v‖1)

|Im z|7N ),

where ‖u‖1 = ∑N
i=1 |ui |.

The rest of the section is devoted to the proof of Proposition 2.1.

Proof of Proposition 2.1. Without loss of generality, we can restrict our attention to the real symmetric case. The
proof in the Hermitian case is very similar. We start by proving (2.2). Using (zIN − XN)RN(z) = IN , we write

zE
∑
ij

ūiRij vj = E

∑
ijk

ūi(δij + XikRkj )vj = 〈u,v〉 +
∑
ijk

ūivjE(XikRkj ). (2.11)

Applying the decoupling formula (A.1) and (A.4)–(A.5) to the term E(XikRkj ) in (2.11), we obtain

zEηN = 〈u,v〉 + σ 2
E(ηN trN R) + σ 2

N
E

(〈
u,

(
RN(z)

)2
v
〉)

(2.12)

+
∑
i,j

V[(WN)ii] − 2σ 2

N
ūivjE(RiiRij ) + rN , (2.13)

where ηN is defined in (2.1), and rN contains the third and the fourth cumulant terms corresponding to p = 2 and
p = 3 in the decoupling formula (A.1) for i �= k, and the error terms due to the truncation of the decoupling formula
(A.1) for i �= k at p = 3 and for i = k at p = 1.

It follows from∣∣V[
(WN)ii

] − 2σ 2
∣∣ ≤ const

(
σ 2, c3

)
,

that the first term in (2.13) can be written as the mathematical expectation of 1
N

〈a,RN(z)v〉, where the vector a has
coordinates (V[(WN)ii] − 2σ 2)Riiui,1 ≤ i ≤ N. Using (A.7), one obtains by estimating ‖a‖ from above that

∑
i,j

V[(WN)ii] − 2σ 2

N
ūivjE(RiiRij ) = O

(
1

N |Im z|2
)

. (2.14)

The third cumulant terms (p = 2) give

1

2!N3/2

[
4E

( ∑
i,j,k:i �=k

κ3(i, k)ūiRijRikRkkvj

)
+ 2E

( ∑
i,j,k:i �=k

κ3(i, k)ūiRiiRkkRkj vj

)

+ 2E

( ∑
i,j,k:i �=k

κ3(i, k)ūiRkiRkiRkj vj

)]
, (2.15)
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where by κ3(i, k) we denote the third cumulant of (WN)ik. We note that∣∣κ3(i, k)
∣∣ ≤ Const(m5),

uniformly in i �= k and N. To estimate the absolute value of the first term in (2.15), we first sum with respect to j and
then use the Cauchy–Schwarz inequality and (A.7) to obtain∣∣∣∣E ∑

i,j,k:i �=k

κ3(i, k)ūiRijRikRkkvj

∣∣∣∣ =
∣∣∣∣E∑

i �=k

κ3(i, k)ūiRikRkk(Rv)i

∣∣∣∣
≤ Const(m5)E

(√∑
k

|Rkk|2
N∑

i=1

|ui |‖Rei‖
∣∣(Rv)i

∣∣)

≤ √
N

Const(m5)

|Im z|3 . (2.16)

To estimate the absolute value of the second term in (2.15), we write∣∣∣∣E ∑
i,j,k:i �=k

κ3(i, k)ūiRiiRkkRkj vj

∣∣∣∣ =
∣∣∣∣E∑

i �=k

κ3(i, k)ūiRiiRkk(Rv)k

∣∣∣∣
≤ Const(m5)E

(∑
i,k

|ui |‖R‖2
∣∣(Rv)k

∣∣)

≤ Const(m5)
√

N
∑

i

|ui |‖v‖E
∥∥RN(z)

∥∥3

≤ N
Const(m5)

|Im z|3 . (2.17)

Finally, we bound the last of the third cumulant terms in (2.15) as∣∣∣∣E ∑
i,j,k:i �=k

κ3(i, k)ūiRkiRkiRkj vj

∣∣∣∣ =
∣∣∣∣E∑

i �=k

κ3(i, k)ūi(Rki)
2(Rv)k

∣∣∣∣
≤ Const(m5)E

∑
ik

|ui ||Rki |2
∥∥RN(z)

∥∥‖v‖

≤ √
N

Const(m5)

|Im z|3 , (2.18)

where we again used (A.7) and

∑
k

|Rki |2 = ∥∥RN(z)ei

∥∥2 ≤ ∥∥RN(z)
∥∥2 ≤ 1

|Im z|2 .

Combining the bounds (2.16)–(2.18), we see that the contribution of the third cumulant terms to rN in (2.12)–(2.13)
is bounded from above by O( 1

|Im z|3√N
). The fourth cumulant terms give

1

3!N2

[
18E

( ∑
i,j,k:i �=k

κ4(i, k)ūiRiiRikRkkRkj vj

)
+ 6E

( ∑
i,j,k:i �=k

κ4(i, k)ūiRii(Rkk)
2Rijvj

)

+ 18E

( ∑
i,j,k:i �=k

κ4(i, k)ūi(Rki)
2RkkRij vj

)
+ 6E

( ∑
i,j,k:i �=k

κ4(i, k)ūi(Rki)
3Rkjvj

)]
. (2.19)
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To estimate the absolute value of the first term in (2.19), we note that∣∣∣∣E ∑
i,j,k:i �=k

κ4(i, k)ūiRiiRikRkkRkj vj

∣∣∣∣ =
∣∣∣∣E∑

i �=k

κ4(i, k)ūiRiiRikRkk(Rv)k

∣∣∣∣
≤ Const(m5)E

(∑
ik

|ūi |‖R‖2|Rik|
∣∣(Rv)k

∣∣) ≤ √
N

Const(m5)

|Im z|4 , (2.20)

where we used the bound∑
k

|Rik|
∣∣(Rv)k

∣∣ ≤ ∥∥RN(z)ei

∥∥∥∥RN(z)v
∥∥ ≤ ∥∥RN(z)

∥∥2‖v‖,

(A.7), and the fact that the fourth cumulants of (WN)ik are uniformly bounded in absolute value by some constant
Const(m5).

To estimate the second term in (2.19), we write∣∣∣∣E ∑
i,j,k:i �=k

κ4(i, k)ūiRii(Rkk)
2Rijvj

∣∣∣∣ =
∣∣∣∣E∑

i �=k

κ4(i, k)ūiRii(Rkk)
2(Rv)i

∣∣∣∣
≤ Const(m5)E

(∑
k

|Rkk|2
∥∥RN(z)

∥∥∑
i

|ui |
∣∣(Rv)i

∣∣)

≤ N
Const(m5)

|Im z|4 . (2.21)

The other two terms in (2.19) are estimated in a similar fashion. Each of them is O(
N‖u‖‖v‖
|Im z|2 ). Therefore, the fourth

cumulant terms give the contribution O( 1
N |Im z|4 ) to rN in (2.12)–(2.13).

Finally, we estimate the error terms due to the truncation of the decoupling formula at p = 3 for i �= k and at p = 1
for i = k. Here, we treat the error term due to the truncation of the decoupling formula at p = 3 for i �= k. The second
error term can be treated in a similar way. To estimate the error term, we have to consider expressions of the following
form

N−5/2
E

(∑
ik

∣∣κ5(i, k)
∣∣ sup |ui |

∣∣R(1)
ab

∣∣∣∣R(2)
cd

∣∣∣∣R(3)
ef

∣∣∣∣R(4)
pq

∣∣∣∣(R(5)v
)
s

∣∣), (2.22)

where a, b, c, d, e, f,p, q, s ∈ {i, k}, the supremum in (2.22) is considered over the resolvents R(l) = (z−X
(l)
N )−1, l =

1, . . . ,5, of rank two perturbations X
(l)
N = XN + xEik of XN with (Eik)jh = δij δkh + δihδkj . Estimating each entry

of R(l) by 1
|Im z| , taking into account that

N∑
i=1

|ui | ≤
√

N‖u‖ = √
N,

and using the fact that the fifth cumulants of the off-diagonal entries of WN are uniformly bounded, we bound (2.22)
from above by O( 1

N |Im z|5 ).

Combining the estimates of the third and the fourth cumulant terms and the truncation error term, we can rewrite
the Master equation (2.12) as

zEηN = 〈u,v〉 + σ 2
E(ηN trN R) + σ 2

N
E

(〈
u,

(
RN(z)

)2
v
〉) + O

(
P5(|Im z|−1)√

N

)
, (2.23)

where we recall that by Pl we denote a polynomial of degree l with positive coefficients that do not depend on N.
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Since

∣∣〈u,
(
RN(z)

)2
v
〉∣∣ ≤ ‖u‖‖v‖ 1

|Im z|2 ,

we obtain

zEηN = 〈u,v〉 + σ 2
E(ηN trN R) + O

(
P5(|Im z|−1)√

N

)
. (2.24)

Finally, we have to estimate the term E(ηN trN R) in the Master equation. We write

∣∣E(
trN R

〈
u,RN(z)v

〉) − gσ (z)E
〈
u,RN(z)v

〉∣∣ ≤ (
V

(〈
u,RN(z)v

〉))1/2(
V(trN R)

)1/2 (2.25)

+ ∣∣gN(z) − gσ (z)
∣∣‖u‖‖v‖ 1

|Im z| , (2.26)

where we use the notation

gN(z) := E trN RN(z). (2.27)

The variance V(trN RN(z)) has been estimated in Proposition 2 of [30] as

V
(
trN RN(z)

) = O

(
1

|Im z|4N2

)
, (2.28)

uniformly on C \ R. It follows from the proof of (2.28) that the bound is valid provided the fourth moments of the
off-diagonal entries are uniformly bounded and the second moments of the diagonal entries are uniformly bounded
([31]). Applying the bound |〈u,RN(z)v〉| ≤ ‖u‖‖v‖

|Im z| = 1
|Im z| and (2.5), we obtain

E
(
trN R

〈
u,RN(z)v

〉) = gσ (z)E
〈
u,RN(z)v

〉 + O

(
P7(|Im z|−1)

N

)
,

uniformly on bounded subsets of C \ R. This allows us to write the Master equation for ηN = 〈u(N),RN(z)v(N)〉 as

zEηN = 〈u,v〉 + σ 2gσ (z)EηN + O

(
P7(|Im z|−1)√

N

)
, (2.29)

uniformly on bounded subsets of C \ R. Since z − σ 2gσ (z) = 1/gσ (z) and gσ (z) is bounded, we arrive at

E
〈
u,RN(z)v

〉 = gσ (z)〈u,v〉 + O

(
P7(|Im z|−1)√

N

)
, (2.30)

which is exactly the estimate (2.2) of Proposition 2.1.
To prove (2.3), we note that (2.25)–(2.26), (2.28) and (2.6) imply

E
(
trN R

〈
u,RN(z)v

〉) = gσ (z)E
〈
u,RN(z)v

〉 + O

((|z| + M
)P8(|Im z|−1)

N

)
,

uniformly on C \ R. Therefore, one can rewrite (2.24) as

zEηN = 〈u,v〉 + σ 2gσ (z)EηN + O

((|z| + M
)P8(|Im z|−1)√

N

)
, (2.31)

uniformly on C \ R, which implies (2.3).
Now, we turn our attention to the proof of (2.4). The key part of the proof is the following lemma.
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Lemma 2.1. Let XN = 1√
N

WN be a random real symmetric (Hermitian) Wigner matrix defined in (1.1)–(1.4) ((1.5)–

(1.7)), RN(z) = (zIN −XN)−1, z ∈ C\R, and u(N) = (u1, . . . , uN), v(N) = (v1, . . . , vN) be nonrandom unit vectors
in C

N. Then

(
z − σ 2gN(z)

)
V

(〈
u(N),RN(z)v(N)

〉) =
√

V
(〈
u(N),RN(z)v(N)

〉)
O

(
P3(|Im z|−1)√

N

)

+ O

(
P6(|Im z|−1)

N

)
, (2.32)

uniformly in z ∈ C \ R, where gN(z) is defined in (2.27).

Proof. As always, we will suppress the dependence on N in u = u(N) and v = v(N), and use the notation ηN =
〈u,RN(z)v〉. Clearly, V(ηN) = E|ηN |2 − |EηN |2, and 〈u,RN(z)v〉 = 〈v,RN(z̄)u〉. We start with the following form
of the Master equation for ηN,

zEηN = 〈u,v〉 + σ 2gN(z)EηN (2.33)

+ 1

N3/2
E

( ∑
i,j,k:i �=k

κ3(i, k)ūiRii(z)Rkk(z)Rkj (z)vj

)
+ O

(
P5(|Im z|−1)

N

)
, (2.34)

uniformly on C \ R. We singled out in (2.34) the only term in rN which is O(N−1/2), namely (2.17). As we have

shown above, all other terms in rN can be estimated as O(
P5(|Im z|−1)

N
). Multiplying both sides of the equation by

EηN, we obtain

z|EηN |2 = 〈u,v〉EηN + σ 2|EηN |2gN(z)

+ 1

N3/2
E

( ∑
i,j,k:i �=k

κ3(i, k)ūiRii(z)Rkk(z)Rkj (z)vj

)
EηN + O

(
P6(|Im z|−1)

N

)
. (2.35)

Our next goal is to obtain the Master equation for zE(|ηN |2). As before, we use the resolvent identity (A.3) to write

zE
(|ηN |2) = zE

[∑
ij

ūiRij (z)vj ηN

]
= E

[∑
ijk

ūi

(
δij + XikRkj (z)

)
vjηN

]
(2.36)

= 〈u,v〉EηN +
∑
ijk

ūivjE
(
XikRkj (z)ηN

)
. (2.37)

Applying the decoupling formula (A.1) and (A.4)–(A.5) to the term E(XikRkj (z)ηN) in (2.36)–(2.37), we obtain

zE
(|ηN |2) = 〈u,v〉EηN + σ 2

E
(|ηN |2 trN RN(z)

) + σ 2

N
E

(〈
u,

(
RN(z)

)2
v
〉
ηN

)
(2.38)

+
∑
i,j

V[(WN)ii] − 2σ 2

N
ūivjE[RiiRij ηN ] + σ 2

N
E

( ∑
i,j,k:i �=k

ūiRkj (z)vj

∂〈v,RN(z̄)u〉
∂Xik

)
(2.39)

+
∑
i,j

V[(WN)ii]
N

E

(
ūiRij (z)vj

∂〈v,RN(z̄)u〉
∂Xii

)
+ rN , (2.40)

where rN contains the third and the fourth cumulant terms corresponding to p = 2 and p = 3 in (A.1) for k = i, and
the error due to the truncation of the decoupling formula (A.1) at p = 3 for k �= i and at p = 1 for k = i. Clearly,

σ 2

N
E

(〈
u,

(
RN(z)

)2
v
〉
ηN

) = O

(
1

|Im z|3N
)

. (2.41)
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For k �= i, we have

∂〈v,RN(z̄)u〉
∂Xik

= (
RN(z̄)v̄

)
i

(
RN(z̄)u

)
k
+ (

RN(z̄)v̄
)
k

(
RN(z̄)u

)
i
, (2.42)

∂2〈v,RN(z̄)u〉
∂X2

ik

= 2Rii(z̄)
(
RN(z̄)v̄

)
k

(
RN(z̄)u

)
k

(2.43)

+ 2Rik(z̄)
(
RN(z̄)v̄

)
i

(
RN(z̄)u

)
k
+ 2Rik(z̄)

(
RN(z̄)v̄

)
k

(
RN(z̄)u

)
i

(2.44)

+ 2Rkk(z̄)
(
RN(z̄)v̄

)
i

(
RN(z̄)u

)
i
, (2.45)

∂(RN(z̄)w)i

∂Xik

= Rii(z̄)
(
RN(z̄)w

)
k
+ Rik(z̄)

(
RN(z̄)w

)
i
. (2.46)

For k = i, we have

∂〈v,RN(z̄)u〉
∂Xii

= (
RN(z̄)v̄

)
i

(
RN(z̄)u

)
i
, (2.47)

∂2〈v,RN(z̄)u〉
∂X2

ii

= 2Rii(z̄)
(
RN(z̄)v̄

)
i

(
RN(z̄)u

)
i
, (2.48)

∂(RN(z̄)w)i

∂Xii

= Rii(z̄)
(
RN(z̄)w

)
i
. (2.49)

Using (2.42) and (2.47), one can write the last term in (2.39) as

σ 2

N
E

( ∑
i,j,k:i �=k

ūiRkj (z)vj

∂〈v,RN(z̄)u〉
∂Xik

)
(2.50)

= σ 2

N
E

( ∑
i,j,k:i �=k

ūiRkj (z)vj

[(
RN(z̄)v̄

)
i

(
RN(z̄)u

)
k
+ (

RN(z̄)v̄
)
k

(
RN(z̄)u

)
i

]) = O

(
1

|Im z|3N
)

. (2.51)

The third cumulant terms in rN in (2.40) can be written as

1

2N3/2

∑
i,j,k:i �=k

κ3(i, k)ūivjE

(
∂2(Rkj (z)〈v,RN(z̄)u〉)

∂X2
ik

)
(2.52)

= 1

2N3/2

∑
i,j,k:i �=k

κ3(i, k)ūivjE

(
∂2Rkj (z)

∂X2
ik

〈
v,RN(z̄)u

〉)
(2.53)

+ 1

N3/2

∑
i,j,k:i �=k

κ3(i, k)ūivjE

(
∂Rkj (z)

∂Xik

∂〈v,RN(z̄)u〉
∂Xik

)
(2.54)

+ 1

2N3/2

∑
i,j,k:i �=k

κ3(i, k)ūivjE

(
Rkj (z)

∂2〈v,RN(z̄)u〉
∂X2

ik

)
. (2.55)

We are going to estimate the terms (2.53)–(2.55) separately. We start with the last two. We claim that both (2.54)
and (2.55) are O( 1

|Im z|4N ). Indeed, consider first (2.54). It follows from (A.4)–(A.5), (2.42) and (2.47), that it is equal
to

1

2N3/2

∑
i,j,k:i �=k

κ3(i, k)ūivj

× E
([

Rkk(z)Rij (z) + Rik(z)Rkj (z)
][(

RN(z̄)v̄
)
i

(
RN(z̄)u

)
k
+ (

RN(z̄)v̄
)
k

(
RN(z̄)u

)
i

])
. (2.56)
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Let us estimate the term

1

2N3/2

∑
i,j,k:i �=k

κ3(i, k)ūivjE
(
Rkk(z)Rij (z)

(
RN(z̄)v̄

)
i

(
RN(z̄)u

)
k

)
(2.57)

in (2.56).
We note that the Euclidean norm of the vector in C

N with the coordinates κ3(i, k)ui(RN(z̄)v̄)i ,1 ≤ i ≤ N, i �= k,

and 0 for i = k is bounded from above by Const(m5)|Im z| . Thus, it follows from (A.7) and ‖v‖ = 1 that

∣∣∣∣ ∑
i,j :i �=k

κ3(i, k)ūi

(
RN(z̄)v̄

)
i
vjRij (z)

∣∣∣∣ ≤ Const(m5)

|Im z|2 . (2.58)

In addition,

N∑
k=1

∣∣Rkk(z)
∣∣∣∣(RN(z̄)u

)
k

∣∣ ≤ 1

|Im z|
N∑

k=1

∣∣(RN(z̄)u
)
k

∣∣ = O

( √
N

|Im z|2
)

. (2.59)

Combining (2.59) and (2.58), we estimate (2.57) as O( 1
|Im z|4N ). The other terms in (2.56) can be estimated in a

similar way, which implies that (2.54) is O( 1
|Im z|4N ).

Now, we turn our attention to (2.55). Using (2.43)–(2.45) and (2.48), one can rewrite (2.55) as

1

N3/2

∑
i,j,k:i �=k

κ3(i, k)ūivjE
[
Rkj (z)Rii(z̄)

(
RN(z̄)v̄

)
k

(
RN(z̄)u

)
k

]
(2.60)

+ 1

N3/2

∑
i,j,k:i �=k

κ3(i, k)ūivjE
[
Rkj (z)Rik(z̄)

(
RN(z̄)v̄

)
i

(
RN(z̄)u

)
k

]
(2.61)

+ 1

N3/2

∑
i,j,k:i �=k

κ3(i, k)ūivjE
[
Rkj (z)Rik(z̄)

(
RN(z̄)v̄

)
k

(
RN(z̄)u

)
i

]
(2.62)

+ 1

N3/2

∑
i,j,k:i �=k

κ3(i, k)ūivjE
[
Rkj (z)Rkk(z̄)

(
RN(z̄)v̄

)
i

(
RN(z̄)u

)
i

]
. (2.63)

We estimate (2.60). The subsums (2.61)–(2.63) can be estimated in a similar way. The summation with respect to j in
(2.60) gives

1

N3/2

∑
i �=k

E
[
κ3(i, k)ūi

(
RN(z)v

)
k
Rii(z̄)

(
RN(z̄)v̄

)
k

(
RN(z̄)u

)
k

]
.

Now, we estimate

∑
k

∣∣κ3(i, k)
(
RN(z)v

)
k

∣∣∣∣(RN(z̄)v̄
)
k

∣∣∣∣(RN(z̄)u
)
k

∣∣ ≤ Const(m5)

|Im z|3

and

∑
i

|ui |
∣∣Rii(z̄)

∣∣ ≤
√

N

|Im z| .

Combining the last two bounds, we obtain that (2.60) is O( 1
|Im z|4N ).
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Finally, let us estimate (2.53). It can be written as

1

2!N3/2
4E

( ∑
i,j,k:i �=k

κ3(i, k)ūiRij (z)Rik(z)Rkk(z)vj

〈
v,RN(z̄)u

〉)
(2.64)

+ 1

2!N3/2
2E

( ∑
i,j,k:i �=k

κ3(i, k)ūiRii(z)Rkk(z)Rkj (z)vj

〈
v,RN(z̄)u

〉)
(2.65)

+ 1

2!N3/2
2E

( ∑
i,j,k:i �=k

κ3(i, k)ūiRki(z)Rki(z)Rkj (z)vj

〈
v,RN(z̄)u

〉)
. (2.66)

The subsums (2.64) and (2.66) are bounded from above by O( 1
|Im z|4N ). The calculations are very similar to the ones

used above and are left to the reader. The subsum (2.65) can be written as

E

(
1

N3/2

∑
i,j,k:i �=k

κ3(i, k)ūiRii(z)Rkk(z)Rkj (z)vj ηN

)
.

To estimate it, we write∣∣∣∣E
(

1

N3/2

( ∑
i,j,k:i �=k

κ3(i, k)ūiRii(z)Rkk(z)Rkj (z)vj

)
ηN

)
(2.67)

− 1

N3/2
E

( ∑
i,j,k:i �=k

κ3(i, k)ūiRii(z)Rkk(z)Rkj (z)vj

)
EηN

∣∣∣∣ (2.68)

≤ 1

N3/2

(
V

( ∑
i,j,k:i �=k

κ3(i, k)ūiRii(z)Rkk(z)Rkj (z)vj

))1/2(
V(ηN)

)1/2
. (2.69)

It follows from the estimates in (2.17) that one has a deterministic upper bound∣∣∣∣ 1

N3/2

∑
i,j,k:i �=k

κ3(i, k)ūiRii(z)Rkk(z)Rkj (z)vj

∣∣∣∣ ≤ const
1

|Im z|3√N
.

Thus,

E

(
1

N3/2

∑
i,j,k:i �=k

κ3(i, k)ūiRii(z)Rkk(z)Rkj (z)vj ηN

)
(2.70)

= 1

N3/2
E

( ∑
i,j,k:i �=k

κ3(i, k)ūiRii(z)Rkk(z)Rkj (z)vj

)
EηN + O

(
1

|Im z|3√N

)
(VηN)1/2. (2.71)

Combining the estimates (2.53)–(2.71), we obtain that the third cumulant term (2.52) contributing to rN in (2.38) can
be written as

1

N3/2
E

( ∑
i,j,k:i �=k

κ3(i, k)ūiRii(z)Rkk(z)Rkj (z)vj

)
EηN (2.72)

+ O

(
1

|Im z|3√N

)
(VηN)1/2 + O

(
1

|Im z|4N
)

. (2.73)

Somewhat long but straightforward calculations using (A.4)–(A.5) and (2.42)–(2.51) show that the fourth cumulant
term in rN in (2.38) can be estimated from above by O( 1

|Im z|5N ). Since the calculations are very similar to those
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in (2.19)–(2.21), we leave the details to the reader. In a similar fashion, the error terms in rN , due to the truncation
of the decoupling formula at p = 3 for i �= k and at p = 1 for i = k are bounded from above by O( 1

|Im z|6N ). The
considerations are similar to those given in the analysis of (2.22).

Combining (2.41), (2.50)–(2.51), (2.72)–(2.73), and the bounds on the fourth cumulant term and the error terms
discussed in the above paragraph, one rewrites the Master equation (2.38)–(2.39) as

zE
(|ηN |2) = 〈u,v〉EηN + σ 2

E
(|ηN |2 trN RN(z)

)
(2.74)

+ κ3

N3/2
E

(∑
ijk

ūiRii(z)Rkk(z)Rkj (z)vj

)
EηN + O

(
1

|Im z|3√N

)
(VηN)1/2 (2.75)

+ O

(
P6(|Im z|−1)

N

)
. (2.76)

Using (2.28), we estimate

∣∣E(|ηN |2 trN RN(z)
) − gN(z)E|ηN |2∣∣ ≤ (

V
(∣∣ηN

∣∣2))1/2(
V trN RN(z)

)1/2 = O

(
1

|Im z|4N
)

.

This allows us to write

zE
(|ηN |2) = 〈u,v〉EηN + σ 2gN(z)E|ηN |2 + 1

N3/2
E

( ∑
i,j,k:i �=k

κ3(i, k)ūiRii(z)Rkk(z)Rkj (z)vj

)
EηN

+ O

(
1

|Im z|3√N

)
(VηN)1/2 + O

(
P6(|Im z|−1)

N

)
. (2.77)

Subtracting the r.h.s. in (2.35) from the r.h.s. in (2.77), we obtain (2.32). Lemma 2.1 is proven. �

Now, we are ready to finish the proof of Proposition 2.1. To obtain the estimate (2.4) from (2.32), we use the same
arguments as in Section 3 of [25] and Section 2 of [28]. We note (see e.g. (3.9) in [25]) that

gN(z)
(
z − σ 2gN(z)

) = 1 + O

(
P4(|Im z|−1)

N

)
. (2.78)

We define

ON := {
z: |Im z| > LN−1/4},

where the constant L is chosen sufficiently large so that the O(
P4(|Im z|−1)

N
) term on the r.h.s. of (2.78) is at most 1/2

in absolute value. Multiplying both sides of (2.32) by gN(z), and using (A.8), we obtain that

V
(〈
u(N),RN(z)v(N)

〉) =
√

V
(〈
u(N),RN(z)v(N)

〉)
O

(
P4(|Im z|−1)√

N

)
+ O

(
P7(|Im z|−1)

N

)
(2.79)

for z ∈ ON. It follows from (2.79) that

V
(〈
u(N),RN(z)v(N)

〉) = O

(
P8(|Im z|−1)

N

)
for z ∈ ON. (2.80)

On the other hand, if |Im z| ≤ LN−1/4, then L4

N |Im z|4 ≥ 1. Since |〈u(N),RN(z)v(N)〉| ≤ 1
|Im z| , we have

V
(〈
u(N),RN(z)v(N)

〉) ≤ 1

|Im z|2 ≤ L4

N |Im z|6 (2.81)
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for z such that |Im z| ≤ LN−1/4. Combining (2.80) and (2.81), we obtain (2.4). This finishes the proof of Proposi-
tion 2.1. �

3. Proof of Theorem 1.6

Our exposition follows closely the ones in Section 3 of [28] and Section 4 of [25]. In order to extend the estimates of
Proposition 2.1 to a more general class of test functions, we use the Helffer Sjöstrand functional calculus (see [15,21]).

Let l be some nonnegative integer, and f ∈ Cl+1(R) decay at infinity sufficiently fast. For any self-adjoint operator
X we can write

f (X) = − 1

π

∫
C

∂f̃

∂z̄

1

z − X
dx dy,

∂f̃

∂z̄
:= 1

2

(
∂f̃

∂x
+ i

∂f̃

∂y

)
, (3.1)

where:

(i) z = x + iy with x, y ∈ R;
(ii) f̃ (z) is the extension of the function f defined as follows

f̃ (z) :=
(

l∑
n=0

f (n)(x)(iy)n

n!

)
σ(y); (3.2)

here σ ∈ C∞(R) is a nonnegative function equal to 1 for |y| ≤ 1/2 and equal to zero for |y| ≥ 1.

The integral in (3.1) does not depend on the choice of l and the cut-off function σ(y) (see e.g. [15]). Using the
definition of f̃ in (3.2) one can easily calculate

∂f̃

∂z̄
= 1

2

(
∂f̃

∂x
+ i

∂f̃

∂y

)
(3.3)

= 1

2

(
l∑

n=0

f (n)(x)(iy)n

n!

)
i
dσ

dy
+ 1

2
f (l+1)(x)(iy)l

σ (y)

l! (3.4)

and derive the crucial bound∣∣∣∣∂f̃

∂z̄
(x + iy)

∣∣∣∣ ≤ C1 max

(∣∣∣∣dj f

dxj
(x)

∣∣∣∣,1 ≤ j ≤ l + 1

)
|y|l . (3.5)

For X = XN , (3.1) implies

〈
u,f (XN)v

〉 = − 1

π

∫
C

∂f̃

∂z̄

〈
u,RN(z)v

〉
dx dy. (3.6)

To prove (1.34), we let l = 7 in (3.2) and assume that f has compact support. It follows from (2.2) that

E
〈
u,f (XN)v

〉 = −E
1

π

∫
C

∂f̃

∂z̄

〈
u,RN(z)v

〉
dx dy (3.7)

= − 1

π
〈u,v〉

∫
C

∂f̃

∂z̄
gσ (z)dx dy − 1

π

∫
C

∂f̃

∂z̄
εu,v(z)dx dy (3.8)

= 〈u,v〉
∫

f (x)dμsc(x) − 1

π

∫
C

∂f̃

∂z̄
εu,v(z)dx dy, (3.9)

where∣∣εu,v(z)
∣∣ ≤ C2

1√
N

1

|Im z|7 , (3.10)
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uniformly on {z: Re z ∈ supp(f ), |Im z| ≤ 1}, and C2 is a constant depending on supp(f ). We conclude that the
second term on the r.h.s. of (3.8) can be estimated as follows∣∣∣∣ 1

π

∫
C

∂f̃

∂z̄
εu,v(z)dx dy

∣∣∣∣ ≤ 1

π

∫
C

∣∣∣∣∂f̃

∂z̄
εu,v(z)

∣∣∣∣dx dy (3.11)

≤ C1C2‖f ‖C8([−L,L])
1√
N

∫
dxχf (x)

∫
dyχσ (y), (3.12)

where χf and χσ are the characteristic functions of the support of f and of σ respectively, and L is such that
supp(f ) ⊂ [−L,L]. This proves (1.34).

To prove (1.35), one considers f ∈ C9(R) (so l = 8) such that ‖f ‖9,1,+ is finite. Using (2.3), one replaces the
estimate (3.10) with

∣∣εu,v(z)
∣∣ ≤ C3

|z| + M√
N

P8
(|Im z|−1), (3.13)

valid on C \ R, which leads to

∣∣∣∣ 1

π

∫
C

∂f̃

∂z̄
εu,v(z)dx dy

∣∣∣∣ ≤ 1

π

∫
C

∣∣∣∣∂f̃

∂z̄
εu,v(z)

∣∣∣∣dx dy ≤ C1C3‖f ‖9,1,+
1√
N

. (3.14)

To prove (1.33), we consider f ∈ C5(R) such that ‖f ‖5,1 < ∞, and let l = 4 in (3.2). Then

V
(〈
u,f (XN)v

〉) = V

(
− 1

π

∫
C

∂f̃

∂z̄

〈
u,RN(z)v

〉
dx dy

)

= 1

π2

∫
C

∫
C

∂f̃

∂z̄

∂f̃

∂w̄
Cov

(〈
u,RN(z)v

〉
,
〈
u,RN(w)v

〉)
dx dy ds dt,

where z = x + iy,w = s + it. Taking into account (2.4), we get

V
(〈
u,f (XN)v

〉) ≤ 1

π2

∫
C

∫
C

∣∣∣∣∂f̃

∂z̄

∣∣∣∣
∣∣∣∣ ∂f̃

∂w̄

∣∣∣∣
√

V
(〈
u,RN(z)v

〉)√
V

(〈
u,RN(w)v

〉)
dx dy ds dt

≤ Const

N

(∫
C

∣∣∣∣∂f̃

∂z̄

∣∣∣∣P4
(|Im z|−1)dx dy

)2

. (3.15)

Plugging (3.5) with l = 4 in (3.15), we prove (1.33). Thus, we have proved the parts (i) and (ii) of Theorem 1.6.
Now, let us assume that the marginal distributions of the entries of WN satisfy the Poincaré inequality (1.12) with

a uniform constant υ and prove the parts (iii)–(v), i.e. the estimates (1.37), (1.39) and (1.40). Since the proof of
(1.37)–(1.40) is very similar to the proof of Proposition 3.3 in [28], we discuss here only the main ingredients.

The first important observation is that, if f (x) is a Lipschitz continuous function on R with the Lipschitz constant
|f |L,R then on the space of the N × N real symmetric (Hermitian) matrices, the matrix-valued function f (X) is also
Lipschitz continuous with respect to the Hilbert–Schmidt norm ([14], Proposition 4.6(c)). Namely,∥∥f (X) − f (Y )

∥∥
HS ≤ |f |L,R‖X − Y‖HS, (3.16)

where the Hilbert–Schmidt norm is defined as

‖X‖HS = (
Tr

(|X|2))1/2
. (3.17)

In particular, if u and v are unit vectors, then

G(XN) = 〈
u,f (XN)v

〉
(3.18)
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is a complex-valued Lipschitz continuous function on the space of N × N real symmetric (Hermitian) matrices with
the Lipschitz constant

|G|L := sup
X �=Y

|G(X) − G(Y)|
‖X − Y‖HS

= |f |L,R.

The second observation is that the joint distribution of the matrix entries{
Xii,1 ≤ i ≤ N,

√
2Xjk,1 ≤ j < k ≤ N

}
of XN satisfies the Poincaré inequality with the constant 1

2Nυ since the Poincaré inequality tensorizes ([1,20]). There-
fore, for any complex-valued Lipschitz continuous function of the matrix entries with the Lipschitz constant |G|L,

the distribution of G(XN) has exponential tails (see e.g. Lemma 4.4.3 and Exercise 4.4.5 in [1]), i.e.

P
(∣∣G(XN) − EG(XN)

∣∣ ≥ t
) ≤ 2K exp

(
−

√
υN

2|G|L
t

)
, (3.19)

where K is a universal constant,

K = −
∑
i≥0

2i log
(
1 − 2−14−i

)
.

This proves (1.39).
Applying (3.19) to the spectral norm ‖X‖ of the matrix XN and using the universality results for the largest

eigenvalues (see [22] and references therein), we obtain

P
(∣∣‖XN‖ − 2σ

∣∣ ≥ t
) ≤ (

2K + o(1)
)

exp

(
−

√
υN

2
t

)
(3.20)

and, in particular,

P
(‖XN‖ > 2σ + δ

) ≤ (
2K + o(1)

)
exp

(
−

√
υN

2
δ

)
. (3.21)

Let f (x) be a real-valued Lipschitz continuous function on [−2σ − δ,2σ + δ]. Then, we can find a function
f1(x) that is Lipschitz continuous on R, coincides with f on [−2σ − δ,2σ + δ], and satisfies |f1|L,R = |f |L,δ. It
follows from (3.21) that 〈u,f (XN)v〉 does not coincide with 〈u,f1(XN)v〉 on a set of probability at most (2K +
o(1)) exp(−

√
υN
2 t), which implies (1.37). The details are left to the reader.

4. Outliers in the spectrum of finite rank perturbations of Wigner matrices

This section is devoted to the proof of Theorem 1.2

Proof of Theorem 1.2. For x ∈ (2σ,+∞),

gσ (x) = x

2σ 2

(
1 −

√
1 − 4σ 2

x2

)
(4.1)

is decreasing and gσ (2σ + 0) = 1/σ. Let us choose δ > 0 in such a way that

θj >
1

gσ (2σ + 2δ)
for all 1 ≤ j ≤ Jσ+ , (4.2)

i.e. for all θj that correspond to the outliers (so θj > σ ). Let

L := max(θj ,1 ≤ j ≤ Jσ+) + 2σ + 2δ.
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It follows from (1.1)–(1.4) (see e.g. [2,4], and the proof of Proposition 2.1 in [25]) that there exists a random real
symmetric Wigner matrix W̃N that satisfies (1.1)–(1.4),

P(WN = W̃N) → 1 as N → ∞,

and ∥∥W̃N/
√

N
∥∥ → 2σ a.s. (4.3)

Without loss of generality, we can assume that W̃N = WN, so∥∥WN/
√

N
∥∥ → 2σ a.s. (4.4)

It follows from the definition of MN and (4.4) that, with probability 1, the deformed random matrix MN = 1
N

WN +AN

has no eigenvalues bigger than L for all but finitely many N. Let u = u(N), and v = v(N) be nonrandom unit vectors
in C

N. Define

ξN(x) := √
N

(〈
u,RN(x)v

〉 − gσ (x)〈u,v〉), x ∈ [2σ + 2δ,∞), (4.5)

ζN(x) := dξN(x)

dx
= −√

N
(〈
u,R2

N(x)v
〉 + g′

σ (x)〈u,v〉), x ∈ [2σ + 2δ,∞), (4.6)

ξ̃N (x) := √
N

(〈
u,

(
h(XN)RN(x)

)
v
〉 − gσ (x)〈u,v〉), x ∈ [2σ + 2δ,∞), (4.7)

ζ̃N (x) := dξ̃N (x)

dx
= −√

N
(〈
u,

(
h(XN)R2

N(x)
)
v
〉 + g′

σ (x)〈u,v〉), x ∈ [2σ + 2δ,∞), (4.8)

where h ∈ C∞
c (R) such that

h(x) ≡ 1 for x ∈ [−2σ − δ/2,2σ + δ/2], (4.9)

h(x) ≡ 0 for x /∈ [−2σ − δ,2σ + δ]. (4.10)

We claim the following lemma.

Lemma 4.1.

P
(
max

(∣∣ζN(x)
∣∣, x ∈ [2σ + 2δ,L]) ≤ log(N)N1/6) → 1, (4.11)

where ζN(x) is defined in (4.6).

Proof. It follows from (4.4) that almost surely ξN(x) = ξ̃N (x) and ζN(x) = ζ̃N (x) for all x ∈ [2σ + 2δ,L] and
all but finitely many N almost surely. Thus, it is enough to prove the result of the lemma for ζ̃N (x). Consider an
equidistributed finite sequence

x0 = 2σ + 2δ < x1 < x2 < · · · < xl(N),

where xi+1 −xi = N−1/3,0 ≤ i ≤ l(N)−1, and xl(N)−1 ≤ L < xl(N). Clearly, the number of elements in the sequence
is O(N1/3). We have

P

{
max

(∣∣ζ̃N (xi)
∣∣,0 ≤ i ≤ l(N) − 1

)
>

1

2
log(N)N1/6

}
(4.12)

≤
l(N)∑
i=0

P

{∣∣ζ̃N (xi)
∣∣ >

1

2
log(N)N1/6

}
(4.13)

≤ 1

(logN)2N1/3

l(N)∑
i=0

(
V

(
ζ̃N (xi)

) + (
E

(
ζ̃N (xi)

))2)
. (4.14)
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It follows from Theorem 1.6 that

V
(
ζ̃N (xi)

) = O(1), (4.15)

E
(
ζ̃N (xi)

) = O(1), (4.16)

uniformly in 0 ≤ i ≤ l(N) and N ≥ 1. Indeed,

ζ̃N (x) = √
N

(〈
u,f (x)(XN)v

〉 − 〈u,v〉
∫ 2σ

−2σ

f (x)(t)dμsc(t)

)
, (4.17)

where

f (x)(t) = −h(t)
1

(x − t)2
(4.18)

is a C∞
c (R) function such that ‖f (x)‖5,1 and ‖f (x)‖C8

c (R) are uniformly bounded in x ∈ [2σ + 2δ,∞). Thus, (4.15)–
(4.16) follow from (1.33)–(1.34). The bounds (4.12)–(4.14) and (4.15)–(4.16) then imply

P

{
max

(∣∣ζ̃N (xi)
∣∣,0 ≤ i ≤ l(N) − 1

)
>

1

2
log(N)N1/6

}
≤ const

(logN)2
. (4.19)

Taking into account that | dζ̃N (xi )
dx

| ≤ const
√

N‖u‖‖v‖, we arrive at (4.11). Lemma 4.1 is proven. �

Now, we are ready to start the proof of Theorem 1.2. Let us denote by u(1), . . . , u(r), the orthonormal eigenvectors
of AN corresponding to the nonzero eigenvalues. We recall that we used the notation θ1 > · · · > θj0 = 0 > · · · > θJ

for the (fixed) eigenvalues of AN, and denoted the (fixed) multiplicity of θj by kj . The zero eigenvalue θj0 = 0 has
multiplicity N − r. Clearly,

∑
j �=j0

kj = r. Let us denote by Θ the r × r diagonal matrix built from the nonzero
eigenvalues of AN,

Θ := diag(θ1, . . . , θ1, . . . , θj0−1, . . . , θj0−1, θj0+1, . . . , θj0+1, . . . , θJ , . . . , θJ ). (4.20)

Let us also denote by UN the N × r matrix whose columns are given by the orthonormal eigenvectors u(1), . . . , u(r)

of AN. Clearly,

AN = UNΘU∗
N. (4.21)

For any x ∈ [2σ + 2δ,L], we define the r × r matrix ΞN(x) as follows. Let(
ΞN(x)

)
ij

= ξ
ij
N (x) := √

N
(〈
u(i),RN(x)u(j)

〉 − gσ (x)δij

)
, 1 ≤ i, j ≤ r. (4.22)

The first step in the proof of Theorem 1.2 is the following lemma from [9].

Lemma 4.2. Suppose that x is not an eigenvalue of XN. Then x is an eigenvalue of XN + AN with multiplicity n ≥ 1
if and only if gσ (x) is an eigenvalue of the r × r matrix

ZN(x) := Θ−1 − 1√
N

ΞN(x), (4.23)

with the same multiplicity.

For the convenience of the reader, we sketch the proof of Lemma 4.2 below.

Proof of Lemma 4.2. Let x /∈ Sp(XN). Therefore RN(x) = (xIN − XN)−1 is well defined, and

det(XN + AN − xIN) = det
(
(XN − xIN)

(
IN − RN(x)AN

))
. (4.24)
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We obtain that for x /∈ Sp(XN) that x ∈ Sp(XN + AN) if and only if

det
(
IN − RN(x)AN

) = det
(
IN − RN(x)UNΘU∗

N

) = det
(
Ir − ΘU∗

NRN(x)UN

) = 0, (4.25)

where one uses the identity det(I − BC) = det(I − CB). Rewriting

Ir − ΘU∗
NRN(x)UN = −Θ

(
U∗

NRN(x)UN − Θ−1),
one finishes the proof of Lemma 4.2. �

Proposition 1.1 plays an important role in the proof of Theorem 1.2. Before we prove Proposition 1.1, we need to
introduce some notations and prove Lemma 4.3.

Consider a family of r × r matrices ZN(x) defined in (4.23) for x ∈ [2σ + 2δ,L]. Fix an eigenvalue θj of AN

such that θj > σ and use the notation v(1), . . . , v(kj ) for the eigenvectors of AN that correspond to the eigenvalue
θj . Without loss of generality we can assume that j = 1. We do it just to simplify notations. The case 1 < j ≤ Jσ+

is identical. We recall that Ξ
(j)
N is defined in (1.25) as the kj × kj submatrix of ΞN(ρj ) restricted to the rows and

columns corresponding to v(i),1 ≤ i ≤ kj . The central role in the proof of Proposition 1.1 is played by the following
lemma.

Lemma 4.3. Let ZN(x), x ∈ [2σ + 2δ,L], be as in (4.23), with ΞN(x) defined in (4.22), and Θ defined in (4.20). Let

z1(x) ≤ z2(x) ≤ · · · ≤ zr(x) (4.26)

be the ordered eigenvalues of ZN(x). Then, for a sufficiently large constant C > 0,

P

(∣∣zi(x) − zi(y)
∣∣ ≤ C

logN

N1/3
|x − y|,∀x, y ∈ [2σ + 2δ,L], i = 1, . . . , r

)
→ 1, (4.27)

as N → ∞, and

zi(ρ1) = 1

θ1
+ O

(
1√
N

)
, 1 ≤ i ≤ k1, (4.28)

in probability, i.e.
√

N(zi(ρ1) − 1
θ1

) is bounded in probability, 1 ≤ i ≤ k1.

Below, we prove Lemma 4.3.

Proof of Lemma 4.3. We claim that (4.27) follows from Lemma 4.1. Indeed, (4.6) and (4.11) imply that

P
(∥∥ΞN(x) − ΞN(y)

∥∥ ≤ Const log(N)N1/6|x − y|,∀x, y ∈ [2σ + 2δ,L]) → 1, (4.29)

as N → ∞. Since |zi(x) − zi(y)| ≤ ‖ZN(x) − ZN(y)‖ = 1√
N

‖ΞN(y) − ΞN(y)‖,1 ≤ i ≤ r, we conclude that (4.29)
implies (4.27).

To prove (4.28), we use the fact that

∥∥ZN(x) − Θ−1
∥∥ =

∥∥∥∥ 1√
N

ΞN(x)

∥∥∥∥ = O

(
1√
N

)
, (4.30)

in probability. Indeed, the entries of the r × r matrix ΞN(x) are bounded in probability since the expectation and
variance of

ξ̃
ij
N (x) := √

N
(〈
u(i), h(XN)RN(x)u(j)

〉 − gσ (x)δij

)
, 1 ≤ i, j ≤ r,

is uniformly bounded by Theorem 1.6, and

ξ̃
ij
N (x) = ξ

ij
N (x), 1 ≤ i, j ≤ r,
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almost surely. Thus, ‖ΞN(x)‖ is also bounded in probability. Since the first k1 eigenvalues of Θ−1 are equal to 1
θ1

,

we obtain (4.28). Lemma 4.3 is proven. �

Now, we are ready to prove Proposition 1.1.

Proof of Proposition 1.1. By Lemma 4.2, the outliers of XN +AN are given by those values of x ∈ [2σ + δ,M] such
that

gσ (x) = zi(x) for some 1 ≤ i ≤ r. (4.31)

We recall that gσ (x) is a monotonically decreasing function on [2σ + δ,M] and

g′
σ (x) ≤ const(σ, δ,M) < 0, x ∈ [2σ + δ,M]. (4.32)

We note that

gσ (ρ1) = 1

θ1
. (4.33)

Since for 1 ≤ i ≤ k1, (4.28) gives us that zi(ρ1) − gσ (ρ1) = O( 1√
N

) in probability, it follows from (4.27) and (4.31)

that with probability going to 1, there exist M > x1 ≥ x2 ≥ · · · ≥ xk1 > 2σ + δ such that gσ (xi) = zi(xi),1 ≤ i ≤ k1,

and
√

N |xi − ρ1| = O(1), 1 ≤ i ≤ k1, (4.34)

in probability. Applying (4.27) one more time, we get that

gσ (xi) = zi(ρ1) + O

(
log(N)N1/6

N

)
, 1 ≤ i ≤ k1, (4.35)

in probability. By a standard perturbation theory argument (see e.g. Section XII.1 in [29]), one proves that the first k1
smallest eigenvalues of the matrix ZN(ρ1) differ from the (increasingly ordered) eigenvalues of the k1 × k1 matrix
1
θ1

Id − 1√
N

Ξ
(m)
N by at most O( 1

N
), in probability, where the matrix Ξ

(m)
N has been defined in (1.25). To see this, we

use the following standard lemma from the perturbation theory

Lemma 4.4. Let B be an n × n real symmetric (Hermitian) matrix that can be written in the block form as B =
(Bij )i,j=1,2, where Bij is an ni × nj matrix. Suppose that all eigenvalues of B11 are smaller than all eigenvalues of
B22 and the gap between the spectra of B11 and B22 is at least Const > 0. In addition, suppose that the operator norm
of the offdiagonal block B12 is bounded from above by ε, so that ‖B12‖ = ‖B21‖ ≤ ε.

Then there exists const(Const, n) such that the first n1 smallest eigenvalues of B differ from the (increasingly
ordered) eigenvalues of B11 by at most const ε2.

Proof. We sketch the main idea of the proof for the convenience of the reader. First of all, one can assume that the
eigenvalues of B11 are non-degenerate. In addition, one can assume that the blocks B11 and B22 are diagonal matrices.
If not, one can simultaneously diagonalize them without changing the bound on the operator norms of the off-diagonal
blocks. Thus, B11 = diag(λ1, λ2, . . . , λn1), and B22 = diag(λn1+1, . . . , λn). Then the eigenvectors of B11 are given by
e1, . . . , en1 , and the eigenvectors of B22 are given by en1+1, . . . , en, where ei,1 ≤ i ≤ n, are the standard basis vectors
in Cn. We recall that

λ1 ≤ λ2 ≤ · · · ≤ λn1 < λn1+1 ≤ · · · ≤ λn,

and λn1+1 − λn1 > Const . Then it is easy to see that

ẽ1 = e1 +
∑
j>n1

〈(B − λ1)e1, ej 〉
λ1 − λj

ej
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is an approximate eigenvector of B with the approximate eigenvalue λ1 such that

(B − λ1)ẽ1 =
∑
j>n1

〈(B − λ1)e1, ej 〉
λ1 − λj

(B − λj )ej .

Since ‖(B − λj )ej‖ ≤ ε,1 ≤ j ≤ n, and λj − λ1 ≥ Const, n1 < j ≤ n, we obtain that

∥∥(B − λ1)ẽ1
∥∥ ≤ const ε2,

where const depends just on Const and n. The last inequality also holds (albeit with a different value of const) if one
replaces ẽ1 by the normalized vector ẽ1‖ẽ1‖ . Thus, B has an eigenvalue in the const ε2-neighborhood of λ1. �

The result of the lemma can be immediately extended by induction to the case of m × m block matrices B =
(Bij )1≤i,j≤m. To apply it in our setting, we note that the k1 × k1 matrix 1

θ1
Id − 1√

N
Ξ

(m)
N is the upper-left block of

ZN(ρ1). The other diagonal blocks of ZN(ρ1) are given by Ξ
(i)
N ,1 ≤ i ≤ m − 1, defined in (1.25). Since the operator

norms of the off-diagonal blocks of ZN(ρ1) are O(N−1/2) (see (4.30)), the desired statement follows.
Therefore, we have

gσ (ρ1) + (
g′

σ (ρ1) + o(1)
)
(xi − ρ1) = 1

θ1
− 1√

N
yi + O

(
log(N)N1/6

N

)
, 1 ≤ i ≤ k1, (4.36)

where y1 ≥ · · · ≥ yk1 are the eigenvalues of the matrix Ξ
(m)
N . The result of Proposition 1.1 now follows from (4.33)

and (4.36). �

Since the eigenvalues of the matrix Ξ
(m)
N (ρ1) are bounded in probability, the first part of Theorem 1.2, i.e. (1.14),

follows from (1.26) in Proposition 1.1.
Now assume that the marginal distributions of the matrix entries of WN satisfy the Poincaré inequality (1.12) with

a uniform constant υ. Our goal is the almost sure bound (1.15) on the rate of convergence of the outliers. We note that
one can improve (4.27) and (4.28) in Lemma 4.3 as follows. Applying (1.39)–(1.40) to (4.17) and taking into account

that ξN(x) = ξ̃N (x) and ζN(x) = ζ̃N (x) for all x ∈ [2σ + 2δ,L] on a set of probability 1 − O(exp(−
√

υNδ
2 )), one

proves

max
(∣∣ζN(x)

∣∣, x ∈ [2σ + 2δ,L]) ≤ Const1 log(N), (4.37)

max

(∣∣∣∣zi(x) − 1

θ1

∣∣∣∣, x ∈ [2σ + 2δ,L]
)

≤ Const2
log(N)√

N
, 1 ≤ i ≤ k1, (4.38)

almost surely, where Const1 > 0,Const2 > 0 are sufficiently large, improving (4.11). Reasoning as before, (4.37)
implies that

∣∣zi(x) − zi(y)
∣∣ ≤ Const3

log(N)√
N

|x − y|, ∀x, y ∈ [2σ + 2δ,L], i = 1, . . . , r, (4.39)

almost surely for sufficiently large constant Const3 > 0. Thus, we have

gσ (ρ1) + (
g′

σ (ρ1) + o(1)
)
(xi − ρ1) = 1

θ1
− 1√

N
yi + O

(
log(N)

N

)
, 1 ≤ i ≤ k1, (4.40)

almost surely, which implies (1.15) since gσ (ρ1) = 1
θ1

. Theorem 1.2 is proven. �
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5. Proof of Theorems 1.3, 1.4 and 1.7

In this section, we prove Theorems 1.3, 1.4 and 1.7. We start with Theorem 1.3.

Proof of Theorem 1.3. Let θj > σ be an eigenvalue of AN with the multiplicity kj . Let us assume that Case A takes
place. Thus, without loss of generality, we can assume that the eigenvectors of AN corresponding to the eigenvalue θj

belong to Span(e1, . . . , eKj
), where Kj is a fixed positive integer. As always, we consider the real symmetric case. The

treatment of the Hermitian case is very similar. Consider a Kj ×kj matrix Uj such that the (Kj -dimensional) columns
of Uj are filled by the first Kj coordinates of the kj orthonormal vectors of AN corresponding to the eigenvalue θj .

We recall that the remaining N − Kj coordinates of these orthonormal vectors are zero. Let us denote by R
(Kj )

N (z)

the upper-left Kj × Kj submatrix of the resolvent matrix RN(z) = (zIN − XN)−1. Finally, we define the random
matrix-valued field

ΥN(z) := √
N

(
R

(Kj )

N (z) − gσ (z)IKj

)
, z ∈ C \ [−2σ,2σ ]. (5.1)

It follows from the definition that ΥN(z) is a random function on C \ [−2σ,2σ ] with values in the space of complex
symmetric Kj ×Kj matrices. In particular, ΥN(x) is real symmetric for real x ∈ R\[−2σ,2σ ]. It follows from (1.25),
(5.1) and the definition of Uj in the paragraph above (5.1) that

Ξ
(j)
N = U∗

j ΥN(ρj )Uj . (5.2)

We recall that Theorem 1.1 in [28] states that ΥN(z) converges weakly in finite-dimensional distributions to a random
field

Υ (z) := g2
σ (z)

(
W(Kj ) + Y(z)

)
, (5.3)

where W(Kj ) is the Kj × Kj upper-left corner submatrix of the Wigner matrix WN (1.1)–(1.4), and Y(z) =
(Yil(z)), Yil(z) = Yli(z),1 ≤ i, l ≤ Kj , is a centered Gaussian random field with the covariance matrix given in (1.18)–
(1.23) in [28]. In particular, for real x ∈ R \ [−2σ,2σ ], one has that the entries Yil,1 ≤ i ≤ l ≤ Kj , are independent
centered Gaussian real random variables such that

V
(
Yii(x)

) = κ4(μ)g2
σ (x) − 2σ 4g′

σ (x), 1 ≤ i ≤ Kj , (5.4)

V
(
Yil(x)

) = −σ 4g′
σ (x), 1 ≤ i < l ≤ Kj . (5.5)

Now, Theorem 1.3 follows from Proposition 1.1 in this paper, and Theorem 1.1 in [28], since

gσ (ρj ) = 1

θj

and g′
σ (ρj ) = − 1

θ2
j − σ 2

. (5.6)

Theorem 1.3 is proven. �

The proof of Theorem 1.4 is very similar to the given proof of Theorem 1.3. One has to use Theorems 4.1 and 4.2
and Remark 4.1 in [25] that generalize Theorems 1.1 and 1.5 in [28] to the non-i.i.d. case, and replace κ4(μ) in (5.4)
with κ4(i),1 ≤ i ≤ Kj .

Now, we turn to the proof of Theorem 1.7.

Proof of Theorem 1.7. Recall that we extended the definition of Υ (z) to that of an infinite-dimensional matrix
Υ (z)pq,1 ≤ p,q < ∞, in the paragraphs above the formulation of Theorem 1.7. We employ a standard approximation
argument. For simplicity, we assume that Im z �= 0. If z is real, one has to replace RN(z) by h(XN)RN(z), where
h ∈ C∞

c (R) is defined in (4.9)–(4.10). Let n be a sufficiently large fixed positive integer and consider N ≥ n. It
follows from Theorem 1.1 in [28] (see the proof of Theorem 1.3 above) that the joint distribution of〈

u(n)
p ,ΥN(z)u(n)

q

〉 = √
N

(〈
u(n)

p ,RN(z)u(n)
q

〉 − gσ (z)
〈
u(n)

p , u(n)
q

〉)
, 1 ≤ p,q ≤ l,
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converges weakly to the joint distribution of 〈u(n)
p ,Υ (z)u

(n)
q 〉,1 ≤ p,q ≤ l. Choosing n sufficiently large, we can

make

V
(〈
u(n)

p ,Υ (z)u(n)
q

〉 − 〈
up,Υ (z)uq

〉)
, 1 ≤ p,q ≤ l, (5.7)

and

V
(〈
u(n)

p ,ΥN(z)u(n)
q

〉 − 〈
u(N)

p ,Υ (z)Nu(N)
q

〉)
, 1 ≤ p,q ≤ l, (5.8)

arbitrary small uniformly in N ≥ n. Indeed, the variance in (5.7) is bounded by O(‖up −u
(n)
p ‖2 +‖uq −u

(n)
q ‖2) since

the entries of Υ (z) are i.i.d. random variables with bounded variance on the diagonal and i.i.d. random variables with
bounded variance off the diagonal. In addition,〈

u(n)
p ,ΥN(z)u(n)

q

〉 − 〈
u(N)

p ,ΥN(z)u(N)
q

〉 = 〈
u(n)

p − u(N)
p ,ΥN(z)u(n)

q

〉 + 〈
u(N)

p ,ΥN(z)
(
u(n)

q − u(N)
q

)〉
and we can use the bounds (1.33) and (1.34) in Theorem 1.6 rewritten as

V
(〈
u,f (XN)v

〉) ≤ const1
‖f ‖C5

c (R)‖u‖2‖v‖2

N
, (5.9)

∣∣∣∣E〈
u,f (XN)v

〉 − 〈u,v〉
∫ 2σ

−2σ

f (x)dμsc(dx)

∣∣∣∣ ≤ const2 ‖f ‖C8
c (R)

‖u‖‖v‖√
N

, (5.10)

to show that

V
(〈
u(n)

p − u(N)
p ,ΥN(z)u(n)

q

〉)
, V

(〈
u(N)

p ,ΥN(z)
(
u(n)

q − u(N)
q

)〉)
are arbitrary small (uniformly in N ) provided one chooses n sufficiently large. This finishes the proof. �

Theorem 1.7 allows the following extension of Theorem 1.3:

Remark 5.1. Let u(1), . . . , u(r) be a set of orthonormal vectors in l2(N) such that

∥∥u(p) − u
(p)
N

∥∥ = o
(
N−1/2), 1 ≤ p ≤ r, (5.11)

where u
(p)
N denotes the projection of u(p) onto the subspace spanned by the first N standard basis vectors e1, . . . , eN .

Let UN be the N ×r matrix whose columns are given by the vectors u
(1)
N , . . . , u

(r)
N . Also denote by Θ the r ×r diagonal

matrix

Θ = diag(θ1, . . . , θ1, . . . , θj0−1, . . . , θj0−1, θj0+1, . . . , θj0+1, . . . , θJ , . . . , θJ ).

Finally, define

AN = UNΘU∗
N.

The result of Theorem 1.3 can be extended for such AN , with the matrix Vj given by

θ2
j

〈
u(p),Υ (θj )u

(q)
〉
, 1 ≤ p,q ≤ kj . (5.12)

Appendix

The appendix contains several basic formulas used throughout the paper.
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First, we recall the decoupling formula from [23]. Let ξ be a real-valued random variable with p+2 finite moments,
and φ be a function from C → R with p + 1 continuous and bounded derivatives. Then

E
(
ξφ(ξ)

) =
p∑

a=0

κa+1

a! E
(
φ(a)(ξ)

) + ε, (A.1)

where κa are the cumulants of ξ , |ε| ≤ C supt |φ(p+1)(t)|E(|ξ |p+2), and C depends only on p. If ξ is a centered
Gaussian random variable, the decoupling formula (A.1) becomes

E
(
ξφ(ξ)

) = V(ξ)E
(
φ′(ξ)

)
, (A.2)

and can be immediately verified by integration by parts.
Next, we write a basic resolvent identity. For any two Hermitian matrices X1 and X2 and nonreal z we have:

(zI − X2)
−1 = (zI − X1)

−1 − (zI − X1)
−1(X1 − X2)(zI − X2)

−1. (A.3)

As a corollary of (A.3), one has the following formulas. If X is a real symmetric matrix with resolvent R then

∂Rkl

∂Xpq

= RkpRql + RkqRpl forp �= q, (A.4)

∂Rkl

∂Xpp

= RkpRpl. (A.5)

In a similar way, if X is a Hermitian matrix then

∂Rkl

∂ ReXpq

= RkpRql + RkqRpl, p �= q,

∂Rkl

∂ ImXpq

= i(RkpRql − RkqRpl), p �= q,

∂Rkl

∂Xpp

= RkpRpl.

Finally, we will use the following properties of the resolvent:

∥∥RN(z)
∥∥ = 1

dist(z,Sp(X))
, (A.6)

where by Sp(X) we denote the spectrum of a real symmetric (Hermitian) matrix X. The bound (A.6) implies

∥∥RN(z)
∥∥ ≤ ∣∣Im(z)

∣∣−1
. (A.7)

Therefore, all entries of the resolvent matrix are bounded by |Im(z)|−1. In a similar fashion, we have the following
bound for the Stieltjes transform, g(z), of any probability measure:

∣∣g(z)
∣∣ ≤ ∣∣Im(z)

∣∣−1
. (A.8)
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