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1 The Game of War

The Game of War is an internationally popu-
lar children’s card game with a very basic set of
rules. At the start, the pack is shuffled and di-
vided into two equal parts; then each player re-
veals their top card. The player with the highest
value card then collects both cards and returns
them to the bottom of their hand. This process
continues until one player loses all cards.

Many who play this game in childhood lose
patience before the end as the back and forth
nature of card transfer often allows a player to
almost reach the point of victory only to see
their hand reduced dramatically in a couple of
minutes. In effect children playing are conduct-
ing basic mathematical experiments and observ-
ing the development of chaotic dynamics. It
is often wrongly assumed that this game is de-
terministic and the result is set once the cards
have been dealt. However this is not so: the
rules of the game do not stipulate in which or-
der the winner of each play returns the cards to
the bottom of their hand - own card first and
then rival’s or vice versa.

We shall at first consider a model with an ar-
bitrary (even) number of cards and only one
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suit. Hence a situation where both players
present the same value card cannot occur; in
the classic game, if this does occur, it would
lead to a process called ‘war’ and players would
continue to lay cards until one plays a winner
thus claiming all cards played.

So consider a game where the players strictly
control the order in which the cards are returned
to the bottom of their hand; in this case there is
a chance that the game will never finish. Such
a cyclic game is shown in Fig. 1 where n = 6.
The card of the ‘left’ player is always returned to
the bottom of the winner’s hand before the card
of the ‘right’ player. Such a never ending game

Figure 1: A never ending game, n = 6.

can also occur with a standard pack if the above
rules are followed. An example of an initial shuf-
fling for such a game is given on Fig. 2 (through-
out the paper we assume that the ace is the
highest value card). Observe that after the first
two moves are made, the last two cards in the
hand of player L are (A♥,K♣), and in the hand
of player R – (K♥, A♣), then after the next two
moves the last 4 cards are (A♥,K♣, A♦,K♠)
for the player L and (K♥, A♣,K♦, A♠) for
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player R, and so on. It can be easily seen that
the order of the card values is preserved, and
after 26 moves the players will end up with pre-
cisely the same distribution of card values in
their hands (although suits would get shuffled).

Figure 2: A never ending game, standard pack
of 52 cards.

Hence we have established that when rigid
rules are used, it might be possible to never
finish the game. But what if players use both
possible ways of returning cards to their hands,
and on each particular move choose such rules
at random? In this case, it is not immediately
clear whether the players have a nonzero chance
to reach the end of the game, however, it is pos-
sible to give an answer to this question using
a probabilistic model of the game. We show
that if the players use both rules to return the
cards to their hand, the mathematical expecta-
tion of the number of moves in the game is finite,
i.e., there is a zero chance of never finishing the
game.

2 Mathematical model

We now focus on a model case in which there
are cards from 1 to n. We assume that
each player possesses certain peculiarities which
means when collecting cards their card will be
placed on the bottom with probability pi

1
and

second from bottom with pi
2
, where the index i

identifies the player (i is either L or R). This is
illustrated on Fig. 3 where player L wins, and
chooses to place his card on the bottom with

probability pL
1
, and uses the other rule with

probability pL
2
. Let C be the pack of cards, ei-

Figure 3: Probabilities with which player L

chooses the order to place the cards in his hand
(model pack of 6 cards)

ther numbered (from 1 to n, where n is any
even number) or standard (with 52 cards, val-
ued from 2 to ace and having 4 suits). We
use L to denote the cards in the hand of the
‘left’ player, and R to denote the ‘right’ player’s
hand. In the model case L and R are ordered
sets of numbers, one of which can be empty; this
corresponds to the end of the game.

Each division of the pack into two ordered
sets is called a game state. That is, the game
starts with a state with both sets L and R hav-
ing an equal number of members, and ends with
the state in which one of the sets is empty (the
final state). Each game play (when the players
show their top cards, compare them and then
put the ordered pair to the bottom of the win-
ner’s hand) is a transition from one state to an-
other, because it starts with two ordered sets
of cards, and ends with two (different) ordered
sets, which correspond to the players’ hands.

Such dynamics in which a transition to the
next state happens with fixed probabilities in-
dependent on the preceding choices is called
Markov chain. In the theory of Markov chains
one of the fundamental facts is the follow-
ing: assume that any initial state is possible.
The mathematical expectation of the number of
moves before the absorption (reaching the final
state) is finite if and only if the final state can be
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reached from any state [3, Chap.3]. Usually a
Markov chain is represented as a directed graph
in which the vertices correspond to states, and
edges correspond to the transitions. An edge
leaves one vertex and reaches another if and
only if there exists a transition from the for-
mer to the latter with a nonzero probability. It
is not difficult to see that in our case each non-
final vertex (or state) has only got two outgo-
ing edges: once both players have revealed their
cards, the winner, by putting the top cards to
the bottom of his hand, defines such two tran-
sitions with probabilities pi

1
and pi

2
, where i is

either L or R, depending on who wins this par-
ticular game. We call a vertex attaining if it
has got a final state as one of its descendants
and wandering otherwise. It is obvious that a
descendant of a wandering vertex is again wan-
dering, and a predecessor of an attaining one is
again attaining. A graph is called absorbing if
all the vertices are attaining. That is, the graph
of our game is absorbing if and only if for ev-
ery state (each division on the pack into two
hands) it is possible to finish playing the game
in a finite number of moves. The difference be-
tween absorbing and non-absorbing graphs can
be seen on Fig. 4. Both graphs i) and ii) have

Figure 4: Difference between absorbing and
non-absorbing graphs: the graph i) is not ab-
sorbing, but the graph ii) obtained by adding
one extra edge between e and a to the graph i)
is absorbing.

got the same final state a. Observe that the
graph i) is not absorbing: it can be easily seen

that it is impossible to reach the state a from
any of the vertices c, d and e, while the graph
ii), which differs from i) only by one additional
edge that leads from e to a, is absorbing, as one
can get into a from any other vertex.

3 Proof of the main result

We have already established that each state
(except for final) has got exactly two outgoing
edges. Now assume that each of the players has
got at least two cards in their hands. There
are exactly two incoming edges corresponding
to the possible preceding plays in which either
of the players won (see Fig. 5 for an illustration
for a game with 6 cards).

Figure 5: If the players have got at least two
cards each, then this vertex has got exactly two
predecessors.

If one of the players has got only one card
left, he could not have won the preceding play,
and hence there is only one possibility for the
winner. This is illustrated on Fig. 6 for a game
with 6 cards.

Using this crucial observation, we are going
to show that the game graph has got no wan-
dering vertices (i.e. it is possible to finish the
game starting from any state). We show this by
assuming that there is at least one wandering
vertex, and then establishing that this leads to
a contradiction.
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Figure 6: If one of the players has got only one
card left, this vertex has got a unique direct
predecessor.

By W denote the set of all wandering vertices
in our graph. Observe that each edge going out
from a wandering vertex goes into a wandering
vertex again, otherwise we would get a contra-
diction with the definition of a wandering ver-
tex. Therefore, the total number of different
edges that leave the vertices in W is not less
than the total number of different edges that
lead into W. Taking into account that each
non-terminal vertex has got exactly two outgo-
ing edges and either one or two incoming, we
immediately get two results: first of all, if wan-

dering vertices exist, then they comprise

an isolated subgraph, i.e. it is impossible

to get into there from any vertex outside

of this subgraph; second, each wandering ver-
tex has got exactly two predecessors, and hence
each wandering vertex corresponds to the

state in which each player has got at least

two cards.

Now pick up any wandering vertex and con-
duct the following ‘back-tracking’ procedure: if
the vertex has got two direct predecessors, con-
sider the one in which the left player has got
less cards than in the current state (that is, the
left player won the preceding play). Observe
that this is always possible (see Fig. 5), as we
can always backtrack through the play in which
the left player was the winner. If we continue
going back in this manner, we will finally reach
the state in which the left player has got only
one card left, and hence has got only one direct

predecessor; this can not correspond to a wan-
dering vertex. This means that a wandering
vertex can be reached from a non-wandering,
which contradicts our earlier finding (that wan-
dering vertices constitute an isolated subgraph).
This can only mean that the graph does not
have any wandering vertices at all, and hence
for each state there is a path to a final one.

Now we can use a well-established fact (see
[3, Chap.3]) that if a graph corresponding to a
finite Markov chain is absorbing, the mathemat-
ical expectation of the number of moves needed
to reach the final state is finite, which is exactly
what we expected to prove in the first place.

We will not discuss the proof for the classical
game of war in detail because the basic mathe-
matical ideas are already contained in the proof
of the model game. We only note that the main
idea in studying the real card game is the follow-
ing obvious statement: if a subgraph of an ori-
ented graph, which consists of all the vertices of
the original graph, and might not include some
of the edges, does not have any wandering ver-
tices, then the original graph does not have them
either.

We would like to point out that this card
game was studied by other authors, however,
they focused on other aspects of the game. In
particular, Jacob Haqq-Misra [2] uses numerical
simulation (employing Monte-Carlo method) to
find out how the advantage in the initial distri-
bution of cards influences the outcome of the
standard game; Ben-Naim and Krapivsky [1]
discuss a stochastic model of the game.
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