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Abstract

Tempered stable processes are widely used in various fields of application as alternatives with finite
second moment and long-range Gaussian behaviors to stable processes. Infinite shot noise series repre-
sentation is the only exact simulation method for the tempered stable process and has recently attracted
attention for simulation use with ever improved computational speed. In this paper, we derive series
representations for the tempered stable laws of increasing practical interest through the thinning, rejec-
tion, and inverse Lévy measure methods. We make a rigorous comparison among those representations,
including the existing one due to [18, 34], in terms of the tail mass of Lévy measures which can be
simulated under a common finite truncation scheme. The tail mass are derived in closed form for some
representations thanks to various structural properties of the tempered stable laws. We prove that the
representation via the inverse Lévy measure method achieves a much faster convergence in truncation
to the infinite sum than all the other representations. Numerical results are presented to support our
theoretical analysis.
Keywords: infinitely divisible random vector, inverse Lévy measure method, rejection method, sample
paths simulation, shot noise method, tempered stable process, thinning method.
2010 Mathematics Subject Classification: 60E07, 65B10, 60B10, 65C10.

1 Introduction

The class of tempered stable law was first proposed by Tweedie [36]. Its associated Lévy and Ornstein-
Uhlenbeck processes were studied in Barndorff-Nielsen and Shephard [4] and Rosiński [34]. In particular,
Rosiński [34] reveals their featuring properties, such as a stable-like behavior over short intervals, the ab-
solute continuity with respect to its short-range limiting stable subordinator, aggregational Gaussianity and
a series representation in closed form. Such processes have been introduced in a variety of applications.
In mathematical finance, they were introduced to model asset price dynamics in Carr et al. [7] under the
name CGMY model and stochastic volatility in Benth et al. [5] and Carr et al. [8]. They were also used in
financial econometrics in [4] and in mathematical biology in Palmer et al. [31], to mention just a few. In sta-
tistical physics, stochastic processes with heavy marginal probability tails and still with finite variance have
been developed through various different direct truncations of the marginal density function of the stable
law. The pioneering work of Mantegan and Stanley [28] is the constitution for the so-called truncated Lévy
flights in econophysics. In Koponen [26], the analytic expression for characteristic function of truncated
Lévy flights was derived. Multi-scaling properties of truncated Lévy flights was investigated by Nakao [30]
for the first time. Arbitrary truncation of Lévy flights was considered in Vinogradov [37]. In Figueiredo
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et al. [14], truncated Lévy flights are extended to possess autocorrelation, which is often observed in the
real-world financial data. Various other related models were studied in, for instance, Gupta and Campanha
[15], Matsushita, Rathie and Da Silva [29], and Podobnik et al. [32]. Those truncated Lévy flight models are
adequately capable of describing a variety of stylized properties seen in time series of complex systems and
have been appealing due to their intuitive approach, while they are no longer Lévy processes and are thus
not robust to the observation time scale. This fact ensure practical importance and sample path generation
of tempered stable processes.

Several methods for simulation of sample paths of tempered stable Lévy processes have been investi-
gated in the literature. It is well known (Devroye [12] and Baeumer and Meerschaert [3]) that their univariate
increments with stability index smaller than one can be simulated in the exact sense through acceptance-
rejection sampling using its non-tempered stable random variables as proposal distribution. The case of
stability index greater than one is also discussed in [3] and Kawai and Masuda [25] in an approximative
sense. With the help of those acceptance-rejection, simulations of tempered stable Ornstein-Uhlenbeck pro-
cesses are investigated in Kawai and Masuda [23, 24] under a discrete observation setting. The other route
of sample paths simulation is based on infinite shot noise series representations (Bondesson [6] and Rosiński
[33]). Strictly speaking, the infinite shot noise series is the only exact simulation method for tempered stable
processes to realize all the information of sample paths, that is, size, direction and timing of every single
jump. A closed form of such a series representation was derived in Rosiński [34] (first introduced in his
discussion section of the article [4]). Its structure is sufficiently simple and enables one to simulate sample
paths solely with elementary random variables, such as exponential and uniform. From a computational
point of view, the form of infinite sum raises issues of heavy computing load and of finite truncation [10]
and suggests variance reduction for Monte Carlo simulation purposes [19, 20].

The main purpose of this paper is to investigate a finite truncation of infinite shot noise series represen-
tation of the tempered stable law from a numerical standpoint in order to facilitate the simulation use of such
infinite series representations. By applying several methods for deriving a kernel of shot noise series (see
Rosiński [33]), we derive and present in Section 3 five different representations of the tempered stable law.
Our main results are presented in Theorem 3.1 on the finite truncation of those five representations. In short,
the inverse Lévy measure method [13, 27] simulates more mass of Lévy measure tails under a common finite
truncation scheme, compared to representations based on the rejection and thinning methods [33] and the
representation of Rosiński [34]. In connection with recent results of the authors [17, 18], the inverse Lévy
measure method is most attractive from a simulation point of view. In the representation through the inverse
Lévy measure method, we only need to generate Poisson arrival times for the jump size and a few others for
jump timing and direction. In the case of the tempered stable law, however, the tail inverse of Lévy measure
is not available in closed form. This issue was addressed in [18] through a numerical approach, which we
will review in Appendix A to keep this paper self-contained. Numerical results on moment estimation of
unilateral tempered stable random variable are presented in Section 4 to provide the support for our theo-
retical analysis. To avoid overloading the paper with rather lengthy proofs of somewhat routine nature, we
omit non-essential details in some instances.

2 Preliminaries

Let us begin this section with the notations which will be used throughout the paper. We denote by Rd the
d-dimensional Euclidean space with the norm ∥ · ∥, Rd

0 := Rd \{0}, R+ := (0,+∞) and B(Rd
0) is the Borel

σ -field of Rd
0 . We let N be the collection of positive integers, with N0 := N∪{0}. We denote by L

= and L→,
respectively, identity and convergence in law. Finally, we define the following.

(i) {Ek}k∈N is a sequence of iid exponential random variables with unit mean,
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(ii) {Γk}k∈N is a sequence of standard Poisson arrival times, generated iteratively as a successive sum-
mation of iid exponential random variables;

{Γ1,Γ2,Γ3, . . .}←
{
∑1

k=1 Ek,∑2
k=1 Ek,∑3

k=1 Ek, . . .
}
. (2.1)

The exponential random variables {Ek}k∈N serve as Poisson interarrival times.

2.1 Tempered Stable Law

We here review the tempered stable law defined by Rosiński [34]. An infinitely divisible probability measure
µ on Rd , without Gaussian component, is called tempered stable if its Lévy measure has the form

ν(B) =
∫
Rd

0

∫
R+

1B(rv)
e−r

rα+1 dr ρ(dv), B ∈B(Rd
0), (2.2)

where α ∈ (0,2) and where the measure ρ on Rd
0 satisfies∫

Rd
0

∥v∥αρ(dv)<+∞. (2.3)

The two parameters α and ρ uniquely identify Lévy measure of the tempered stable law. Under the addi-
tional condition {∫

Rd
0
∥v∥ρ(dv)<+∞, if α ∈ (0,1),∫

Rd
0
∥v∥(1+ ln+ ∥v∥)ρ(dv)<+∞, if α = 1,

(2.4)

the characteristic function of µ has a closed form expression given by

µ̂(y) = exp
[

i⟨y,b⟩+
∫
Rd

0

ϕα(⟨y,v⟩)ρ(dv)
]
, (2.5)

for some b ∈ Rd and where, for s ∈ R,

ϕα(s) =

{
Γ(−α)((1− is)α −1+ iαs), if α ∈ (0,1)∪ (1,2),
(1− is) ln(1− is)+ is, if α = 1.

(2.6)

For further details about its distributional properties, we refer the reader to [34]. Let us briefly survey
known simulation methods for the tempered stable law, except for the one based on infinite shot noise series
representation.

(i) The most primitive and direct method for the tempered stable law is based on the use of its probability
distribution function computed from the characteristic function (2.5) by the Gil-Pelaez formula.
However, we need to deal with numerical integrations for the formula, and also need to invert the
distribution for each uniform random variable.

(ii) Gaussian approximation of small jump component was justified by [2, 10], while the remaining com-
ponent is compound Poisson. Let us clarify that simulation of the compound Poisson component is
not as easy as often claimed in the literature, as its standardized distribution function is not available
in closed form and the intensity may be extremely large depending on the choice of the small jump
component. Great care should thus be taken when addressing this trade-off issue.
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(iii) The one-dimensional unilateral tempered stable distribution admits a density function, which is an
exponential tilting of the density of its corresponding non-tempered stable distribution. Together
with the well known exact, yet simple, simulation method of Chambers et al. [9], we can apply
acceptance-rejection sampling. If its stability index is less than one, then the support of the distribu-
tion is half real line and thus the acceptance-rejection sampling method is exact. (See, for example,
[3, 12, 23].) Otherwise, the support is the entire real line, while acceptance-rejection sampling can
still be applied in an approximative sense due to Baeumer and Meerschaert [3]. (See also [24] for
further analysis.)

(iv) Related to (iii), the one-dimensional unilateral distribution can be evaluated for computation of the
expectation based on Theorem 33.3 of Sato [35]. In this case, the standardized exponential tilting
acts as the Radon-Nykodym derivative for change of measure. This method is exact, regardless of
stability index, while is only valid for computation of the expectation, not for sample paths simula-
tion. (See, for example, [22] for practical use of this method.)

To the best of our knowledge, as just described, an exact simulation is possible in the path-wise sense only
for the one-dimensional unilateral case with stability index less than one. This observation justifies our
investigation of infinite shot noise series representation from a numerical point of view.

2.2 A Shot Noise Series Representation of Tempered Stable Laws

Let us first review generalities on the series representation of general infinitely divisible law. Our startup
discussion is essentially parallel to the inverse Lévy measure method of [13, 27]. Notice first that the random
variable ∑+∞

k=1 Γk1[0,T ](Γk) is infinitely divisible with Lévy measure ν(dz) = dz defined on (0,T ]. Recall
also that the epochs of an inhomogeneous Poisson process on [0,T ] with intensity h(t) can be generated by
H(Γ1), H(Γ2), . . ., where H(t) = inf{u ∈ [0,T ] :

∫ u
0 h(s)ds < t}, provided that

∫ T
0 h(s)ds <+∞. Therefore,

by regarding the intensity h(t) as a Lévy measure (“on state space” rather than “on time”), we deduce that
∑+∞

k=1 H(Γk)1[0,T ](Γk) is an infinitely divisible random variable with Lévy measure ν(dz) = h(z)dz defined
on (0,T ]. Notice here that the definition of H(t) implicitly assumes that that the Lévy measure ν has a
compact support. Moreover, the condition

∫ T
0 h(s)ds <+∞ indicates a finite Lévy measure. We can extend

this formulation to an infinite Lévy measure on R+, simply by redefining the kernel H as running down
from the infinity rather than up the other way, that is, H(r) = inf{u ∈ R+ :

∫ +∞
u h(s)ds < r}, and compute

∑+∞
k=1 H(Γk), where {Γk}k∈N is no longer restricted on a finite interval [0,T ]. (See Asmussen and Glynn [1].)

The most general form of series representations is given by the so-called generalized shot noise method
introduced by Bondesson [6] and Rosiński [33]. Assume that Lévy measure ν defined on Rd

0 can be decom-
posed as

ν(B) =
∫
R+

P(H(r,U) ∈ B)dr, B ∈B(Rd
0), (2.7)

where U is a random variate taking values in a suitable space U , and where H : R+×U 7→ Rd
0 is such that

for each u ∈ U , r 7→ ∥H(r,u)∥ is non-increasing. Let {Uk}k∈N be a sequence of iid copies of the random
variate U , independent of {Γk}k∈N. Then, the random vector

+∞

∑
k=1

(H (Γk,Uk)−E [H (Γk,Uk)1(∥H (Γk,Uk)∥ ≤ 1)]) (2.8)

has an infinitely divisible law with characteristic function

y 7→ exp
[∫

Rd
0

(
ei⟨y,z⟩−1− i⟨y,z⟩1(0,1](∥z∥)

)
ν(dz)

]
.
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A series representation of the tempered stable law is derived in Rosiński [34] through the generalized shot
noise method. Let {Wk}k∈N be a sequence of iid standard exponential random variables, let {Uk}k∈N be a
sequence of iid uniform random variables on [0,1], let {Vk}k∈N be a sequence of iid random vectors in Rd

0
with common distribution

∥v∥αρ(dv)
mα,ρ

,

with
mα,ρ :=

∫
Rd

0

∥v∥αρ(dv).

Also, let k0 =
∫
Rd

0
v∥v∥α−1ρ(dv)/mα,ρ , and let

z0 :=

{
(α/mα,ρ)

−1/αζ (1/α)k0 + |Γ(1−α)|
∫
Rd

0
vρ(dv), if α ̸= 1,

(α−1 ln(mα,ρ)+2γ)
∫
Rd

0
vρ(dv)−

∫
Rd

0
v ln∥v∥ρ(dv), if α = 1,

where ζ denotes the Riemann zeta function and γ(= 0.5772...) is the Euler constant. Then, by Theorem 5.4
of [34], it is known that the random vector

+∞

∑
k=1

[((
αΓk

mα,ρ

)−1/α
∧WkU

1/α
k ∥Vk∥

)
Vk

∥Vk∥
−
(

αk
mα ,ρ

)−1/α
k0

]
+ z0 (2.9)

has the tempered stable law with characteristic function (2.5) with b = 0.

3 Main Results

In this section, we derive three infinite shot noise series representations of tempered stable law and compare
them, including two known representations of [18, 34]. Let us first prepare some notations, which will be
used in what follows. Fix λ ∈ (0,1], λ1 ∈ R+ and λ2 ∈ (0,1]. Define

H1(r,w,u,v) :=

[(
αr

mα,ρ

)−1/α
∧wu1/α∥v∥

]
v
∥v∥

,

H2(r,w,v) := w1

(
r ≤ mα ,ρ

∥v∥
λ

e−
1−λ
∥v∥ w

wα+1

)
v
∥v∥

,

H3(r,w,v) := w1

r ≤ mα,ρΓ(λ1)

(
∥v∥
λ2

)λ1 e−
1−λ2
∥v∥ w

wα+λ1

 v
∥v∥

,

H4(r,u,v) := H(s)(r)1
(

e−H(s)(r)/∥v∥ > u
) v
∥v∥

,

H5(r,v) := inf

{
u ∈ R+ :

∫ +∞

u
mα,ρ

e−s/∥v∥

sα+1 ds > r

}
v
∥v∥

.

We will also use the notation

H(s)(r) :=
(

αr
mα,ρ

)−1/α
.

Each of the above serve as a kernel of infinite shot noise series representation. Set the following random
sequences.
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(i) {Γk}k∈N is a sequence of standard Poisson arrival times,
(ii) {Vk}k∈N is a sequence of iid random vectors with common distribution ∥v∥αρ(dv)/mα,ρ on Rd

0 ,
(iii) {Uk}k∈N is a sequence of iid uniform random variables on [0,1],
(iv) {W (1)

k }k∈N is a sequence of iid standard exponential random variables,
(v) {W (2)

k }k∈N is a sequence of independent exponential random variables with W (2)
k having rate λ/∥Vk∥

conditionally on ∥Vk∥,
(vi) {W (3)

k }k∈N is a sequence of independent gamma random variables with W (3)
k having shape λ1 and

scale ∥Vk∥/λ2 conditionally on ∥Vk∥.

As described in Section 2.2, any shot noise series representation of the tempered stable law has the form
of infinite sum, since the associated Lévy measure is infinite. To deal with infinite sums in simulation, we
need to truncate them up to a certain finite point. A straightforward approach is the truncation to a finite
number of terms of the series, that is, ∑n

k=1 for some n ∈ N. In this paper, however, we adopt another
approach based on the truncation to a finite time span of the underlying standard Poisson process, that is,
∑{k∈N:Γk≤n}. Clearly, truncation level is left random and is thus different for different replications, while
it is almost surely finite. This truncation scheme enables us to trace the part of Lévy measure, which shot
noise series can simulate. With this truncation scheme, define for each n ∈ N,

X1,n := ∑
{k∈N:Γk≤n}

[
H1(Γk,W

(1)
k ,Uk,Vk)− c1,k

]
, (3.1)

X2,n := ∑
{k∈N:Γk≤n}

[
H2(Γk,W

(2)
k ,Vk)− c2,k

]
, (3.2)

X3,n := ∑
{k∈N:Γk≤n}

[
H3(Γk,W

(3)
k ,Vk)− c3,k

]
, (3.3)

X4,n := ∑
{k∈N:Γk≤n}

[H4(Γk,Uk,Vk)− c4,k] , (3.4)

X5,n := ∑
{k∈N:Γk≤n}

[H5(Γk,Vk)− c5,k] , (3.5)

where

c1,k := E[H1(Γk,W
(1)
k ,Uk,Vk)1(0,1](∥H1(Γk,W

(1)
k ,Uk,Vk)∥)],

c2,k := E[H2(Γk,W
(2)
k ,Vk)1(0,1](∥H2(Γk,W

(2)
k ,Vk)∥)],

c3,k := E[H3(Γk,W
(3)
k ,Vk)1(0,1](∥H3(Γk,W

(3)
k ,Vk)∥)],

c4,k := E[H4(Γk,Uk,Vk)1(0,1](∥H4(Γk,Uk,Vk)∥)],
c5,k := E[H5(Γk,Vk)1(0,1](∥H5(Γk,Vk)∥)].

The representation (3.1) was derived by Rosiński [34] (first introduced in his discussion part of [4]). The
representations (3.2) and (3.3) are due to the thinning method of Rosiński [33]. The representation (3.4) is
due to the rejection method of Rosiński [33]. The representation (3.5) is based on the inverse Lévy measure
method.

Theorem 3.1. (i) For each k = 1,2,3,4,5, the law L (Xk,n) is infinitely divisible with Lévy measure νn,k and
converges to the infinitely divisible law with triplet (0,0,ν) as n ↑+∞.
(ii) It holds that for each n ∈ N,

νk,n(Rd
0) = n, k = 1,2,3,4,5.
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(iii) It holds that for each n ∈ N, x ∈ R+ and C ∈B(Sd−1),

ν1,n((x,+∞)C) =

(
n

α
mα,ρ

xα ∧1
)

ν((x,+∞)C), (3.6)

ν4,n((x,+∞)C) = ν
(((

αn/mα,ρ
)−1/α

,+∞
)

C
)
∧ν ((x,+∞)C) , (3.7)

νk,n((x,+∞)C)≤ ν5,n((x,+∞)C), k = 1,2,3,4. (3.8)

(iv) It holds that for each n ∈ N and q≥ 0 such that
∫
∥z∥>1 ∥z∥qν(dz)<+∞,∫

Rd
0

∥z∥qνk,n(dz)<
∫
Rd

0

∥z∥qν5,n(dz)≤
∫
Rd

0

∥z∥qν(dz), k = 1,2,3,4. (3.9)

First, the result (ii) asserts that all the five representations account for the mass n out of the infinite Lévy
measure ν when truncating infinite series by {k ∈ N : Γk ≤ n}. The results (iii) provide useful information
about the way the representations simulate tails of Lévy measure. In particular, the tail masses (3.6) and
(3.7) are available in closed form thanks to various structural properties of the tempered stable laws and
show the effect of the almost sure finite truncation scheme {k ∈ N : Γk ≤ n} for the representations of
Rosiński (3.1) and of the rejection method (3.4) in the exact sense. Moreover, the inequality (3.8) indicates
that whenever the truncation is performed, the three representations (via the rejection and thinning methods)
cannot simulate the tail of the Lévy measure as much as the inverse Lévy measure method. In conjunction
with the result (ii), we conclude that the three representations instead simulate some part of the Lévy measure
closer to the origin. The inequality (iv) is a direct consequence of this observation. Since this fact holds for
any truncation level n, the inverse Lévy measure method dominates over the other three representations. It
however seems difficult to find clear dominance relations between the representation (3.1) and the others.
We will compare those shortly through numerical experiments.

Proof. Throughout the proof, we will use the notations

f (x;a,b) :=
ba

Γ(a)
xa−1e−bx, x ∈ R+ (3.10)

for the gamma probability density function with a > 0 and b > 0, and

ρ̃(dv) :=
∥v∥α

mα,ρ
ρ(dv), v ∈ Rd

0 . (3.11)

Note first that the truncation {k ∈ N : Γk ≤ n} of infinite series corresponds to the truncation of the integral
with respect to the Lebesgue measure dr to the interval (0,n) in the decomposition (2.7).
(i) First of all, a change of variables yields the polar decomposition

ν(B) =
∫
Rd

0

∫
R+

1B

(
r

v
∥v∥

)
mα,ρ

e−r/∥v∥

rα+1 drρ̃(dv), B ∈B(Rd
0).

The variable v in this representation corresponds to the random sequence {Vk}k∈N.
We begin with the representation of {X1,n}n∈N. To this end, let us first decompose ν((x,+∞)C). Observe
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that for each x ∈ R+ and C ∈B(Sd−1),

ν((x,+∞)C)

=
∫
Rd

0

∫
R+

1(x,+∞)(w∥v∥)
e−w

wα+1 dw1C

(
v
∥v∥

)
ρ(dv)

=
∫
Rd

0

∫ +∞

x/∥v∥

e−w

wα+1 dw1C

(
v
∥v∥

)
ρ(dv)

=
∫
Rd

0

1
α

((
x
∥v∥

)−α
e−x/∥v∥−

∫
R+

1(x,+∞)(w∥v∥)
e−w

wα dw

)
1C

(
v
∥v∥

)
ρ(dv)

=
∫
Rd

0

∫
R+

1(x,+∞)(w∥v∥)
x−α − (w∥v∥)−α

α
e−wdw1C

(
v
∥v∥

)
∥v∥αρ(dv)

=
∫
Rd

0

∫
R+

∫ 1

0
1(x,+∞)

(
wu1/α∥v∥

) mα,ρ

α
x−αdue−wdw1C

(
v
∥v∥

)
ρ̃(dv) (3.12)

=
∫
Rd

0

∫
R+

∫ 1

0

∫
R+

1(x,+∞)

((
αr

mα,ρ

)−1/α
∧wu1/α∥v∥

)
dr due−wdw1C

(
v
∥v∥

)
ρ̃(dv),

where the fifth equality holds by

1(x,+∞) (w∥v∥)

[
1−
(

w∥v∥
x

)−α
]
= Leb

[
(0,1)∩

((
w∥v∥

x

)−α
,+∞

)]

=
∫ 1

0
1

(
u1/α >

x
w∥v∥

)
du,

while the sixth equality holds by

1(x,+∞)

(
wu1/α∥v∥

) mα,ρ

α
x−α = 1(x,+∞)

(
wu1/α∥v∥

)∫
R+

1(x,+∞)

[(
αr

mα,ρ

)−1/α
]

dr

=
∫
R+

1(x,+∞)

[(
αr

mα,ρ

)−1/α
∧wu1/α∥v∥

]
dr.

By applying the generalized shot noise method [6, 33], we get the desired series representation.
To prove the claim for {X2,n}n∈N, consider the probability measure on Rd

0 ,

F1(B) =
∫
Rd

0

∫
R+

1B

(
r

v
∥v∥

)
f (r;1,λ/∥v∥)dr ρ̃(dv), B ∈B(Rd

0).

The Lévy measure ν is absolutely continuous with respect to F1 with Radon-Nykodym derivative

dv
dF1

(r,v) = mα,ρ
∥v∥
λ

e−(1−λ )r/∥v∥

rα+1 , (r,v) ∈ R+×Rd
0 .

By applying the thinning method [33], we get the desired representation. The proof for {X3,n}n∈N is similar.
Consider the probability measure

F2(B) =
∫
Rd

0

∫
R+

1B

(
r

v
∥v∥

)
f (r;λ1,λ2/∥v∥)dr ρ̃(dv), B ∈B(Rd

0).
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The Lévy measure ν is absolutely continuous with respect to F2 with Radon-Nykodym derivative

dv
dF2

(r,v) = mα,ρΓ(λ1)

(
∥v∥
λ2

)λ1 e−(1−λ2)r/∥v∥

rα+λ1
, (r,v) ∈ R+×Rd

0.

To prove the claim for {X4,n}n∈N, consider the Lévy measure

ν(s)(B) =
∫
Rd

0

∫
R+

1B(rv)
1

rα+1 dr ρ(dv), B ∈B(Rd
0),

which is a non-tempered counterpart of the tempered stable Lévy measure ν . By a simple change of vari-
ables, we have for each B ∈B(Rd

0),

ν(B) =
∫
Rd

0

∫
R+

1B

(
r

v
∥v∥

)
e−r/∥v∥

rα+1 dr mα,ρ ρ̃(dv),

ν(s)(B) =
∫
Rd

0

∫
R+

1B

(
r

v
∥v∥

)
1

rα+1 dr mα,ρ ρ̃(dv),

which implies that the Lévy measure ν(s) is of a stable law. It is well known that through the inverse Lévy
measure method [13, 27], a stable law induced by the Lévy measure ν(s) admits a series representation with
the kernel H(s)(r)v/∥v∥. Clearly, the Lévy measure ν is absolutely continuous with respect to ν(s) with
Radon-Nykodym derivative

dv
dv(s)

(r,v) = e−r/∥v∥, (r,v) ∈ R+×Rd
0 .

By applying the rejection method of Rosiński [33], we get the desired series representation.
For {X5,n}n∈N, it is clear that the kernel H5(r,v) corresponds to the inverse Lévy measure method.
Finally, we prove the infinite divisibility of L (Xk,n). The truncation scheme {k ∈ N : Γk ≤ n} corre-

sponds to the truncation to (0,n) of the integral with respect to the variable r in each decomposition of Lévy
measure. It is then clear that for k = 1,2,3,4,5, n ∈N and B ∈B(Rd

0), νk,n(B)≤ ν(B). Hence, the measure
νk,n is well defined as a Lévy measure.
(ii) All the representations νk,n are based on the generalized shot noise method due to (2.7). Therefore, by
setting B =Rd

0 and truncating the integral with respect to the Lebesgue measure dr to the interval (0,n), we
get the result.
(iii) Due to the truncation by {k ∈ N : Γk ≤ n}, it holds that for each k = 1,2,3,4,5, and n ∈ N, the random
vector Xk,n has the infinitely divisible law with triplet (0,0,νk,n), such that for each B ∈B(Rd

0),

ν1,n(B) =
∫
Rd

0

∫ n

0

∫
R+

∫ 1

0
1B

([(
αr

mα,ρ

)−1/α
∧wu1/α∥v∥

]
v
∥v∥

)
due−wdwdr ρ̃(dv),

ν2,n(B) =
∫
Rd

0

∫ n

0

∫
R+

1B

(
w1

(
mα,ρ

∥v∥
λ

e−
1−λ
∥v∥ w

wα+1 > r

)
v
∥v∥

)
f (w;1,λ/∥v∥)dwdr ρ̃(dv),

ν3,n(B) =
∫
Rd

0

∫ n

0

∫
R+

1B

w1

mα,ρΓ(λ1)

(
∥v∥
λ2

)λ1 e−
1−λ2
∥v∥ w

wα+λ1
> r

 v
∥v∥


× f (w;λ1,λ2/∥v∥)dwdr ρ̃(dv),

ν4,n(B) =
∫
Rd

0

∫ n

0

∫ 1

0
1B

((
αr

mα,ρ

)−1/α
1

(
e−

1
∥v∥

(
αr

mα,ρ

)−1/α

> u

)
v
∥v∥

)
dudr ρ̃(dv),

ν5,n(B) =
∫
Rd

0

∫ n

0
1B

(
H5(r,v)

v
∥v∥

)
dr ρ̃(dv).
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To prove (3.6), it suffices to observe that

∫ n

0
1(x,+∞)

((
αr

mα,ρ

)−1/α
∧wu1/α∥v∥

)
dr

= 1(x,+∞)

(
wu1/α∥v∥

)
Leb

({
r ∈ (0,n) :

(
αr

mα ,ρ

)−1/α
> x

})
= 1(x,+∞)

(
wu1/α∥v∥

)(
n∧

mα,ρ

α
x−α

)
,

which yields the first result with the help of (3.12). Second, to prove (3.7), observe that

ν4,n((x,+∞)C)

=
∫
Rd

0

∫ n

0

∫ 1

0
1

(
e−

1
∥v∥

(
αr

mα,ρ

)−1/α

> u

)
1(x,+∞)

((
αr

mα,ρ

)−1/α
)

dudr1C

(
v
∥v∥

)
ρ̃(dv)

=
∫
Rd

0

∫ n∧mα,ρ
α x−α

0
e−

1
∥v∥

(
αr

mα,ρ

)−1/α

dr1C

(
v
∥v∥

)
ρ̃(dv)

=
∫
Rd

0

∫ +∞

x∨
(

αn
mα,ρ

)−1/α mα,ρ
e−r/∥v∥

rα+1 dr1C

(
v
∥v∥

)
ρ̃(dv) (3.13)

=
∫
Rd

0

[(∫ n

0
e−H(s)(r)/∥v∥dr

)
∧
∫ +∞

x
mα,ρ

e−r/∥v∥

rα+1 dr

]
1C

(
v
∥v∥

)
ρ̃(dv)

≤
∫
Rd

0

[
n∧

∫ +∞

x
mα,ρ

e−r/∥v∥

rα+1 dr

]
1C

(
v
∥v∥

)
ρ̃(dv). (3.14)

The claim (3.7) follows from (3.13). Moreover, the inequality (3.8) holds for ν4,n by (3.14) since by the
definition of the kernel H5(r,v), we have

ν5,n((x,+∞)C) =
∫
Rd

0

[
n∧

∫ +∞

x
mα,ρ

e−r/∥v∥

rα+1 dr

]
1C

(
v
∥v∥

)
ρ̃(dv). (3.15)

For ν1,n, it holds by (3.6) and (3.12) that

ν1,n ((x,+∞)C) =
∫
Rd

0

(
nαxα

∫ +∞

x

e−r/∥v∥

rα+1 dr∧
∫ +∞

x
mα,ρ

e−r/∥v∥

rα+1 dr

)
1C

(
v
∥v∥

)
ρ̃(dv)

≤
∫
Rd

0

(
nαxα

∫ +∞

x

1
rα+1 dr∧

∫ +∞

x
mα ,ρ

e−r/∥v∥

rα+1 dr

)
1C

(
v
∥v∥

)
ρ̃(dv)

= ν5,n ((x,+∞)C) .

Finally, we prove the claim (3.8) for ν2,n and ν3,n. Those decompositions are due to the thinning method. Let
{F(·,v)}v∈Rd

0
be a measurable family of probability measures on R+ such that for each v ∈ Rd

0 , the support

of F(·,v) is R+. Since for v ∈ Rd
0 , the measure mα,ρe−w/∥v∥/wα+1dw on R+ is absolutely continuous

with respect to F(dw,v), the Radon-Nykodym derivative is well defined, for which we will write G(w,v),
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(w,v) ∈ R+×Rd
0 . Then, it holds that for each x ∈ R+ and C ∈B(Sd−1),∫
Rd

0

∫
R+

∫ n

0
1(G(w,v)> r)dr1(x,+∞)(w)F(dw,v)1C

(
v
∥v∥

)
ρ̃(dv)

=
∫
Rd

0

∫ +∞

x
[n∧G(w,v)]F(dw,v)1C

(
v
∥v∥

)
ρ̃(dv)

≤
∫
Rd

0

[
n∧

∫ +∞

x
mα,ρ

e−r/∥v∥

rα+1 dr

]
1C

(
v
∥v∥

)
ρ̃(dv) = ν5,n((x,+∞)C),

where the inequality holds by the Jensen inequality for the concave function [n∧ ·] and by for each x ∈ R+

and v ∈ Rd
0 , F((x,+∞),v)≤ 1.

(iv) Observe that
(ν5,n−νk,n)((x,+∞)C)≥ (νk,n−ν5,n)((0,x)C),

which follows from (ii) and (iii). It holds by this inequality that for each x ∈ R+,∫
(x,+∞)C

∥z∥q (ν5,n−νk,n)(dz)> xq (ν5,n−νk,n)((x,+∞)C) (3.16)

≥ xq (νk,n−ν5,n)((0,x)C)

=
∫
(0,x)C

xq (νk,n−ν5,n)(dz)>
∫
(0,x)C

∥z∥q (νk,n−ν5,n)(dz).

Note that the strict inequalities hold since we have assumed the Lévy measure has no atoms. (In particular,
the both hand sides in (3.16) tend to get far apart for a higher q.) Hence, it holds that for each x ∈ R+,∫

Rd
0

∥z∥qνk,n(dz) =
∫
(0,x)C

∥z∥qνk,n(dz)−
∫
(x,+∞)C

∥z∥q (ν5,n−νk,n)(dz)+
∫
(x,+∞)C

∥z∥qν5,n(dz)

≤
∫
(0,x)C

∥z∥qνk,n(dz)−
∫
(0,x)C

∥z∥q (νk,n−ν5,n)(dz)+
∫
(x,+∞)C

∥z∥qν5,n(dz)

=
∫
Rd

0

∥z∥qν5,n(dz).

The proof is complete.

The following corollary provides further useful insight into the way the rejection and the inverse Lévy
measure methods simulate tails of Lévy measure. The simplification imposed in (i) is not very restrictive
and indeed covers most settings of practical interest.

Corollary 3.2. Consider the same setting of Theorem 3.1.
(i) If there exists c ∈R+ such that ρ({v ∈Rd

0 : ∥v∥= c}) = 1, then it holds that for each n ∈N and x ∈R+,

ν5,n

(
(x,+∞)Sd−1

)
= n∧ν

(
(x,+∞)Sd−1

)
.

(ii) It holds that for x ∈ R+,

ν4,n

(
(x,+∞)Sd−1

)
∼ n∧ν

(
(x,+∞)Sd−1

)
, n ↑+∞.

Proof. (i) This claim is trivial from the representation (3.15).
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(ii) Observe that for each v ∈ Rd
0 , as n ↑+∞,

∫ +∞(
αn

mα,ρ

)−1/α mα,ρ
e−r/∥v∥

rα+1 dr =
mα,ρ

∥v∥α Γ

(
−α,

1
∥v∥

(
αn

mα,ρ

)−1/α
)
∼ n,

where we have used the well known asymptotics limx↓0 Γ(s,x)/xs = −1/s, with s < 0. This proves the
claim.

To close this section, let us present the tail probability asymptotics of the series. Interestingly, the
first jumps of all the five different representations have the same tail probability asymptotics, although the
captured tail mass differs for different representations under the same truncation scheme. For θ ∈ R+ and
k ∈ N, define

p1(θ ; k) := P
(
∥H1

(
Γk,W

(1)
k ,Uk,Vk

)
∥> θ

)
,

p2(θ ; k) := P
(∥∥∥H2

(
Γk,W

(2)
k ,Vk

)∥∥∥> θ
)
,

p3(θ ; k) := P
(∥∥∥H3

(
Γk,W

(3)
k ,Vk

)∥∥∥> θ
)
,

p4(θ ; k) := P(∥H4(Γk,Uk,Vk)∥> θ) ,
p5(θ ; k) := P(∥H5 (Γk,Vk)∥> θ) .

Proposition 3.3. It holds that as θ ↑+∞,

pn(θ ; k)∼
mk−1

α,ρ

Γ(k+1)αk

∫
Rd

0

∥v∥α e−θ/∥v∥

θ kα ρ(dv), n = 1,4, (3.17)

p2(θ ; k)∼
mk−1

α,ρ

Γ(k+1)λ k−1(k+ kα−1)

∫
Rd

0

∥v∥α−1+k e−(k−(k−1)λ )θ/∥v∥

θ kα−1+k ρ(dv), (3.18)

p3(θ ; k)∼
(mα,ρΓ(λ1))

k−1

Γ(k+1)λ (k−1)λ1
2

1
kα +(k−1)λ1

∫
Rd

0

∥v∥α+(k−1)λ1
e−(k−(k−1)λ2)θ/∥v∥

θ kα+(k−1)λ1
ρ(dv), (3.19)

p5(θ ; k)∼
mk−1

α,ρ

Γ(k+1)αk

∫
Rd

0

∥v∥α e−θ/∥v∥

θ kα ρ(dv). (3.20)

In particular, it holds that for each k = 1, . . . ,5, as θ ↑+∞,

pk(θ ; 1)∼
∫
Rd

0

∥v∥α e−θ/∥v∥

αθ α ρ(dv).

Proof. Throughout, we will use the notations (3.10) and (3.11) and the asymptotics; for β > 0 and k ∈ N,∫ +∞

x

e−r

rβ+1 dr ∼ e−x

βxβ , as x ↑+∞, (3.21)

1
Γ(k)

∫ x

0
rk−1e−rdr ∼ xk

Γ(k+1)
, as x ↓ 0. (3.22)
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First, it holds by the independence of Γk, Wk and Uk that

p1(θ ;k) = P

((
αΓk

mα,ρ

)−1/α
> θ

)
P
(

W1U1/α
1 ∥V1∥> θ

)
=
∫ mα,ρ

αθα

0
f (y;k,1)dy

∫
Rd

0

∫ 1

0
e−θu−1/α/∥v∥duρ̃(dv)

=
∫ mα,ρ

αθα

0
f (y;k,1)dy

αθ α

mα,ρ

∫
Rd

0

∫ +∞

θ/∥v∥

e−s

sα+1 dsρ(dv)

∼
mk−1

α,ρ

Γ(k+1)αk

∫
Rd

0

∥v∥α e−θ/∥v∥

θ kα ρ(dv),

as θ ↑+∞, which yields the result (3.17) for n = 1. Next,

p2(θ ;k) = P

{W (2)
1 > θ

}
∩

Γk ≤ mα,ρ
∥V1∥

λ
e−

1−λ
∥v∥ W (2)

1

(W (2)
1 )α+1




=
∫
Rd

0

∫ +∞

θ

∫ mα,ρ
∥v∥
λ

e−(1−λ )w/∥v∥
wα+1

0
f (y;k,1)dy

λ
∥v∥

e−
λ
∥v∥wdwρ̃(dv)

∼
mk−1

α,ρ

Γ(k+1)λ k−1

∫
Rd

0

∫ +∞

θ

e−k 1−λ
∥v∥ w

wk(α+1) e−
λ
∥v∥wdw∥v∥k+α−1ρ(dv)

∼
mk−1

α,ρ

Γ(k+1)λ k−1(k+ kα−1)

∫
Rd

0

∥v∥α−1+k e−(k−(k−1)λ )θ/∥v∥

θ kα−1+k ρ(dv),

which yields the result (3.18). Then,

p3(θ ;k)

= P

{W (3)
1 > θ

}
∩

Γk ≤ mα,ρΓ(λ1)

(
∥v∥
λ2

)λ1 e−
1−λ2
∥V1∥

W (3)
1

(W (3)
1 )α+λ1




=
∫
Rd

0

∫ +∞

θ

∫ mα,ρ Γ(λ1)
(
∥V1∥
λ2

)λ1 e−(1−λ2)w/∥v∥

wα+λ1

0
f (y;k,1)dy f (w;λ1,λ2/∥v∥)dw ρ̃(dv)

∼
(mα ,ρΓ(λ1))

k−1

Γ(k+1)λ (k−1)λ1
2

(k− (k−1)λ2)
kα+(k−1)λ1

∫
Rd

0

∥v∥(1−k)α
∫ +∞

k−(k−1)λ2
∥v∥ θ

e−s

skα+(k−1)λ1+1 dsρ(dv)

∼
(mα ,ρΓ(λ1))

k−1

Γ(k+1)λ (k−1)λ1
2

1
kα +(k−1)λ1

∫
Rd

0

∥v∥α+(k−1)λ1
e−(k−(k−1)λ2)θ/∥v∥

θ kα+(k−1)λ1
ρ(dv),
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as θ ↑+∞, which yields the result (3.19). Next,

p4(θ ;k) = P
({

H(s)(Γk)> θ
}
∩
{

e−H(s)(Γk)/∥V1∥ >U1

})
=
∫
Rd

0

∫ mα,ρ
αθα

0
e−H(s)(r)/∥v∥ f (r;k,1)dr ρ̃(dv)

=
mk−1

α,ρ

Γ(k)αk−1

∫
Rd

0

∫ +∞

θ/∥v∥
s−αk−1e−s− 1

∥v∥α
mα,ρ
αsα ds∥v∥α(1−k)ρ(dv)

∼
mk−1

α,ρ

Γ(k)αk−1

∫
Rd

0

∫ +∞

θ/∥v∥
s−αk−1e−sds∥v∥α(1−k)ρ(dv)

∼
mk−1

α,ρ

Γ(k+1)αk

∫
Rd

0

∥v∥α e−θ/∥v∥

θ kα ρ(dv),

as θ ↑+∞, which yields the result (3.17) for ν4,n. Finally,

p5(θ ;k) = P

(
Γk ≤

∫ +∞

θ
mα,ρ

e−s/∥V1∥

sα+1 ds

)

=
∫
Rd

0

∫ ∫+∞
θ mα,ρ s−α−1e−s/∥v∥ds

0
f (y;k,1)dy ρ̃(dv)

∼ 1
Γ(k+1)

∫
Rd

0

(∫ +∞

θ
mα,ρs−α−1e−s/∥v∥ds

)k

ρ̃(dv)

∼
mk−1

α,ρ

Γ(k+1)αk

∫
Rd

0

∥v∥α e−kθ/∥v∥

θ kα ρ(dv),

as θ ↑+∞, which yields the result (3.20).

4 Numerical Illustration

Consider the spectrally positive tempered stable Lévy measure

ν(dz) =
a2κκ

Γ(1−κ)
e−

1
2 b1/κ z

zκ+1 dz, z ∈ R+, (4.1)

where a > 0, b ≥ 0 and κ ∈ (0,1). The associated Lévy process {L(ts)
t : t ≥ 0} (without drift) is called the

tempered stable subordinator, with characteristic function

E
[
eiyL(ts)

t

]
= exp

[
t
∫
R+

(
eiyz−1

)
ν(dz)

]
= exp

[
ta
(

b−
(

b1/κ −2iy
)κ)]

. (4.2)

Its moments can be derived in closed form. In particular, the first two are given by

E
[
L(ts)

T

]
= 2aκb

κ−1
κ T, Var

(
L(ts)

T

)
= 4aκ(1−κ)b

κ−2
κ T. (4.3)

The formulation (4.1) is realized by setting α = κ and ρ such that

ρ(Rd
0) = ρ

({
2b−1/κ

})
=

abκ
Γ(1−κ)

,
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in the definition (2.2). Note that mα,ρ = 2κaκ/Γ(1−κ). First, its marginal density function is known only in
an infinite series representation except for the cases κ = 1/2 and κ = 1/3. The tempered stable subordinator
with κ = 1/2 is called an inverse Gaussian process. The density function when κ = 1/3 is very intricate
due to the presence of a Bessel function. (See [31].)

Here, we compare the following four shot noise series representations;{
L(ts)

t : t ∈ [0,T ]
}

L
=

{
+∞

∑
k=1

[(
Γ(1−κ)

a2κ
Γk

T

)−1/κ
∧

W (1)
k U1/κ

k

b1/κ/2

]
1[0,t] (Tk) : t ∈ [0,T ]

}
(4.4)

L
=

{
+∞

∑
k=1

W (2)
k 1

(
Γk

T
≤ aκ2κ+1b−1/κ

Γ(1−κ)(W (2)
k )κ+1

)
1[0,t] (Tk) : t ∈ [0,T ]

}
(4.5)

L
=

{
+∞

∑
k=1

(
Γ(1−κ)

a2κ
Γk

T

)−1/κ
1

(
e−

1
2 b1/κ

(
Γ(1−κ)

a2κ
Γk
T

)−1/κ

>Uk

)
1[0,t] (Tk) : t ∈ [0,T ]

}
(4.6)

L
=

{
+∞

∑
k=1

H5

(
Γk

T
,2b−1/κ

)
1[0,t] (Tk) : t ∈ [0,T ]

}
. (4.7)

Recall that {W (1)
k }k∈N is a sequence of iid standard exponential random variables, {Uk}k∈N is a sequence

of iid uniform random variables on [0,1], {W (2)
k }k∈N is a sequence of iid exponential random variables

with rate b1/κ/2, and {Tk}k∈N is a sequence of iid uniform random variables on [0,T ]. The kernel H5(r,v)
is not available in closed form due to the incomplete gamma function. We employ a numerical approach
developed in [18] to obtain this kernel. (For the reader’s convenience, we provide its brief description in
Appendix A.) Note that the representation (4.5) can be recovered either from (3.2) with λ = 1, or from (3.3)
with λ1 = λ2 = 1.

First, we compare convergence of the representations (4.4)-(4.7) through estimation of E[L(ts)
T ] and

Var(L(ts)
T ). Note that the random sequence {Tk}k∈N is not required for this experiment. (Let us remind

that series representations can be used for pathwise simulation purpose, not only for computation of expec-
tations.) To avoid overloading the paper with exhaustive numerical results, we only provide results with the
parameter setting (a, b, κ, T ) = (10, 1.6, 0.2, 1.0).

To obtain a (nearly) complete estimator convergence, we generate a sufficiently large number N = 219(=
524288) of iid (truncated) infinite sums on the right hand side of (4.4)-(4.7). We report relative error |(µ̃n−
µ)/µ| in percentage where µ̃n is a Monte Carlo estimate based on N iid replications and the finite truncation
{k ∈ N : Γk ≤ n} for µn := E[µ̃n] such that limn↑+∞ µn = µ . (Recall that the true value µ is given by (4.3).)

First of all, it is obvious from the results that the representation (4.7) provides an incomparably faster
convergence to the true value in the finite truncation {k ∈ N : Γk ≤ n}, than any other representations (4.4)-
(4.6). Those results fairly support our theoretical results (3.8) and (3.9). It is particularly remarkable that the
representation (4.7) achieves a relative error of less than 1.00% with much smaller truncation. As indicated,
the difference becomes more evident for higher moments. (This is indeed obvious from the inequality
(3.16).) On the one hand, the representation (4.5) converge at a fast rate when the truncation level n stays
small, while slows down as n increases. The representation (4.6), on the other hand, does not behave well
until a very large truncation. In particular, most indicators in (4.6) keep being rejected for small k’s. It
seems that the representations (4.4) and (4.6) exhibit a similar performance in terms of the number of terms
required to reach a relative error of 1%.

Let us close this section with discussing a further possible improvement through the applicability of
low-discrepancy sequences to the representations (4.4)-(4.7). As investigated in [17, 18], on the one hand, it
is often effective to apply a suitable low-discrepancy sequence to the interarrival exponential times {Ek}k∈N
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E[L(ts)
T ] Var(L(ts)

T )
Minimum Thinning Rejection Inversion Minimum Thinning Rejection Inversion

Truncation (4.4) (4.5) (4.6) (4.7) (4.4) (4.5) (4.6) (4.7)
1 94.78% 72.29% 100.00% 60.29% 92.85% 41.07% 100.00% 20.55%
2 89.61% 56.57% 100.00% 43.79% 85.88% 21.85% 100.00% 9.53%
3 84.37% 47.22% 100.00% 33.48% 78.56% 13.74% 100.00% 5.30%
4 79.17% 41.05% 100.00% 26.39% 71.54% 10.32% 100.00% 3.25%
5 73.95% 36.50% 100.00% 21.22% 64.32% 7.45% 100.00% 2.21%
10 47.84% 24.73% 99.56% 8.62% 28.43% 3.22% 96.75% 0.82%
15 24.42% 19.38% 57.93% 4.22% 5.36% 1.88% 18.73% 0.66%
20 11.45% 16.27% 22.35% 2.33% 0.82% 1.49% 1.46% 0.63%
25 5.68% 14.09% 9.61% 1.40% 0.17% 0.68% 0.17% 0.62%
30 3.04% 12.66% 4.72% 0.89% 0.38% 1.30% 0.37% 0.62%
50 0.44% 9.12% 0.61% 0.23% 0.09% 0.46% 0.28% 0.45%
100 0.12% 5.71% 0.04% 0.00% 0.11% 0.06% 0.36% 0.05%
150 0.02% 4.49% 0.15% 0.01% 0.02% 0.40% 0.36% 0.05%
200 0.11% 3.64% 0.04% 0.02% 0.10% 0.28% 0.03% 0.05%

Table 1: Relative errors in estimation of the mean E[L(ts)
T ]≃ 6.104E-1 and the variance Var(L(ts)

T )≃ 9.313E-
2. The numbers “Truncation” indicate “n” in {k ∈ N : Γk ≤ n}.

in (2.1) since a systematic generation of the lower dimension of the interarrival times tends to contribute
to improvements in both precision and convergence when computing expectations from the nature of the
shot noise series representation. On the other hand, it has also been found that the presence of additional
random elements water down the effectiveness of a low-discrepancy sequence. We have observed from
numerical experiments that the representations (4.4)-(4.6) require so many additional random sequences that
the application of low-discrepancy sequences increases computing effort without improving the estimator
efficiency at all. In addition, the uniformity of low-discrepancy sequences seems to be ruined even further
by the indicator functions in the representations (4.5) and (4.6).

5 Concluding Remarks

Tempered stable processes combine both the stable and Gaussian trends, which are two stylized features
often seen together in time series of complex systems. They are widely used in various fields of application
such as, mathematical finance, econometrics and mathematical biology. In particular, such stochastic pro-
cesses correspond to the so-called truncated Levy flights in physics and econophysics. Infinite shot noise
series representation is the only exact simulation method for the tempered stable process with stability index
greater than or equal to one and has recently attracted attention for simulation use.

In this paper, we have derived series representations for the tempered stable laws through the thinning,
rejection, and inverse Lévy measure methods. Based upon our rigorous comparison among those represen-
tations in terms of the tail mass of Lévy measures which can be simulated under a common finite truncation
scheme, the representation via the inverse Lévy measure method achieves a much faster convergence in
truncation to the infinite sum than all the other representations. Our results are expected to assist simulation
study of, for example, the financial time series.

The results of this paper may be applicable to related stochastic processes. In particular, tempered stable
processes of rich flexibility can further be extented through fractionalization and their sample paths can also
be simulated through the infinite series representation, as investigated in Houdré and Kawai [21]. Due to
additional model flexibility, it is natural to expect a better fit of the model to the observed data, though
fractionalization might cause a confusion related to multifractability as pointed out in Heyde and Sly [16].
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We conjecture that our theoretical analysis is at least implicative, though not necessarily directly applicable,
to the series representation of such fractional processes.

A Numerical Inverse Lévy Measure Method
As observed in Section 3, the kernel H5(r,v) is not available in closed form, precluded by the incomplete gamma func-
tion. To materialize the inverse Lévy measure method for the numerical experiment of Section 4, we have employed
an efficient numerical inversion method of [18]. In principle, it is a generalization of a numerical inversion method
proposed in [11], for inversion of probability distribution functions. To employ the method of [11] in our framework,
we transform a Lévy measure into a probability distribution function. To be more precise, consider the Lévy measure
(4.1) which was investigated in Section 4. This Lévy measure is infinite, that is,

∫ +∞

0

a2κ κ
Γ(1−κ)

e−
1
2 b1/κ z

zκ+1 dz =:
∫ +∞

0
w(x)dx =+∞.

To apply quadrature and interpolation techniques, we need to truncate the support R+ to a compact, yet sufficiently
large, domain [xmin, xmax]⊂ R+. Let W (x) denote the cumulative Lévy measure, that is,

W (x) :=
∫ +∞

x
w(z)dz,

where the cumulation here runs down from the infinity rather than up the other way, to avoid explosion at the origin.
For convenience, we write wmin and wmax for W (xmin) and W (xmax), respectively, that is,

wmax :=W (xmax) =
∫ +∞

xmax
w(z)dz, wmin :=W (xmin) =

∫ +∞

xmin

w(z)dz.

Note that wmax < wmin. To this end, we define functions F : R+→ [0,1] and f : R+→ R+∪{0} by

F(x) :=


0, if x ∈ (0, xmin),
wmin−W (x)
wmin−wmax

, if x ∈ [xmin, xmax],

1, if x ∈ (xmax,+∞),

f (x) :=


0, if x ∈ (0, xmin),

w(x)
wmin−wmax

, if x ∈ [xmin, xmax],

0, if x ∈ (xmax,+∞).

(A.1)

which act, respectively, as a cumulative distribution function and a probability density function in the method of [11].
In principle, the method of [11] can then be applied to the standardized cumulative Lévy measure F(x) in (A.1).

Now, the method of [11] consists of two components; the initial setup phase and the actual execution phase. In
the initial setup phase, the compact domain [xmin, xmax] is adaptively divided into disjoint subintervals on the basis
of approximation error in F(x) produced by the Newton interpolation. This division should be conducted with great
care, as in the actual execution phase, we only obtain an approximation of F−1(u) for each sample u ∈ (0,1) by
the Newton interpolation based on the information {(xk,F(xk))}k∈N of nodes stored during the initial setup phase, in
order to reduce a large amount of computational burden. In our framework, a further extra attention should be paid to
computation of F(x) near the origin because it necessarily has a steep peak there. For this reason, the lower truncation
xmin has to be chosen very carefully and some safety devices should be employed in algorithms to avoid undesired
failures caused by this. The actual execution is enhanced by employing an indexed search algorithm, rather than
very inefficient ordinary sequential or binary search, when searching an appropriate subinterval in which the sample
value sits. It is claimed in [18] based on numerical experiments that computational effort for this numerical inversion
method is relatively small compared to overall simulation. For example, in numerical experiments of Section 4, we
set xmin =1.0E-7 and xmax = 10.0, and then wmin ≃ 34.2662 and wmax ≃ 0.0000. The initial setup phase divided the
compact domain [xmin, xmax] into 1753 subintervals and only required 0.344 second.

This numerical method requires a certain amount of initial work for its implementation, while it has the potential
to provide significant improvements in simulation accuracy and estimator efficiency, as observed in Section 4. Equally
important is that this numerical method is model-free and thus requires no adjustment to different Lévy measures for
different problems.
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[11] Derflinger, G., Hörmann, W., Leydold, J. (2009) Random variate generation by numerical inversion when only the density
is known, ACM Transactions on Modeling and Computer Simulation, 20(4) Article 18.

[12] Devroye, L. (2009) Random variate generation for exponentially and polynomially tilted stable distributions, ACM Transac-
tions on Modeling and Computer Simulation, 19(4) Article 18.

[13] Ferguson, T.S., Klass, M.J. (1972) A representation of independent increment processes with Gaussian components, Annals
of Mathematical Statistics, 43(5) 1634-1643.

[14] Figueiredo, A., Gleria, I., Matsushita, R., Da Silva, S. (2003) On the origins of truncated Lévy flights, Physics Letters A,
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[17] Imai, J., Kawai, R. (2010) Quasi-Monte Carlo methods for infinitely divisible random vectors via series representations,
SIAM Journal on Scientific Computing, 32(4) 1879-1897.
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flights, Physical Review Letters, 73, 2946-2949.

[29] Matsushita, R., Rathie, P., Da Silva, S. (2003) Exponentially damped Lévy flights, Physica A, 326, 544-555.
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