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ON FLAT FIBRATIONS BY THE AFFINE LINE

BY
T. KAMBAYASHI! AND M. MIYANISHI

A recent joint work [1] of Dolgadév and Veisfeiler studies in the main the
geometric structures of unipotent group schemes over an integral ring. As a
natural generalization of their own results the following conjecture is set forth
(see [1, 3.8.3ff]).

Let ¢: X — S be a flat affine morphism of finite type; assume that S is locally
noetherian, normal and integral, and that the fibre ¢ ~*(P) of ¢ above each
point P of S is isomorphic to the affine n-space A" over the residue field (P) of
P. Then, X is an A"-bundle over S relative to the Zariski topology.

In the paper cited above, the authors obtain various results in the direction
of this conjecture while working under the assumption of an S-group scheme
structure on X.

In the present paper we propose to settle the conjecture affirmatively in the
special case where n = 1. (It is understood that V. I. Danilov possesses unpub-
lished results to the same effect; cf. [1, 3.8.5].) What we actually prove are the
following two theorems.

THEOREM 1. Let ¢: X — S be an affine, faithfully flat morphism of finite type.
Assume that S is locally noetherian, locally factorial and integral scheme, and that
the generic fibre of ¢ is A* and all other fibres are geometrically integral. Then, X
is an A'-bundle over S.

THEOREM 2. Let k be an algebraically closed field, let S be a regular, integral
k-scheme of finite type, and let ¢: X — S be an affine, faithfully flat morphism of
finite type. Assume that each fibre of ¢ is geometrically integral and the general
fibres of ¢ are isomorphic to A' over k. Then, there exist a regular, integral
k-scheme S’ of finite type and a faithfully flat, finite, radical morphism S’ — S such
that X x5 8’ is an Al-bundle over S'. If in particular the characteristic of k is
zero, X is an Al-bundle over S.

A variation of the conjecture above, wherein S is a curve and A" is replaced
throughout by the projective n-space P”, is in fact a proven theorem (see
Maruyama [9, Theorem 0.1]). It seems that the exact relationship between this
variation and the conjecture above stated remains to be clarified.
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1. Proof of Theorem 1

1.1. Let S be a locally noetherian, integral scheme, and let ¢: X — S be an
affine, flat morphism of finite type. The fibres of ¢ above the closed points of §
will be referred to as closed fibres, while the fibre above the generic point of S
will be called the generic fibre. By the general fibres of ¢ we shall mean all fibres
above the closed points belonging to an unspecified nonempty open set of S.
The morphism ¢: X — S, or more conventionally X by itself, is called an affine
ruled variety over S if for every point P on S (including the generic point) the
fibre ¢ ~(P) above P is isomorphic to the affine line AL p, over the residue field
k(P) of P. The morphism ¢, or again simply X, is said to be an A*-bundle over S
if there exists an open covering {U; — S} relative to the Zariski topology on S
such that X x g U, is isomorphic to the affine line Ay,:=A! x , U, over U, for
alli. A scheme S is said to be locally factorial if for every point P on S the local
ring Op is a factorial ring (= a unique factorization domain). A discrete
valuation ring of rank 1 will be called a principal valuation ring.

The proof of Theorem 1 will be given below in several reduction steps.

1.2. We shall begin with the following elementary result, which is a special
case of a theorem of Nagata [11).

LEMMA. Let o be a principal valuation ring and let A be a flat o-algebra of
finite type. Let K be the quotient field of o, t a uniformisant of o and k the residue
field of v; and let Ay and A, denote respectively K ® , A and k ® , A. Assume that
Ak and A, are integral domains. Then:

(i) If Ak is a normal ring, so is A.
(i) If Ax is factorial, so is A.

Proof. We shall prove only (ii), as the proof of (i) is a routine exercise. By
flatness there is a natural inclusion o = A4, and A is in turn contained in 4, and
is noetherian. Since A, is integral, t4 is a prime idealin 4 and (), ., t"4 = (0).
Let p be an arbitrary prime of height 1in A. If ¢ € p then clearly 4 = p. In case
t ¢ p, the ideal pAy is prime of height 1 in the factorial domain A = A[t™ ],
whence pAg = fAg, where we may and shall take fe A —tA. Let be p be
arbitrary, and write b = fi"a with integer m and a € A — tA. If m <0, then
fa=bt™™ e tA, an absurdity. Consequently, m > 0 and p = fA. It follows that
p = fA because f € p.

1.3. LemMA. Let (o, to) be a principal valuation ring with residue field k and
quotient field K. Let A be a flat o-algebra of finite type. Assume that
Ax =K ®, A is K-isomorphic to a one-variable polynomial ring K[x] and that
A, =k ®, A is a geometrically integral domain over k. Then, A is o-isomorphic to
a one-variable polynomial ring.

Proof. Because A is factorial by Lemma 1.2 (or, rather, because of the
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simple fact that (), t'4 = (0)), we may assume that x € A and x is prime to
the uniformisant ¢t of 0. We may write A = o[x, y;,..., V] Since A ¢ A=
K[x], there exist integers a(i) > O such that

(1) Dy, = (%)= Aio + At X+ + Ay x™®

with 4;;€ 0 for 1 <i<m and 0 <j < r(i), where we may assume with each i
that if «(f) > O then not all of Ao, 4;y, ..., 4, are divisible by ¢. Let us put
a, = Max {a(1), ..., a(m)}. Consider the following assertion:

P(n). If x € Ais found as above with a, = n, then there is some x; € 4 such
that A = o[x,].

We shall prove the assertion P(n) by induction on n. P(0)is obviously true. We
prove P(n) assuming P(r) to be true for all r < n. By applying the canonical
(reduction modulo t) homomorphism p: A — A/tA = A, to the both sides of
(1) for each i with a(i) = «,, we get

@) plhio) + p(Ai)p(X) + -+ + p(Ai)o(X)V@ = 0

with at least one of the coefficients p(4,;) # 0. Since A, is an integral domain,
the equation (2) is a nontrivial algebraic equation of p(x) over k. Since A, is
geometrically integral, the field k is algebraically closed in the quotient field of
Ay, whence p(x) € k. Let u € o be such that p(u) = p(x), and write x — pu = t#x’
with a positive integer f and x’ € A — tA. Then, noting ¢;(u) € to and by
substituting u + t®x’ for x in (1), we obtain, after cancellation of t,

t*@y, e o[x’] for 1 <i<mand K[x] = K[x']

where o, = Max {o/(1), ..., o&'(m)} < n = a,. Since P(a, ) is assumed to be true,
the conclusion of P(n) holds. Q.ED.

14. It is easy to see, as shown in Paragraph 1.5 below, that Theorem 1
follows from Lemma 1.3 in the special case where dim S = 1. In order to prove
the theorem over S with dim § > 2 we need the following:

LeMMA. Let (A, m) be a factorial local ring of dimension > 2 with residue
field k. Let R be a flat A-algebra of finite type. Assume that R,»=A,® 4R is
A,-isomorphic to a one-variable polynomial ring A[t,] for every nonmaximal
prime ideal p of A and that R = R/mR is geometrically regular over k. Then, R is
A-isomorphic to a one-variable polynomial ring A[t).

Proof. The proof consists of four steps.

(I) Let X:=Spec R, S:=Spec 4 and let ¢: X — S be the flat morphism
corresponding to the canonical injection A < R. ¢ is in fact faithfully flat, and
each fibre of ¢ is geometrically regular. Therefore, ¢ is smooth. Since S is
normal, this implies that X is normal [3, IV (6.54)]. Thus, R is a normal
domain.



ON FLAT FIBRATIONS BY THE AFFINE LINE 665

(I) Let U:=S — {m}. Since R is finitely generated over 4 and R, = A [t ,]
for each p € U, there is f, € A — p such that R[f ;'] = A[f; '][t,], whence we
know the existence of an open covering ¥~ = {V};., of U such that

V;=Spec (ALf7'])

with fie 4 and R[f;']=A[f7!][t] for each iel This shows that
Xy =¢ " YU)= X x5 U can be viewed as an A'-bundle over U. Set

A; ‘:A[fi— 1]’ Aij :=A[fi—1’fj_ 1] and A= A[fi— 1afj_ l,ft— 1]

fori,j, 1 e I Since A;ft] =R[f7', f7']=A;ft]and A,;is an integral domain,
we get t; = a;t; + B; with units «j; in A4;; and B; € A4;; for each pair i, j of
elements of the index set I, where, furthermore, the o’s and the §’s are subject to
the relations in 4,; that read as follows:

ay = og;o;  and By = oy By + By

Consequently, {o;;}¢. < 1= gives rise to an invertible sheaf & which one views
as an element of H(U, 0%). However, H(U, 0%) = (0) because (4, m) is a
factorial domain [5, Exp. XI, 3.5 and 3.10]. Thus, by replacing ¥~ by a finer
open covering of U if necessary, we may assume that

(3) t} =1+ ﬂji with ﬁﬁ € Aji such that ﬂli = ﬂﬁ + ﬂ” for i, j, lel

Hence, {B;}«.je 1< defines an element ¢ € H'(U, 0y).
(IT) Consider Xy = ¢~ *(U)= X x U and let Y =X — X . By the local
cohomology theory we have the commutative diagram

HY(Xy, Ox) SHEX, Ox) lim Ext? (R/m"R, R)

Sy Om 6a

H'(U, 05) = Hi,(S, Os) > lim Ext} (4/m”, A)

where the terms in the upper and lower rows are respectively R-modules and
A-modules, and 6y, 6,,, and 0, are homomorphisms induced by the canonical
injection 05 & ¢, 0. (For the definitions and relevant results in local cohomol-
ogy theory, consult [5] or [6]) Since R is A-flat and lim, commutes with
R®, 7, we have

lim Bxt} (R/m'R, R) = R ®, lim Ext} (4/n?", 4)

and 0, is identified with the homomorphism u+— 1 ® u for u belonging to
lim,, ExtZ (4/m", A). Since R is A4-flat, 0, is then injective. The commutative
diagram above shows, hence, that 8, is injective. On the other hand, X, has an
open covering ¢~ *(¥") = {¢~1(V}); i € I}, and the element 6,(¢) € H (X y, O)
is represented by a Cech 1-cocycle {8, } with respect to ¢~ !(¥"). The relation (3)
implies that {f;;} is in fact a 1-coboundary because

t;e (@~ '(V), Ox) = At]
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Thus, 0{(¢) = 0, and we find ¢ = 0 because 6, is injective. It follows that X ;; has
a section and is, in fact, a trivial At-bundle A}.

(IV) Replacing ¥~ by a finer open covering of U if necessary, we may
assume that §; = y; — y; withy; € A;foralli,j e I. Then, t; — y; = t; — y;for all
i and all j, so if we put ¢ :=¢; — y, then t € I'(X, ). On the other hand, since
codim (Y, X)>2 and R is normal, ¢y is Y-closed [3, IV (5.10.5)] Hence,
t e I'(Xy, Ox) =T(X, Ox) = R. Now, look at the A-subalgebra A[t] of R, and
let Z :=Spec (A[t]). Then, ¢ decomposes as

Xzt

where ¢, and ¢, are the morphisms corresponding to the injections
A SA[t] » R. By step (III), R, = A,[t] for each p € U. This implies that
d1lv: Xy—> 93 (U)=2Z xzU is a U-isomorphism. Notice that @, is
(Z — ¢35 *(U))closed because codim (Z — ¢; (U), Z) =2 and Z is normal.
Then we have

At =T(Z, 0;) =T(¢7 1(U), 0,)3T(Xy, Ox)=R,
an isomorphism given by (¢, |y)*. Therefore, R = A[t]. Q.ED.

1.5. Proof of Theorem 1. Since ¢ is affine, it suffices clearly to prove the
theorem under the hypothesis that X and S are affine schemes. The proof
consists of two steps.

(I) Let A:=I(S, 0s) and R:=T(X, Ox). The homomorphism A4 - R
induced by ¢ is injective, and makes R a flat A-algebra of finite type. For each
prime ideal p of 4, let R;*=A4_,® 4 R. By induction on n :=height (p) we shall
establish the following assertion:

P(n). R, is a one-variable polynomial ring over A, provided p is of height n.

Indeed, P(0) follows from the assumption of the theorem. As for P(1), A,is a
principal valuation ring in that case, so the assertion is supported by Lemma
1.3. We now prove P(n) assuming P(r) to hold for every r < n. To simplify
notations let us write R and A instead of R, and 4, respectively. Now, 4 is a
factorial local ring of dimension > 2 with maximal ideal m. By virtue of [3, II
(7.1.7)] one can find a principal valuation ring o such that the quotient field K
of o agrees with that of 4 and that o dominates A. Then o ® 4, R is a flat
o-algebra of finite type, K ®, (0 ® 4 R)= K ® 4 R is a one-variable polyno-
mial ring over K, and

(0/t0) ®, (0 ®,4 R) = (0/t0) ® 4/ (R/MR)

is geometrically integral, where ¢t is a uniformisant of o. By Lemma 13,0 ® 4 R
is then a one-variable polynomial ring over o. It follows that (0/t0) ®um
(R/mR) is geometrically regular and, consequently, R/mR is geometrically
regular over A/m. This observation and P(r) for 0 < r < n together imply that
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A and R satisfy all assumptions in Lemma 1.4. Thus, by that lemma, we
conclude that R is a one-variable polynomial ring over A.

(IT) Since R is finitely generated over A, step (I) implies that for each prime
ideal p of A there exists an element e 4 such that f'¢ p and R[f '] is a
one-variable polynomial ring over A[f~!]. Thus, for the Zariski open set
U, =Spec (A[f~']) = S, anisomorphism X x 3 U,= A' ® , U obtains, and
S is clearly covered by finitely many such U /’s. This completes the proof of
Theorem 1.

2. Proof of Theorem 2

2.1. Letk be a field. A k-scheme X is called a form of A! over k, or simply a
k-form of Al, if for an algebraic extension field k' of k there exists a
k'-isomorphism X ®, k' 3 Al ®, k' = A}.. When that is so, there is a purely
inseparable extension field k” of k such that X ®, k" is k”-isomorphic to A{.. It
is obvious that, for a k-scheme X and an algebraic extension field k' of k, X is a
k-form of Al if and only if X ®, k’is a k’-form of A!. A k-form of A! is evidently
an affine smooth k-scheme. A k-form of A! may be characterized as a one-
dimensional k-smooth scheme of geometric genus zero having exactly one
purely inseparable point at infinity. For detailed study on k-forms of A, see [7,
Section 6] and [8].

2.2. A key result to prove Theorem 2 is the following:

LEMMA. Let k be a field of characteristic p >0, let S be a geometrically
integral k-scheme of finite type, and let ¢: X — S be an affine, flat morphism of
finite type. Assume that the general fibres of ¢ are forms of A* over their respec-
tive residue fields at the base scheme S. Then, the generic fibre X is a K-form of
Al, where K denotes the function field of S over k. If in particular p =0, X g is
K-isomorphic to Ak.

Proof. The proof consists of four steps.
(I) Let k be an algebraic closure of k. Let
S=S®,k, X=X®,k and P:=0¢ ®, k.

Then § is an integral k-scheme, and the general fibres of ¢ are k-isomorphic to
AL. The stated conditions for ¢ are clearly present for @, too. Let K ==k ®; K.
As remarked in 2.1, the generic fibre X x of ¢ is a K-form of A' if and only if the
generic fibre X ¢z of @ is a K-form of A!. These observations show that in proving
the lemma at hand we may assume from the outset that k is algebraically closed
and that the general fibres are k-isomorphic to Ai. Furthermore, we may
assume with no loss of generality that S is smooth over k because the set of all
k-smooth points of S is a nonempty open set. We shall assume these additional
conditions in the steps that follow.



668 T. KAMBAYASHI AND M. MIYANISHI

(IT) Let C denote the generic fibre X of ¢. C is an affine curve over K,
whose function field K(C) is a regular extension field of K [3, IV (9.7.7), IIl
(9.2.2)). For each positive integer n we let K, = K?™". If p = 0, K, is understood
to mean K for every n. By virtue of [2, Theorem 5, p. 99], there exists a positive
integer N such that a complete Ky-normal model of Ky(C)=Ky®x K(C) is
smooth over Ky. We fix such an N once and for all. Let S, be the normaliza-
tion of § in K. Since S is smooth over k and k is algebraically closed, Sy is
smooth over k and the normalization morphism Sy — S is identified with the
Nth power of the Frobenius morphism of Sy.

(IlI) Let Cy be a complete normal model of K (C) over K. Then, Cyis a
smooth projective curve over K y. Thus, C yis a closed subscheme in the projec-
tive space P, defined by a finite set of homogeneous equations

{filXos ..., Xm)=0; LA}

One can then find a nonempty open set U of Sy such that all the coefficients of
all f;’s, as elements of Ky = k(Sy), are defined on U. Let Xy be the closed
subscheme of P x, U defined by the same set of homogeneous equations

(filXo, ..., Xm)=0; L e A},

and let ¢y: Xy — U be the projection onto U. The generic fibre of ¢y, which
coincides with Cy, is geometrically regular. Applying the generic flatness
theorem [3, IV (6.9.1)] and the Jacobian criterion of smoothness, we may
assume, by shrinking U to a smaller nonempty open set if need be, that ¢ is
smooth over U. Now, look at the morphism ¢y: X y=X x g U — U obtained
from ¢: X - S by the base change U — §. Since Cy is a completion of the
generic fibre Cy=C®x Ky of ¢y, we have a birational U-mapping
¥y: Xy — Xy such that ¢y = @yiy. Since Yy is everywhere defined on Cy, we
may assume, by replacing U by a smaller open set if necessary, that
Yyt Xy— Xy is an open immersion of U-schemes.

(IV) It now suffices to show that Xy is a K-form of A under the following
additional hypotheses:

(i) There exist a projective smooth morphism ¢: X — S and an open im-
mersion i X — X such that ¢ = ¢y
(i) Every closed fibre of ¢ is k-isomorphic to Aj.

Then, every closed fibre of ¢ is k-isomorphic to P} by virtue of conditions (i)
and (ii). Since ¢ is faithfully flat and arithmetic genus is invariant under flat
deformations [4, Exp. 221, p. 5}, [3, III, Section 7], we have the arithmetic genus
p.(Xx) = O for the generic fibre X of ¢, which is a smooth projective curve
defined over K. We shall next show that X, — y/(X) has only one point and
that point is purely inseparable over K. Let 5 be a point on X x — (X ) and let
T be the closure of # in X. Then, T = X — y(X), the restriction ¢;: T — S of ¢
onto T is a dominating morphism, and deg @ = [K(n): K]. Notice that is a
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generically one-to-one morphism because for each closed point P on S,
37'(P)< §(P) - ¥4~ *(P) = P} — A} = {one point),

This implies that ¢, is a birational morphism if p = 0 and a radical morphism
if p > 0. Thus, K() is purely inseparable over K. If ' is a point of X x — /(X&)
distinct from #, let T' be the closure of #' in X. Then, "< X — y(X) and
T # T'. Then, for a general closed point Pon S, ¢~ Y(P) ~ ¥¢~'(P)would have
two distinct points, and this is a contradiction. Thus, X x — y/(X g) has only one
point, and this point is purely inseparable over K. As \ is an open immersion,
this last fact combined with the fact that p (X ) = 0 tells us in view of 2.1 that
X is a K-form of A%, as desired (cf. [7, 6.7.7]). Q.E.D.

2.3. Now we are able to proceed to the following:

Proof of Theorem 2. Notice that k is assumed to be algebraically closed.
Using the same notations as in 2.2 (especially as in step (IIT)), we know that for
a sufficiently large integer N the generic fibre of ¢y: Xy— U s
k(Sy)isomorphic to Als,), where k(Sy) is the function field of Sy over k. Let
S’ :=Sy. Then, §" is a regular, integral k-scheme of finite type and the canonical
morphism $’ — § is a faithfully flat, finite, radical morphism. Let X" ==X x 3§’
and ¢' = ¢ x5 §'. Then, ¢' is a faithfully flat, affine morphism of finite type, the
generic fibre of ¢’ is k(S"}isomorphic to A, and every fibre of ¢’ is geomet-
rically integral. Thus, all conditions of Theorem 1 are present for §’, X', and ¢'.
Hence X' is an A!-bundle over S'. If p =0, it is clear that X is already an
Al-bundle over S. This completes the proof of Theorem 2.

3. Comments and discussions

Various remarks to Theorems 1 and 2 will be given in this section.

3.1.  While the affine line A, and hence the one-dimensional additive group
G,, are stable under flat, geometrically integral specializations as shown in the
text above, the one-dimensional torus G,, may well be specialized into G,, as
shown by the following:

Example. Let k[x, u, t]== (k[{])[X, U}/(U(1 + tX) — 1), which contains the
polynomial ring k[t] in a natural manner. Let

¢: G +=Spec (k[x, u, t]) > A* = Spec (k[t])

be the corresponding morphism. The scheme G is made into an A’-group
scheme through the group law defined by

(o, u)(x', w'):=(x + x' + txx', uu’).

Here, the fibre above (t = 0) is G,, and all other closed fibres as well as the
generic fibre are isomorphic fo G,,.
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3.2. Ifin the example of 3.1 the base ring k[t] is replaced by the one-variable
power series ring k[t], one can see at once that in Theorem 2 the base scheme §
must be assumed to be of finite type over k.

3.3. Aflat specialization of A" (n > 2)is not necessarily isomorphic to A", as
shown by the next.

Example. Let k be an algebraically closed field, and let C be a smooth affine
plane curve of genus >0 contained as a closed subscheme in
Aj ==Spec (k[x, y]). Let f(x, y)=0 be an irreducible equation for C. Let
o :=k[t],,, be the local ring of A} :=Spec (k[t]) at t =0, let K =k(z), and let

A= D[X, Y Z]/(IZ '-f(x’ y))

Let X == Spec (A4), S = Spec (o), and let ¢: X — S be the morphism induced by
the natural inclusion o & 4. Then, ¢ is a faithfully flat, affine morphism of finite
type, the generic fibre Xy of ¢ is isomorphic to A%, and the closed fibre is
k-isomorphic to C x , A} which could not be isomorphic to A7. (Flatness of ¢
follows from [3, IV (14.3.8)].)

3.4. In the characteristic zero case we have the following, superficially
stronger, version of Theorem 2.

Let k be a field of characteristic zero, let S be a locally factorial, geometrically
integral k-scheme of finite type, and let ¢: X — S be a faithfully flat, affine mor-
phism of finite type. Assume that every fibre of ¢ is geometrically integral. Then,
the following conditions are equivalent to one another:

(i) X is an A'-bundle over S.

(i) X is an affine ruled variety over S.
(iii) The general fibres of ¢ are k-isomorphic to A'.
(iv) The generic fibre of ¢ is k(S)-isomorphic to Aks.

Proof. 1t is obvious that (i)=> (ii) = (iii). (iii)=> (iv) follows from Lemma
2.2. (iv)=> (i) follows from Theorem 1.

3.5. In the positive characteristic case there can be a flat fibration of a curve
in which every closed fibre is A! and yet the generic fibre is nonisomorphic to
Al

Example. Let A=k[t] SR=kft, X, Y)/(Y’ — X —tX?) be the natural
inclusion, and ¢: X +=Spec (R)— S:=Spec (4) be the corresponding
morphism, where k denotes an algebraically closed field of characteristic p > 0.
In this example, the generic fibre is a purely inseparable k(¢)-form of A* studied

in our joint works [7, Section 6], [8], while all closed fibres are k-isomorphic to
Al

3.6. In the notation of Theorem 2, if S is rational over k, then X is a
unirational variety over k. It is an interesting problem to find examples of
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unirational, irrational varieties by finding fibrations ¢: X — S asin Theorem 2.
This is partially done in [10] by making use of quasielliptic fibrations.

3.7. For a fibration ¢: X — S, the property that a fibre is geometrically
integral is not preserved under generalizations, as shown by the following:

Example. Let k be a field, and let
A=k[X,Y] R=A[T, U))(X*T-YU?>-U-Y)

be the natural inclusion mapping. For the maximal ideal m of 4, R/mR = k[T],
while for a prime ideal p = A4 of height 1 with X € p,

(Ap/pA4,) ® 4 R = (4,/p4,)[T, UY(YU + U +Y),
which is not geometrically integral over A, /pA,.

3.8. A very recent announcement of results [12] by Bass, Connell, and
Wright is noteworthy. Their main result asserts that every A"-bundle over an
affine scheme in fact arises from a vector bundle over the same base. As a
consequence, the A!-bundle X in our Theorem 1 above may now be considered
a line bundle over S, provided S is affine.
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