
HAL Id: hal-01418917
https://hal.archives-ouvertes.fr/hal-01418917

Submitted on 17 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Flat Programs with Lists
Marius Bozga, Radu Iosif

To cite this version:
Marius Bozga, Radu Iosif. On Flat Programs with Lists. 8th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI 2007), Jul 2007, Nice, France. pp.122-136,
�10.1007/978-3-540-69738-1_9�. �hal-01418917�

https://hal.archives-ouvertes.fr/hal-01418917
https://hal.archives-ouvertes.fr


On Flat Programs with Lists

Marius Bozga1 and Radu Iosif1

VERIMAG, 2 av. de Vignate, F-38610 Gières, e-mail:{iosif,bozga}@imag.fr

Abstract. In this paper we analyze the complexity of checking safety and ter-

mination properties, for a very simple, yet non-trivial, class of programs with

singly-linked list data structures. Since, in general, programs with lists are known

to have the power of Turing machines, we restrict the control structure, by for-

bidding nested loops and destructive updates. Surprisingly, even with these sim-

plifying conditions, verifying safety and termination for programs working on

heaps with more than one cycle are undecidable, whereas decidability can be es-

tablished when the input heap may have at most one loop. The proofs for both the

undecidability and the decidability results rely on non-trivial number-theoretic

results.

1 Introduction

The design of automatic verificationmethods for programsmanipulating dynamic linked

data structures is a challenging problem. Indeed, the analysis of the behavior of such

programs requires reasoning about complex data structures that have general graph-like
representations. There are several approaches for tackling this problem addressing dif-

ferent subclasses of programs and using different kinds of formalisms for representing
and reasoning about infinite sets of heap structures, e.g., [21, 17, 24, 10].

We consider in this paper the class of programs manipulating linked data structures

with a single data-field selector. It corresponds to programs manipulating linked lists

with the possibility of sharing and circularities. It is well-known that programs han-
dling lists can simulate, for instance, 2-counter machines, when the control structure is

unrestricted. A customary approach to finding decidable classes of counter automata is

to consider flat control structures that is, no nested loops are allowed [14, 15, 7]. The de-
cidability of the reachability and termination problems for counter automata is usually

established by reduction to the validity problem of Presburger arithmetic [22].

We analyze the problems of deciding safety and termination for programs with lists,

assuming the flatness condition on the control structure. Since this restriction is gener-
ally not enough, we assume moreover that the program does not perform assignments to

selector fields (destructive updates). That is, a program can only traverse the input data

structure, but not modify it. We found out that, surprisingly, even this restricted class of
programs is undecidable. By further restricting the input heap to at most one cycle, we

can establish the decidability of checking both safety and termination properties. The
proof relies on the encoding of the set of configurations reachable by the program, as

a formula in a decidable fragment of the theory of addition and divisibility [23], that is

described in [11].

Let us present in more detail the results. We start with the observation that flat
programswith lists can be used to encode the solutions of general Diophantine systems.



The existence of such solutions is a well-known undecidable problem, a.k.a Hilbert’s

Tenth Problem [20]. Our reduction uses simple flat programs to encode the z = x+ y

and z = [x,y] (least common multiple) relations, relying on the fact that multiplication
can be defined using only addition and least common multiple.

The source of undecidability lies exactly in the complexity of the input data struc-

ture. We noticed that the least common multiple relation can only be encoded by pro-
grams running on input structures with at least two (separate) cycles. This observation

leads to a decidability result, by imposing that the input heap has at most one cycle. We
obtain decidability by first representing the program with lists as a counter automaton.

The idea of modeling general programs with singly-linked lists as counter automata,

originates in [8, 3]. However, due to the restricted form of our programs, we define a
different encoding than the one described in [8, 3], that uses deterministic actions on

counters, and preserves the flatness of the control structure. In consequence, we reduce

the safety and termination problems from programs with lists to flat counter automata.
Finally, we show that, for the latter we can effectively compute the exact loop invari-

ants, using the decidable theory of [11]. In this way, we reduce the original problems of

checking safety and termination to verifying validity of formulae in a known decidable
logic.

1.1 Related Work

Programs manipulating singly-linked lists have gained a lot of attention within the past

two years, as shown by the fairly large number of recent publications on the subject [2,
5, 19, 1, 10]. Interestingly, the idea of abstracting away all the list segments with no in-

coming edges is common to many of these works, even though they are independent and

use different approaches and frameworks (e.g. static analysis [19], predicate abstraction
[1], symbolic reachability analysis [2] and proof search [5]). The fact that the number

of sharing points in abstract heap structures is bounded by the number of variables in
the program is also behind the techniques proposed in [19, 10].

The work that is probably closest to ours has been reported in [8] and [3]. However,

the authors’ concerns there were rather to develop a general framework for the analysis
of programs with lists, than to assess the complexity of the verification problems. Their

translation of programs into counter automata uses a generic scheme, which works in

the presence of destructive updates. Our translation method concerns programs with-
out destructive updates, the main reason for this being that of establishing decidability.

Other closely related work is the one of Chakaravarthy [12], reporting on the undecid-

ability of the points-to analysis in non-flat programs with scalar variables, for which the
generated memory configurations are of the same type as in the case of singly-linked

lists. Moreover, a reduction from Hilbert’s Tenth Problem is also used to prove unde-

cidability, however this result does not hold against the flatness condition on the control
structure.

2 Preliminaries

2.1 Programs with Lists

We consider imperative programs working with a set of pointer variables PVar. The
pointer variables refer to list cells. Pointers can be used in assignments such as u :=

2



l ∈ Lab; u,v, i, j ∈ PVar
Program := {l : Stmnt;}∗

Stmnt := WhileStmnt | I f Stmnt | AsgnStmnt | Assert
WhileStmnt := while Guard do {AsgnStmnt;}∗ od

I f Stmnt := if Guard then {Stmnt;}∗
[
else {Stmnt;}∗

]
fi

AsgnStmnt := u := null | u := new | u := v | u := v.next | u.next := null | u.next := v

Assert := assert(Guard)
Guard := u= v | u= null | ¬Guard | Guard∧Guard | Guard ∨Guard | true

Fig. 1. Abstract Syntax of Flat Programs with Lists

null, u:= v and u := v.next, u.next := v and u.next := null, and new cell

creation u:= new. The control structure is composed of iteration (while) statements

and conditionals (if-then-else), and is supposed to be flat, meaning that there are
no further conditionals or iterations inside a while loop. This syntactic restriction is

sufficient to ensure that the control flow graph of the program has no nested loops. The

guards of the control constructs are pointer equality u = v, undefinedness u = null

tests, and boolean combinations of the above. The assert statement has no effect if the

condition is true, otherwise the program is sent to an error state.

An assignment statement is said to be a destructive update if it is of the form u :=

new, u.next := v or u.next := null. These are the only statements that can modify

a heap structure. Programs without destructive updates can only traverse the heap, but
not modify it.

The semantics of programs with lists is defined in terms of heap updates. For a

detailed presentation, the reader is referred to [9]. Formally, a heap is a rooted graph
in which each node has at most one successor. In the rest of the paper, for a set A we

denote by A⊥ the set A∪{⊥}. The element⊥ is used to denote that a (partial) function
is undefined at a given point, e.g. f (x) = ⊥.

Definition 1. Let PVar be a set of pointer variables. A heap is a tupleH = 〈N,S,V,Roots〉,
where N is a finite set of nodes, S : N → N⊥ is a successor function, V : PVar→ N⊥ is

a function associating nodes to variables, and Roots⊆ PVar is a set of root variables.

Intuitively, the nodes represent heap-allocated cells, the successor function describes
the position of the next selectors, for each node, and the variable mapping keeps track

of which nodes are directly pointed to by program variables. The set of roots denotes

special points in the heap, which will be usedmainly in Section 4 for technical purposes.
For now, we consider the following conditions, that must be satisfied by any program

P, operating on a heap 〈N,S,V,Roots〉:

– for all r ∈ Roots,V (r) is defined,
– P does not change the values of the variables in Roots,
– all nodes in N are reachable via S, from a node pointed to by a variable in Roots,
– all nodes in N having two or more distinct predecessors via S are pointed by a
variable in Roots.

3



Technically, the conditions above are not real limitations, since any program with lists

can be transformed into a program that meets the requirements concerning Roots. In

particular, the third point can be ensured by keeping a free list pointed to by a root vari-
able, and linking all nodes that become unreachable from the other program variables

(garbage nodes) into it.

A heap is said to be n-cyclic if it contains exactly n different cycles. Notice that,

since each node in the heap can have at most one selector, each cycle must reside in a
separate part of the heap. A list segment is a sequence of nodes n 1,n2, . . . ,nk related by
the successor function (S(ni) = ni+1,1≤ i< k), such that either (i) n1 and nk are the only

roots in the sequence, or (ii) n1 is the only root and S(nk) = ⊥. Obviously, the number
of list segments is bounded by the number of roots. In the following, we will denote by

lsH(n,m) the list segment that lies between the roots n and m in H, or lsH(n,⊥), if the
last node of the list segment has a null successor. The subscript may be omitted when it
is not needed or obvious from the context. If the two roots are distinct and not directly

connected (either they are disconnected or there are other root in between) we consider
that ls(n,m) = !". If V (u) = n and V (v) = m, for some u,v ∈ PVar, we may also denote

ls(n,m) by ls(u,v). The length of a list segment ls(n,m), i.e. the number of nodes it
contains, is denoted by |ls(n,m)|.

2.2 Arithmetic of Integers

The undecidability of first-order arithmetic of natural numbers occurs as a consequence
of Gödel’s Incompleteness Theorem [16], discovered by A. Church [13]. Consequences

of this result are the undecidability of the theory of natural numbers with multiplica-
tion and successor function and with divisibility and successor function, both discov-

ered by J. Robinson in [23]. To complete the picture, the existential fragment of the

full arithmetic i.e., Hilbert’s Tenth Problem was proved undecidable by Y. Matiyase-
vich [20]. The interested reader is further pointed to [6] for an excellent survey of the

(un)decidability results in arithmetic.

On the positive side, the decidability of the arithmetic of natural numbers with ad-

dition and successor function 〈N,+,0,1〉 has been shown by M. Presburger [22], result
which has found many applications in modern computer science, especially in the field

of automated reasoning. Another important result is the decidability of the existential

theory of addition and divisibility, proved independently by A. P. Beltyukov [4] and L.
Lipshitz [18]. Namely,it is shown that formulas of the form ∃x 1, . . .∃xn

VK
i=1 fi(x)|gi(x)

are decidable, where fi,gi are linear functions over x1, . . .xn and the symbol | means
that each fi is an integer divisor of gi when both are interpreted over Nn. The decid-
ability of formulas of the form ∃x1, . . .∃xn!(x), where ! is an open formula in the
language 〈+, |,0,1〉, is stated as a corollary in [18]. This theory will be denoted further
by 〈N,+, |,0,1〉∃.

A related result has been presented in [11], involving the class of formulae of the
form QzQ1x1 . . .Qmxm!(x,z), where Q,Qi ∈ {∀,∃} and ! is a boolean combination of
formulae of the form f (z)|g(x,z), and arbitrary Presburger formulae. In other words, the
first variable occurring in the quantifier prefix is the only variable allowed to occur to the

left of the divisibility sign. The decidability of this class of formulae, denoted by L (1)
| ,

has been established in [11] using quantifier elimination, by reduction to Presburger
arithmetic.

4



However, the result on 〈N,+, |,0,1〉∃ remains one of the strongest decidability re-
sults in integer arithmetic. It can be shown that even formulae involving one universal

quantifier, i.e. of the form ∃x1, . . .∃xn∀y !(x,y) are undecidable. This is done using the
classical definition of the least common multiple relation [x,y] = z : ∀t x|t ∧ y|t ↔ z|t.
The undecidability of this fragment is a direct consequence of the following 1:

Theorem 1. The satisfiability and validity problems for the quantifier-free fragment of

the theory 〈N,+, []〉 of natural numbers with addition and the least common multiple
relation are undecidable.

2.3 Counter Automata

A counter automaton with n counters is a tuple A = 〈x,Q,→〉, where x= {x 1, . . . ,xn}
are the counter variables, Q is a finite set of control states, and→∈ Q×"×Q are the
transitions, and " is the set of arithmetic formulae with free variables from {x i,x′i | 1≤
i ≤ n}. A configuration of a counter automata with n counters is a tuple 〈q,#〉, where
# is a mapping from x to N. The transition relation is defined by (q,#) −→ (q ′,#′) iff

there exists a transition q
!−→ q′ such that, if $ is an assignment of the free variables of !

(denoted in the following by FV (!)), such that, for all x ∈ x, $(x) = #(x) and $(x ′) =
#′(x), we have that !$ holds and #(x) = #′(x), for all variables x with x′ 2∈ FV (!).
A run of A is a sequence of configurations (q0,#0),(q1,#1), . . . such that (qi,#i) −→
(qi+1,#i+1), for each i≥ 0.

The control graph of a counter automaton A is the graph having as vertices the set
Q of control states, and, for any two states q and q ′, there is an edge between q and

q′ in the control graph if and only if there exists a transition q
!−→ q′ in A. A counter

automaton is said to be flat if its control graph has no nested loops.

3 Undecidable Flat List Programs

In this section we define the safety and termination properties for various classes of flat

list programs with possibly unbounded input, and prove their undecidability. A decid-
able subclass is defined in the next section. Before proceeding, we need to introduce

several notions.

Definition 2. A tuple of strictly positive natural numbers n ∈ Nk is said to be encoded

by a heapH = 〈N,S,V,Roots〉, denoted as H(n), if and only if there exists two mappings
e : {1, . . . ,k} → Roots and f : {1, . . . ,k} → Roots⊥ such that, for all 1 ≤ i ≤ k, ni =
|lsH(e(i), f (i))|.

In other words, each number is represented by a list segment in between two root vari-

ables, or between a root variable and⊥. Notice that the condition n i > 0 for all 1≤ i≤ k

implies that e(i) and f (i) actually delineate a non-trivial list segment.

1 Theorem 1 gives a simple proof of the undecidability of 〈N,+, |,0,1〉 that is different from the
one published by J. Robinson in [23]. However, the undecidability of Hilbert’s Tenth Problem,

which is used here was not known in 1949.

5



Definition 3. Two heaps H = 〈N,S,V,Roots〉 and H ′ = 〈N′,S′,V ′,Roots〉 are said to
share the same structure, denoted by H 4H ′ if and only if for all r1,r2 ∈Roots lsH(r1,r2) 2=
!" ⇐⇒ lsH′(r1,r2) 2= !".

In other words, H and H ′ differ only by the lenghts of their list segments that are
delineated by roots. Notice that 4 is an equivalence relation on heaps. This leads to

a notion of parametric heap H(x), defined as the infinite set of heaps that share the
same structure, with respect to a set of variables x= {x1, . . . ,xk}, ranging over natural
numbers. Given any interpretation x 7→ n, we have that H(n) ∈ H(x). In other words,
H(x) is the equivalence class of H(n) with respect to 4. By lsxi(u,v) we denote the
set {ls(u,v) | ni = |ls(u,v)| in some H(n1, . . . ,ni, . . . ,nk) ∈ H(x1, . . . ,xi, . . . ,xk)}. For
instance, in Figure 2 (a), lsx(u,v) in H(x,y,z) denotes all list segments that encode the
values of x, and lsy(v,⊥), lsz(w,⊥) encode all possible values of y and z, respectively.

We consider the following definition of safety properties:

Definition 4. Let P be a flat list program, S = {li : assert(!i)}ki=1 a set of statements
occurring in P, and H(x) a parametric heap. P is said to be safe w.r.tH(x) and S if and
only if for all heaps G ∈H(x), and 1≤ i≤ k, ! i is true whenever P, started on input G,
reaches li.

The above property is vacuously true if the given program never reaches any of

the locations in S. In order to cover this case, we consider the following definition of

termination, with respect to a parametric heap.

Definition 5. Let P be a flat list program, and H(x) a parametric heap. P is said to

terminate w.r.t H(x) if and only if for all heaps G ∈ H(x), P started on input G, has a
finite execution.

Notice that Definition 4 corresponds to partial correctness, whereas the combination
of Definitions 4 and 5 can express total correctness, as understood in the setting of

program verification using Hoare logic.

In order to prove undecidability of safety and termination for flat list programs, with
respect to parametric heaps, we shall use the undecidability of the validity problem

for the quantifier-free fragment of the theory of addition and least common multiple

〈N,+, []〉, which is stated by Theorem 1. The reduction is as follows: given a quantifier-
free formula ! of 〈N,+, []〉, we build a flat list program P and a parametric heap H(x),
such that ! is valid if and only if P is safe w.r.t H(x). The same reasoning is done
for termination. This leads to undecidability results for both the safety and termination
problems, as defined in the previous.

The key of the reduction is to use three basic programs, Px=y, Px+y=z and P[x,y]=z
(Figure 2), that encode the atomic formulae x= y, x+ y= z and [x,y] = z, respectively.
Each program works on a heap of a predefined shape, also shown in Figure 2. The

program Px=y, in Figure 2 (a) is guaranteed to terminate, since both the lists pointed to
by u and v are acyclic. Moreover, if i and j are both null at the end, the lists have equal

length.

The program in Figure 2 (b) is guaranteed to terminate because both lists pointed to
by u and w are acyclic. Moreover, at the end line, both i and j are null if and only if both

lists have equal length, which is only the case if and only if x+ y = z. In this case the

variable v plays the only role of splitting the list segment pointed to by u into ls x(u,v)
and lsy(v,⊥).

6



The program in Figure 2 (c) terminates because eventually i = u and j = v at the

same time. In fact this happens after a number of loop iterations equal to the least

common multiple of x and y. Then k is null at the end if and only if the length of the list
pointed by w equals this number, i.e. [x,y] = z.

! P! C! H!

(a)

x= y

1: i := u;

2: j := w;

3: while i 2= null ∧ j 2= null do

4: i := i.next;

5: j := j.next;

6: od;

i = null

∧
j = null

y

v

x

u

(b)

x+y= z

1: i := u;

2: j := w;

3: while i 2= null ∧ j 2= null do

4: i := i.next;

5: j := j.next;

6: od;

i = null

∧
j = null

x y

z

u v

w

(c)

[x,y] = z

1: i := u.next;

2: j := v.next;

3: k := w.next;

4: while (i 2= u ∨ j 2= v)

∧ k 2= null do

5: i := i.next;

6: j := j.next;

7: k := k.next;

8: od;

k = null

∧
i = u

∧
j = v

x

z

u

w

y

v

Fig. 2. Basic Programs

Let us consider now a quantifier-free formula !(x) in the language of 〈N,+, []〉.
Since we are interested in reducing the validity problem, i.e ∀x . !(x), it is sufficient to
consider w.l.o.g. that ! is a disjunction of atomic formulae of the forms x= y, x+ y= z

or [x,y] = z and their negations. Let ! =
Wn
i=1%i, where %i is either (1) xi = yi, (2)

xi+ yi = zi, (3) [xi,yi] = zi or their negations, for xi,yi,zi ∈ x. For each condition of the
form (2) or (3) the input heap contains a separate heap as in Figure 2 with roots u i, vi
and wi. Then the program encoding the validity of ! has the following structure:

P%1 ;
if C¬%1 then P%2 ;
ifC¬%2 then P%3 ;
...
assert(false);

7



...

fi

fi

where, for all 1≤ p≤ n we have:

– if %p is a positive literal, P%p andC%p are as in Figure 2.
– if %p is a negative literal, P%p is P¬%p andC%p is ¬C¬%p .

Moreover, the program has to test that all list segments encoding occurrences of the
same variable are of the same length. This can be done in the beginning, using a se-

quence of flat programs of the same kind as Px=y, and is skipped for brevity reasons.
For any heap that corresponds to the parameterized input, the above program reaches

the assert(false) statement if and only if the input encodes a tuple of numbers that

falsifies all disjuncts of the original formula. Hence the program is safe if and only if

for all instance H(n) of the parametric input heap H(x), n satisfies at least one clause
%i, hence ! is valid. This proves the undecidability of the safety problem.

To show undecidability of the termination problem, we use the same reduction, with

the only difference that the assert(false) statement is replaced by a non-terminating
loop while(true) do ... od. The program then terminates if and only if ! is valid.

Notice further that the least common multiple relation has been encoded using an

input heap with at least two separate cycles. The above considerations lead to the fol-
lowing Theorem:

Theorem 2. The class of problems of verifying safety and termination properties, for

flat list programs without destructive updates, running on n-cyclic inputs, with arbitrary

n> 1, are undecidable.

3.1 Extensions of the Undecidability Results

The properties of safety and termination for list programs parameterized by the shape of

their input are universally quantified properties (see Definition 4 and 5). The following

reachability property is existential:

Definition 6. Let P be a flat list program, l a control location of P, and H(x) a para-
metric heap. l is said to be reachable in P w.r.t. H(x) if and only if there exists a heap
G ∈ H(x) such that P, started with input G, eventually reaches l.

We can show undecidability of the reachability problem by reduction from the sat-

isfiability problem for the quantifier-free fragment of 〈N,+, []〉 (Theorem 1). The re-
duction is similar to the one in the previous section.

Theorem 3. The problem of verifying reachability for flat list programs without de-

structive updates, running on n-cyclic input, with n> 1 is undecidable.

Up to now, we have considered separately the problems of verifying safety and
termination properties for programs parameterized by the shape of the input heap, and

abstracting away the exact lengths of the list segments. We show now how these results

can be extended to verifying properties of programs with either unknown shape, or
empty input heap.

8



Definition 7. Let P be a flat list program, and S = {l i : assert(!i)}ki=1 a set of state-
ments occurring in P. P is said to be correct w.r.t S if and only if for all heaps H, P

started on input H, reaches location li, and !i is true whenever the control is at li, for
all 1≤ i≤ k.

The problem of correctness of a program P with unknown input can be shown un-

decidable by reducing the safety problem for programs on parameterized heaps to it.

Namely, given P,H(x) and S= {li : assert(!i)}ni=1 a set of the statements in P, we can
build a program Q such that P is a subset of Q, and P is safe w.r.t. H(x) and S if and
only if Q is correct w.r.t. S. In order to obtain Q, we prefix P with a program T , i.e.

Q= T ;P. The role of T is to test that the input heap is an instance of H(x). In case this
test succeeds, the control is passed on to P, otherwise, T (and implicitly Q) does not

terminate.

In order to build the tester programT , we remember that each list segment is marked

by two root variables. For each ls(u,v), with u,v ∈ Roots, T will test if v is the first root
variable reachable starting from u:

i := u;

while
V
w∈Roots i 2= w do

i := i.next;

od

assert(i = v);

Note that this programmight not terminate, in case when the given input heap is not an
instance of H(x), the list pointed to by u is cyclic, and the starting point of the loop is
not properly marked by a root variable.

Corollary 1. The correctness problem for flat list programs is undecidable.

The other problem for which we show undecidability, based on the previous results,
is the reachability problem for non-deterministic flat list programs, started on empty

heap. A non-deterministic program uses undefined guards of the conditional statements,

i.e. while * do ... do or if * then ... else ... fi.

Definition 8. Let P be a non-deterministic flat list program, and l a control location of

P. l is said to be reachable on empty heap if and only if P, started with the empty heap,

has at least one execution path leading to l.

We show undecidability of the reachability problem on empty heap, by reduction
from the reachability problem on parametric input heap (Definition 6). Namely, given a

programP and a parametric heapH(x), we build a programQ as sequential composition
of a (non-deterministic) constructor program C and P, i.e. Q = C;P, such that for a
given location l of P, P reaches l w.r.t.H(x) if and only if l is reachable on empty heap.
Intuitively,C is a flat non-deterministic program with dynamic creation and destructive

updates, that will create an arbitrary instance of H(x). For each list segment ls x(u,v) of
H(x),C will have a loop of the form:

i := u;

i.next := new; i := i.next;
while * do

9



i.next := new; i := i.next;

od

if v = null then v := i;
else i.next := v;

fi

Note that each distinct path through the loop generates a list segment of a different

length. Consequently, each path through C will generate a different instance of H(x).
Then there exists an instanceH(n) ofH(x), such that l is reachable in P started onH(n)
if and only if there exists a path throughQ that reaches l and vice versa.

Corollary 2. The problem of reachability on empty heap for non-deterministic flat list

programs is undecidable.

4 Decidability on Acyclic and 1-Cyclic Heaps

As pointed out before, the undecidability of the safety and termination problems for

programs parameterized by the shape of the input heap relies on the fact that the input

heap has at least two loops. In this section, we prove that, by restricting the input heap to
have at most one loop, both problems become decidable. In practice, this result provides

a precise and fully automated way of analyzing simple programs with list iterators, i.e.

variables that can only traverse a list, but not modify it.

The tool for proving decidability is a sub-fragment of the arithmetic of addition and

divisibility 〈N,+, |,0,1〉, namely the class of formulae of the formQzQ 1x1 . . .Qmxm!(x,z),
where ! is a boolean combination of divisibility predicates of the form f (z)|g(x,z) and
Presburger constraints. The restriction here is that z is the only variable occurring to

the left of the divisibility sign. This fragment, called L (1)
| , has been shown decidable in

[11].

4.1 From List Programs to Counter Automata

Let P be a flat list programwithout destructive updates, and H(x), x= {x 1, . . . ,xk} be a
parametric heap with at most one cycle. Since P is flat, its control structure has a finite

number of branches, and each branch is a finite sequence of simple loops, connected

via linear paths. Assume that, for each loop, one can describe the relation between the
input and output heaps, after any number of iterations. Then the input-output relation

of the whole program can be described as a finite composition of relations. In order to

compute this relation, we simulate P by a counter automaton A, and reduce both the
safety and termination problems for P to safety and termination problems for A.

LetRoots= {r1, . . . ,rp} be the set of root variables ofH(x), andH= 〈N,S,V,Roots〉
be an instance of H(x). We recall upon the fact that each node n ∈ N must be reachable
from a node pointed to by a variable from Roots. Moreover, each variable from PVar,

that is not a root variable, can be assigned by P. Since the structure of the heap does
not change during the execution of P, the current configuration of the program can be

represented only by recording the position of the variables from PVar \Roots in the
structure. Let u be such a variable. If V (u) is defined, i.e. V (u) = n ∈ N, then n must be
reachable from at least one root variable, call it r i, for some 1≤ i ≤ p. The number of

10



steps on the path between V (ri) and V (u) is denoted by &i. The pair of integers 〈i,&i〉
gives the exact position of u in H, see e.g. Figure 3 (right). Obviously, this encoding of

the position is not unique, since u may be reachable from more than one root variable,
and there might be more than one path from r i to u, due to the possible presence of a

cycle. In the following, let root(u) and dist(u) denote the first and the second elements
of the pair encoding the position of u.

The counter automaton corresponding to P is A = 〈x∪ y,Q,−→〉, where the set of
counters consists of a set of parameters x and a set of working counters y= {y 1, . . . ,yr},
i.e. one working counter for each variable from PVar\Roots= {u 1, . . . ,ur}, and the set
of control states Q= Lab× {1, . . . , p}r. A configuration of A is a tuple 〈q,&1, . . . ,&r〉 ∈
Q×Nr, where:

– q= 〈l,'1, . . . ,'r〉 represents the current program label, and the current roots of the
iterator variables of P.

– &i is the distance of ui from its root 'i, for each 1≤ i≤ r.

In principle, the counter yi keeps track of dist(ui), w.r.t root(ui). A transition be-
tween two configurations c = 〈〈l,'〉,&〉 and c ′ = 〈〈l′,'′〉,&′〉 is triggered by the execu-
tion of a program statement l : s; l ′, and is denoted by c

s−→ c′. The table in Figure 3 (left)

summarizes the transition relation for all non-destructive assignment statements from
Figure 2.1.

The most interesting case is ui := u j.next, which is depicted in Figure 3 (right).
Notice that all assignment statements are encoded by deterministic transitions in the

counter automaton. Since the program P is supposed to be flat, the resulting counter

automaton will also have a flat control structure.

Assignment Control change Counter update

ui := null '′i = 0 y′i = 0

ui := u j '′i = ' j y′i = y j
ui := u j.next '′i = ' j y′i = y j +1

'′i = ' j

& j

ui
u j

& j
&′i = & j +1

ui := uj .next

' j

ui

&i

'i

Fig. 3. Semantics of Assignments

A guard condition of the form ui = null is encoded by an arithmetic constraint on

the position of u. We distinguish between three situations:

– root(ui) = 0, e.g. because of an assignment ui := null,
– root(ui) 2= 0 is the origin of a path that ends in a cycle, in which case u i = null is
false,

– the path starting with root(ui) 2= 0 is finite, and let (i denote the set of list segments
on this path. In this case, we have: yi > )lsx(n,m)∈(i x, meaning that ui has gone
beyond the end of the path.

Due to the fact that the encoding of the variables is not unique, a pointer equal-
ity condition of the form ui = u j has a more complex encoding, which is going to be

11



detailed next. The fact that the parametric structure of H(x) is known, is playing an im-
portant role. Suppose that ui = u j is true for some arbitrary instanceH = 〈N,S,V,Roots〉
of H(x), i.e V (ui) =V (u j) = n0 ∈ N. We distinguish two cases, as shown in Figure 4:

– n0 does not belong to a cycle in H. In this case, there is a unique path from
V (root(ui)) to n0, and a unique path from V (root(u j)) to n0. Let lsx0(m1,m2) be
the list segment on which n0 resides, (i be the set of list segments on the path from
V (root(ui)) to m1, and ( j be the set of list segments on the path from V (root(u j))
to m1. Consequently, we have:

0≤ yi− )
lsx(n,m)∈(i

x= y j− )
lsx(n,m)∈( j

x≤ x0

For instance, the guard corresponding to the configuration in Figure 4 (a) is: 0 ≤
yi− x1 = y j− x2 ≤ x3.

– n0 belongs to the only cycle in H. Let * denote the set of list segments in the cycle,
and (i, j denote the paths from V (root(ui, j)) to the beginning of *, respectively.
Then we have:

(
)

lsx(n,m)∈*
x
)
|
(
(yi− )

lsx(n,m)∈(i
x)− (y j− )

lsx(n,m)∈( j
x)

)

As an example, the guard corresponding to the configuration in Figure 4 (b) is:

x3+ x4|(yi− x1)− (y j− x2)

The semantics of a pointer equality condition in the program with lists can be written
as a finite disjunction of all possible configurations, which will fall into one of the cases

above. This formula denotes all possible values of x and y for which u i = u j in H(x).
Therefore, a boolean condition on pointers, of the form ¬Guard or Guard 8Guard,
for 8 ∈ {∧,∨} can be translated to a counter automaton guard, by replacing all atomic
propositions with the corresponding formulae on counters. Notice that, since H(x) has
at most one cycle, all divisibility predicates will have the same expression on the left-
hand side.

ri r j

x1 x2

x3

ui = u j

(a)

ri r j

x1 x2

x3

ui = u j

(b)

x4

Fig. 4. Two Cases of Equality between Pointers

12



4.2 Reasoning about Counter Automata

Our translation scheme associates one program statement exactly one action on coun-

ters, therefore the resulting counter automaton A preserves the control structure of the
original program P. In particular, if P was flat, A is also flat. The goal of this section is

to compute, for a given control location q of A, the relation between the input values of

the counters and the values at q. Since A is flat, it is sufficient to compute, for each loop,
the input-output relation after n iterations of the loop, and define global input-output

relations by composition. The safety and termination properties are decidable if this

relation can be expressed in a decidable logic. We shall use here the L (1)
| fragment of

〈N,+, |,0,1〉 [11], explained in Section 2.2.
By construction, all transitions of A are of the form q

!(x,y,y′)−−−−−→ q′ where ! is of the

form:

!(x,y,y′) : %(x,y) ∧
^

1≤i, j≤r
y′i = biy j + ci (1)

with % a boolean combination of divisibility predicates of the form f (x)|g(x,y) (the
same f occurs everywhere to the left of |) and Presburger constraints, b i ∈ {0,1} and
ci ∈ Z, for all 1≤ i≤ r.

It can be easily shown that this class of relations is closed under composition, de-
fined as:

(!1 ◦!2)(x,y,y′) = ∃y′′ !1(x,y,y′′) ∧ !2(x,y′′,y′)

In other words, the existential quantifiers above can be eliminated, the result being
written as another relation of the same form. As a consequence, we can assume without

losing generality, that each control path q1
!1−→ q2 . . .qn−1

!n−1−−−→ qn, with no incoming or

outgoing transitions, is equivalent to a single transition q1
!1◦...◦!n−1−−−−−−→ qn.

Without losing generality, we consider that A consists of only two transitions:

q
%(x,y) ∧

V
1≤i, j≤r y

′
i=biy j+ci−−−−−−−−−−−−−−−−→ q and q

¬%(x,y)−−−−→ q′

Here the variables x are meant as parameters, while y are the working counter variables.

Let I(n,x,y,y′) denote the relation between the input (y) and the output (y ′) values of the
counters after exactly n iterations of the loop, where x are the values of the parameters.

For the moment, let us assume that I(n,x,y,y ′) is effectively computable and can be
expressed in the quantifier-free fragment of L (1)

| .

A safety property for a counter automaton can be described by a pair 〈q,+(x,y)〉,
where +(x,y) is a formula expressible in the quantifier-free fragment of L (1)

| , with the

following meaning: for all valuations of the parameters, whenever the control reaches

the location q, the values of the counters must satisfy +. Moreover, let us assume that all
atomic predicates in I and ! satisfy the condition that only variables from xmay appear
to the left of the divisibility sign, and moreover, that only one linear combination f (x)
can occur in this position. With the assumptions above, the safety problem reduces to
checking the validity of the formula:

$
,= ∀x∀y∀y′∀n . I(n,x,y,y′) → +(x,y′)

13



Termination is the problem whether the counter automaton reaches its final control

location, for every valuation of the parameters. In our case, this is equivalent to the

validity of:

-
,= ∀x∃n∃y∃y′ . I(n,x,y,y′) ∧ ¬!(x,y′)

We can prove the validity of $ and - by proving that their negations are contra-

dictions. For instance, ¬$ is expressible in the decidable fragment of L (1)
| [11], as:

∃z . ¬$[z/ f (x)] ∧ z= f (x). Same is done for -. In order to prove decidability of safety
and termination for counter automata, it is sufficient to show how to express I as a

quantifier-free formula of L (1)
| . This is achieved in the proof of the following Theorem:

Theorem 4. The safety and termination problems for flat counter automata with tran-

sitions of the form (1) are decidable.

The decidability of safety and termination for programs with lists is consequence of

Theorem 4:

Corollary 3. The problems of verifying safety and termination properties, for flat list

programs without destructive updates, running on acyclic and 1-cyclic inputs, are de-
cidable.

5 Conclusions

We addressed the problems of verifying safety and termination properties for programs
handling singly-linked lists, without destructive update assignments, and whose control

structure is flat. We found out that, despite the strong syntactic restrictions, these pro-
grams, parameterized by the size of the input heap, have the expressive power of Turing

machines. These undecidability results are a consequence of the complexity of the in-

put data structures, even when the program does not change the structure. By further
limiting the input heaps to at most one cycle, we obtain decidability of the safety and

termination problems. All our results rely on non-trivial number-theoretic arguments.

References

1. I. Balaban, A. Pnueli, and L. Zuck. Shape Analysis by Predicate Abstraction. In VMCAI,

volume 3385 of LNCS, 2005.

2. S. Bardin, A.Finkel, and D. Nowak. Toward Symbolic Verification of Programs Handling

Pointers. In AVIS, Barcelona, Spain, 2004.

3. Sebastien Bardin, Alain Finkel, Etienne Lozes, and Arnaud Sangnier. From pointer systems

to counter systems using shape analysis. In Springer Verlag, editor, Proc. 5th International

Workshop on Automated Verification of Infinite-State Systems (AVIS). LNCS, 2006.

4. A. P. Beltyukov. Decidability of the universal theory of natural numbers with addition and

divisibility. Zapiski Nauch. Sem. Leningrad Otdeleniya Mathematical Institute, 60:15 – 28,

1976.

5. J. Berdine, C. Calcagno, and P. O’Hearn. A Decidable Fragment of Separation Logic. In

FSTTCS, volume 3328 of LNCS, 2004.

6. Alexis Bés. A survey of arithmetical definability. A Tribute to Maurice Boffa. Bulletin de la

Société Mathématique de Belgique, 1 - 54, 2002.

14



7. B. Boigelot. On iterating linear transformations over recognizable sets of integers. TCS,

309(2):413–468, 2003.

8. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with lists

are counter automata. In Springer Verlag, editor, Proc. Computer Aided Verification (CAV).

LNCS, 2006.

9. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with lists

are counter automata. Technical Report TR-2006-3, VERIMAG, 2006.

10. A. Bouajjani, P. Habermehl, P. Moro, and T. Vojnar. Verifying Programs with Dynamic 1-

Selector-Linked Structures in Regular Model Checking. In TACAS, volume 3440 of LNCS,

2005.

11. M. Bozga and R. Iosif. On decidability within the arithmetic of addition and divisibility. In

Springer Verlag, editor, Proc. Foundations of Software Science and Computation Structures

(FOSSACS), volume 3441, pages 425 – 439. LNCS, 2005.

12. Venkatesan T. Chakaravarthy. New results on the computability and complexity of points-

to-analysis. In Springer Verlag, editor, Proc. International Conference on Principles of Pro-

gramming Languages (POPL). LNCS, 2003.

13. Alonzo Church. An unsolvable problem of elementary number theory. American Journal of

Mathematics, 58:345 – 363, 1936.

14. Hubert Comon and Yan Jurski. Multiple Counters Automata, Safety Analysis and Presburger

Arithmetic. In Proc. CAV, volume 1427 of LNCS, pages 268 – 279. Springer, 1998.

15. A. Finkel and J. Leroux. How to compose presburger-accelerations: Applications to broad-

cast protocols. In Proc. FST&TCS, volume 2556 of LNCS, pages 145–156. Springer, 2002.

16. Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter

Systeme I. Monatshefte für Mathematik und Physik, 38:173 – 198, 1931.

17. S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures. In POPL,

2001.

18. Leonard Lipshitz. The diophantine problem for addition and divisibility. Transaction of the

American Mathematical Society, 235:271 – 283, January 1976.

19. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate Abstraction and Canonical

Abstraction for Singly-Linked Lists. In VMCAI, volume 3385 of LNCS, 2005.

20. Yuri Matiyasevich. Enumerable sets are diophantine. Journal of Sovietic Mathematics,

11:354 – 358, 1970.

21. A. Møller and M.I. Schwartzbach. The Pointer Assertion Logic Engine. In PLDI, 2001.

22. Mojzesz Presburger. Über die Vollstandigkeit eines gewissen Systems der Arithmetik.

Comptes rendus du I Congrés des Pays Slaves, Warsaw 1929.

23. Julia Robinson. Definability and decision problems in arithmetic. The Journal of Symbolic

Logic, 14(2):98 – 114, June 1949.

24. S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic.

TOPLAS, 2002.

15


