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Introduction. The aim of this paper is to study conditions which reflect the

projectivity of a given finitely generated flat module over a commutative ring. The

use of the invariant factors of a module (see below for definition) are very appro-

priate here : By translating the description by Bourbaki [4] of finitely generated

projective modules, one can state that projectivity = flatness+finitely generated

invariant factors. Since the invariant factors of a flat module are very peculiar

(locally they are either (1) or (0)), the presence of almost any other condition on

the module precipitates their finite generation. For instance, consider the following

two statements. Let M be a finitely generated flat mociule over the commutative

ring R : (i) Let S be a multiplicative set in R consisting of nonzero divisors such

that Ms (localization of M with respect to S) is Fs-projective; then Mis projective.

(ii) Let / be the Jacobson radical of R and assume that M/JM is F/7-projective ;

then M is projective. The first is a result by Endo [8] who uses homological algebra

in the proof, while the second can be viewed as a generalization of the well-known

fact that over a local ring a finitely generated flat module is free.

Next we apply these ideas for a look at finitely generated flat ideals. Even though

they are not always projective (see below for an example of a principal flat ideal

which is not projective) it can be shown this to be the case when the flat ideal is a

finite intersection of primary ideals. The criterion mentioned above says that for

a finitely generated flat ideal, projectivity is the same as having finitely generated

annihilator. For rings with the weakened form of coherency that finitely generated

ideals have finitely generated annihilators, one can even show that any finitely

generated flat submodule of a projective module is projective.

When used to study the prime ideals of a ring R of weak dimension one we

arrive at the fact that a finitely generated prime ideal is either maximal or generated

by an idempotent. It is also shown that if every principal ideal is projective then

R is semihereditary ; if moreover every cyclic flat module is projective, then R is

a direct sum of finitely many Prüfer domains.

1. Flatness and projectivity. Throughout R will denote a commutative ring and

M a finitely generated F-module. We will assume from the reader familiarity

with the notions of localization and exterior product, of which repeated use shall

be made (see [2], [4] and [7]). For each prime ideal F, i.e. for each point of Spec R,

let rM(P) denote the minimum number of generators of the localization MP over
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Pp. Thus rM defines an integral valued function on Spec R, sometimes called the

rank function of M. Bourbaki [4, Chapter II, Theorem 1 ] characterizes a finitely

generated projective module M as being free at each localization MP and such that

its rank function is locally constant, Spec P endowed with the usual topology.

On the other hand, the pih invariant factor of M, IP(M), is defined as the annihi-

lator of /\p M, the pth exterior power of M. It then follows that t-m(P) §/? precisely

for those primes P=>/P(M), i.e. for P in the closed set V(IP(M)). Thus V(IP(M))

— V(IP+1(M)) is the set of points where the rank of M is exactly p. Assume from

here on that M is flat; according to [4, p. 167] this is the same as M being free at

each prime. As M is finitely generated, V(IP(M)) is empty for large p. Coupled

with this the Bourbaki criterion assumes the form : M is projective iff M is flat

and V(IP(M)) is open for all/>'s. On the other hand, since /\p M is finitely generated,

for any localization RP, IP(MP)=IP(M) ® RP. But /\p M is locally free as localiza-

tion and formation of exterior powers commute and we conclude that for each

prime P, IP(MP) is either (1) or (0), i.e. the whole localization or the null ideal. In

particular (IP(M))2 = IP(M).

We pause to discuss this condition briefly. Let / be an ideal in a commutative

ring P and M a finitely generated P-module. If M=IM, by writing each element

in a generating set of M as a linear combination in all the generators with coeffi-

cients in /, one gets, via the so-called "determinant trick" [17, p. 255] that there

exists a e I with (1 +a)M=(0). One consequence is

Proposition 1.1. Let I be a finitely generated ideal in a commutative ring. Then

I=I2 iff I is generated by an idempotent.

Also, free of charge, one has

Proposition 1.2. Let M be a finitely generated module over the commutative ring

R. Then any endomorphism of M onto itself is an automorphism.

Proof. Let/be the given endomorphism of M. One can consider M as a module

over Fv[x], where the action of the indeterminate is given by xm=f(m), for me M.

Then M is a finitely generated P[x]-module with M=xM. By the remark, (1 + sx)M

= (0) for some j e R[x]. It is then clear that/is a monomorphism.

Going back to the flat module M, its invariant factors are finitely generated iff

they are generated by idempotents and so V(IP(M)) is open for all/r's. We can now

state

Proposition 1.3. Let R be a commutative ring and M a finitely generated flat

module over R. Then M is projective iff its invariant factors are finitely generated.

For the portion still to be proved we just recall that the annihilator of a finitely

generated projective module is generated by an idempotent [3] and that the

exterior powers of a finitely generated projective are projective and finitely gener-

ated. (Notice: if P © Q=F, then 0 2os¡sP A'^ ® Ap_i Q = A" F-)
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Now we apply this formulation of projectivity to a number of cases where

something else besides the flatness of the module is assumed. We begin with the

following [8].

Theorem 1.4. Let M be a finitely generated flat R-module and S a multiplicative

set in R consisting of nonzero divisors. Then ifMs is Rs-projective, M itself is projective.

Let / denote one of the invariant factors of M. As we have seen before, IS=I <g) Rs

is the corresponding invariant factor of the Fs-module Ms. It is thus generated by

an idempotent in Rs. We must show that / is generated by an idempotent in R.

It will follow from the next lemma, which shows the influence of [8]. More generally,

let M be a finitely generated F-module and S as above. We say that M is 5-torsion-

free if sm=0, s e S, m e M implies m = 0.

Lemma 1.5. Let I be the annihilator of a finitely generated S-torsion-free R-module

M. Then if for each prime ideal P, Ip is either (I) or (0) and Is is generated by an

idempotent, then I is generated by an idempotent.

Proof. Write Is = Rse, e an idempotent. Let J=Rse n R; J^I. Since Is is the

annihilator of Ms, JMS = (0) in Ms which means that there is se S such that

sJM=(0) in M. Since M has no 5-torsion, JM=(0) and J=I. Let L = Rs(l -e)nR;

L n /=(0). Assume that /+/ is contained in some prime ideal F. IP must then be

(0). Thus each finite set of elements of / admits a common annihilator in R—P;

e being a sum ax/sx-\-\-an/sn, with a's in /, in particular there exists reR-P

so that re=0. Thus r e Rs(l—e) n R=L, a contradiction, and / is a direct sum-

mand of R.

Similar to (1.4) is

Theorem 1.6. Let R be a commutative ring, M a finitely generated R-module

and x a nonzero divisor with respect to both R and M. Let S denote the multiplicative

set of all powers of x. If M/xM and Rs are projective over R/(x) and Rs resp., then

M is R-projective.

Proof. By the preceding it is enough to show that M is a flat F-module. It is

clear that we can assume R to be local. MjxM is then a free F/(x)-module. Let

(*) 0—>K^->F^-*M—*0

be an exact sequence with F free and /a minimum epimorphism. Tensoring with

F/(x) we get the exact sequence

0 —> K/xK —► F/xF —► M/xM —> 0

with exactness on the left due to the fact that x is not a zero divisor with respect

to M. Since/was chosen minimal and M/xM is free, we get K=xK. Now localize

(*) with respect to S to get that A's is a direct summand of Fs. The relation K= xK

plus that x is not a zero divisor in R implies K=KS. Call g an epimorphism from
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Fs onto A'with g-Js = IdK. By restricting g to F we get that A" is a direct summand

of F. This completes the proof.

It is a consequence of (1.4) that if the ring P admits a multiplicative set of non-

zero divisors S such that Rs is semilocal, then all finitely generated flat modules are

projective. In [8] it is conjectured whether the converse is true and some cases are

shown where this is so. Later we shall look at this question in rings of weak di-

mension one and here we point out that perhaps the result of the next section

opens new possibilities. Of relevance in this matter is [13]:

Corollary 1.7. Let R be a commutative ring; finitely generated flat modules are

projective iff this is true for cyclic flat modules.

Proof. The invariant factors of a flat module being at each prime either (1) or

(0) it implies for one such, say /, that P// is flat. The conclusion now follows from

(1.3).

2. Lifting. Let J be an ideal of the ring P and let M be a finitely generated

P-module. Sometimes it is possible to raise the projectivity of M/JM with respect

to R/J to that of M (see [16] for not necessarily commutative rings). Here we touch

the case where M is P-flat and J is the Jacobson radical of P.

Theorem 2.1. Let M be a finitely generated flat module and let J be the Jacobson

radical of R. If M/JM is R/J-projective, then M is R-projective.

Proof. Let /= annihilator of M and let L = annihilator of M/JM. We claim that

L = I+J. It is enough to verify this equation at each prime P of P. If MP = (0) then

IP = RP=LP. If MPy£(Q), it is a free PP-module and annihilator of MP/JMP=JP

=LP. As an R/J-module the annihilator of M/JM is I+J/J and by assumption

and (1.3) I+J/J is principal. As I+J/J^I/I nJ, we can write I=(a)+I nj. We

claim that I=(a). This time we verify equality by localizing at maximal ideals; let

P be one such. If (l) = IP = (a)P + (I nj)p we must have (a)P = (l). If IP = (0),

(a)P = (0) also and / and (a) are locally equal and thus /= (a). To complete the proof

we remind that the invariant factors are annihilators of finitely generated flat

modules and that the isomorphism f\p M (g) P/Js /\p (M/JM) holds for any ideal.

3. Ideals.    We begin with an application of (1.3) to ideals [15]:

Corollary 3.1. Let I be a finitely generated ideal of a commutative ring P.

Then I is projective iff it is flat and its annihilator is finitely generated.

(1.3) takes this form because if / is locally principal then its higher exterior powers

(p 2:2) are zero. We remark that if J is the annihilator of the finitely generated flat

ideal /, then / n J=(0) and we can view / as an ideal of R/J; with respect to this

new ring / is a projective ideal since it is still flat and its annihilator is now trivial.

It is not true however that any finitely generated flat ideal is projective as the next

example shows.

Example 3.2. A principal flat ideal which is not projective. Let A be the ring
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without identity obtained by taking a nonfinite direct sum of copies of Z/2Z,

A = © 2a (Z/2Z)a and defining addition and multiplication componentwise. Let

R be the ring obtained by adding the identity of Z to A: R=Z x A where, we recall,

addition is defined componentwise and multiplication is given by («, a) ■ («', a')

= (««', na'+n'a+aa'). Let/=(2, 0); we observe that/is not the zero element of R.

Its annihilator is A which is a not finitely generated ideal of R. We claim that

Rf is a flat ideal. It is enough to show that it is free (of rank 1 or 0) at each prime

ideal F. If/^F then (Rf)P = RP; iffeP but A$P, then AP = RP and (F/)P = (0).

Assume Rf+A <=F; let g e A—then g2=g and (1 -g)g=0. Since 1 -g$P, every

element of ^4 is zero in RP and (F/)P is a principal ideal with trivial annihilator.

This concludes the proof.

For later reference we point out another property of this ring which parallels

those of an example of Nagata [14] for rings containing a common field. Let F

be a prime ideal of R; if A <=i>, Rp is simply the ring of integers localized at some

prime, i.e. RP=Z(P) with F n Z=(p), since the elements of A, as observed earlier,

do not survive the localization. If however A<£P, say if ea, the vector of A with

coordinate 1 at the ath place and 0 elsewhere, it is not in F, then all the other basic

vectors of A are in F since for them ea-e$=0. Also (2, 0) eP. It is then easy to

conclude that RP=Z/2Z.

For some ideals however, flatness is the same as projectivity.

Theorem 3.3. Let I be a finitely generated ideal which is a finite intersection of

primary ideals. Then I is projective iff it is flat.

Proof. Write I=IX n- ■ ■ n In with / F,-primary and let J be the annihilator of I.

Say JCPX,.. .,Pr but yd;Fr+i,.. .,P„ for 0=>^«. Distinguish two cases.

(i) /c all F's. Let F be any prime ideal containing /. Then F contains some

F¡ and so also /. Thus JP = (0); if I<$P, IP = RP. Thus J is locally trivial.

(ii) r<«. Let F be a prime ideal containing Pr+X+J and letjeJ—Pr+X. Then

JP = (0) means that there is se R-P with sj=0 and sePr+1, a contradiction. Thus

Fr+1 and J are comaximal. Same is true for Ir+X and J and one can even write

(*) Ir+1n---nIn+J= R.

If r=0, we have I+J=R and as / n J=(0), J would be a direct summand of R.

Thus assume 0<r<«. We claim that JCIX n ■ ■ ■ n Ir. Let ye/-/, say. As

JCPX, JPl = (0) and so there is seR—Px so that sj=0 and since Ix is primary,

j e Ix. (*) says that we can write 1 =a+j0 with a e Ir+X n ■ ■ ■ n /„ and j0 eJ. For

jeJ we have j=ja+jj0. Since ja e Ix n ■ ■ ■ n /, nJ=(0),ja = 0 and J is generated

by/-

Corollary 3.4. Let P be a finitely generated prime ideal. Then P is projective iff

it is flat. In this case either P has trivial annihilator or it is a direct summand of R.

The last statement comes from the proof.
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If P is a coherent ring then, of course, finitely generated flat ideals are projective

since they are finitely related (see [6] for several characterizations of coherent rings).

Here the only part of the coherency that is needed is that the annihilator of a

finitely generated ideal be finitely generated. Let us call a ring with such a property

precoherent (!). In this case we have

Theorem 3.5. Let R be a precoherent ring and M a finitely generated flat sub-

module of a projective module. Then M is projective.

Proof. Can assume that M is a submodule of a finitely generated free module F.

In this case the annihilator of M is the annihilator of the ideal / generated by all

the coordinates of elements in M. Since M is finitely generated, /is finitely generated

and by the precoherency of R its annihilator is finitely generated. Now we must

show that the higher invariant factors of M are also finitely generated. In [9] it is

proved that any inclusion F0^Fbetween free modules extends to an inclusion of

their exterior powers. Thus in the present situation we have the inclusion M^F

extending to an inclusion of the corresponding exterior powers since it is so by

localizing at each prime of P. This concludes the proof.

4. Semihereditary rings. We recall that a commutative ring R is said to be

semihereditary if every finitely generated ideal is projective. On the other hand P

is said to have weak dimension ¿ 1 if every finitely generated ideal is flat (and so

any ideal). Thus a semihereditary ring has weak dimension ^ 1 and the extent to

which the converse is true will be discussed here. First we glance at the prime ideals

of a ring of weak dimension at most one.

Theorem 4.1. Let Rbe a ring of weak dimension at most one and let I be a finitely

generated prime ideal. Then I is either maximal or a direct summand of R.

Proof. By (3.4) if /is not a direct summand of P its annihilator is trivial. Assume

this to be the case and also that / is not maximal. Let F be a maximal ideal con-

taining / and xeP—I. Consider the exact sequences

(*) 0—>I—>R—>R/I—*0

and

(* *) 0 —>R/I-^ R/I —► R/(I, x) —► 0

from which we shall conclude that weak dimfl R/(I, x)^2. First, by tensoring (*)

with R/P we get Torf (R/I, R/P) = I/PI. Now this module is different from (0):

by localizing at P, IP=PIP would imply by Nakayama's lemma that IP = (0) which

contradicts the fact that / has no annihilator. On the other hand, tensoring (**)

by R/P we get

Torf (R/P, R/(I, x)) —► Tor? (R/P, R/I) ^-* Torf (R/P, R/I)
and

Torf (R/P, R/(I, x)) / (0)
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since multiplication by x induces the zero map on I/PI. Thus / must be maximal.

The following is a characterization of semihereditary rings which should be

compared to those in [7] :

Theorem 4.2. For a commutative ring R the following are equivalent:

(i) R is semihereditary;

(ii) R has weak dimension at most one and the annihilator of each element is finitely

generated.

Proof. That (i) implies (ii) it is patent. In the other direction it will follow from

the next lemma.

Lemma 4.3. Let I and J be two finitely generated projective ideals in a ring of weak

dimension at most one. Then I+J (and I nj) are projective ideals.

Proof. The annihilators 0:/and 0:Jof Zand/resp., are finitely generated. Since,

say, 0:/is locally (1) or (0), P/0:/is a flat module. Thus (0) = Tor? (R/0:I, R/0:J)

= (0:I)n (0:J)/(0:I)(0:J) by [5, Chapter VI, Exercise 19] and (0:/) n (0:7) is

finitely generated. As this last ideal is the annihilator of I+J the conclusion follows

by (3.1). The statement on / n J is a consequence of the preceding and the usual

exact sequence

0—>lnj—>I@J—>I+J—*0.

In (3.2) the localizations of R are always discrete valuation rings or fields. Thus

P has weak dimension one but it is not semihereditary. The following gives an

example where condition (ii) above is easily verified.

Example 4.4. Let k be a field and let G be an abelian group of rank one having

no element of order divisible by the characteristic of k. Then k[G], the group

algebra of G over k, is semihereditary. That it has weak dimension one it is in [1].

Let/be an element of k[G] and let H be a finitely generated subgroup of G con-

taining all elements which enter in the composition off. Then k[H] is noetherian

and /0, the annihilator of / in k[H], is finitely generated. Consider the exact

sequence

/
0 —>I0 —> k[H] -^-> k[H]

induced by multiplication by/ As k[G] is a free k[H]-module, by tensoring the

above by k[G] over k[H], we get that I0k[G] is the annihilator of/in k[G].

(4.3) shows that if every principal ideal in a ring of weak dimension one is

projective, then the ring is semihereditary. If more flat modules are allowed to

be projective we have

Theorem 4.5. Let R be a. ring of weak dimension at most one. Then if every cyclic

flat module is projective, R is a direct sum of finitely many Prüfer domains.

Proof. By (1.7) the hypothesis implies that every finitely generated flat module is

projective. Let P0 be a minimal prime of P. Since for each prime P of P RP, is a
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domain, R/P0 is a flat module. Thus F0 is finitely generated. Since (F0)Po = (0), F0,

by (3.4), must be a direct summand of R. If there were infinitely many minimal

primes we could get an infinite set of orthogonal idempotents and the ideal J they

generate would not be finitely generated while RjJ would be flat. Thus there are

only finitely many minimal primes and they are comaximal. By [11, p. 59] R is

then a finite direct sum of domains, in this case, Prüfer domains.

By (1.4) the converse holds.

A final remark: In [10] Prüfer domains are characterized as domains such that

for each ideal /, A2 ^=(0). This essentially follows from the fact that for / finitely

generated it implies / projective plus that f\v and direct limits commute. The

same condition, but for rings without nontrivial nilpotents elements, characterizes

rings of weak dimension at most one. The following seems harder: Let F be a

domain and / an ideal. Under what conditions can one ascertain that A2 -^=(0)

implies /flat? The converse is true since flat modules are direct limits of projective

modules [12] and rank considerations.
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