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�e quantitative assessment of �ight risk under icing conditions was taken as the research object. Based on multifactor coupling
modeling idea, the pilot-aircra-environment coupling system was built. Considering the physical characteristics and randomness
of aircra icing, the extreme values of critical �ight risk parameterswere extracted by theMonteCarlo �ight simulation experiment.
�e �ight characteristics were studied comprehensively and heavy-tail characteristics and the distributions of di�erent �ight
parameters were veri�ed. Flight risk criterion was developed and one-dimensional extreme �ight risk probability was calculated.
Further, in order to solve the limitation of one-dimensional extreme value, with the Copula theory, the joint distribution model
of �ight parameters with three distinct distribution types was built. �e optimal Copula model was selected by identi�cation of
unknown parameters and goodness of �t tests, and the three-dimensional extreme �ight risk probability was de�ned. Based on the
quantitative �ight risk, the accident induction mechanism under icing conditions was discussed. Airspeed and roll angle under
asymmetry icing conditions were more sensitive and had a more signi�cant impact on �ight safety. �is method can provide
reference for safety manipulation, boundary protection, and risk warning during icing �ight.

1. Introduction

Despite the signi�cant improvement in �ight safety for the
advanced �y-by-wire aircra, the risk of encountering upset
conditions remains a serious threaten. Aircra icing is a
critical external environmental factor, which can induce
a loss-of-control incident if the pilot does not respond
in the correct manner [1]. �e United States National
Transport Safety Board (NTSB) had aircra icing on its
“Most Wanted” list of safety recommendations from 1997
[2]. In the most serious icing accident on June 1, 2009,
Air France’s A330 airliner crashed over the Atlantic Ocean,
and all 228 people on board were killed. �e cause of
the accident was ice formation that caused the autopilot
to turn o�, and the pilot’s mishandling led to a stall. On
February 11, 2018, a Russian An-148 plane crashed shortly
aer take-o� and all 71 people on board got killed, due
to aircra icing. How to objectively evaluate �ight risk
under random icing conditions is a fundamental and di�cult
issue.

In terms of icing contamination on �ight safety, the
current researches focus mainly on the following.

(1) Icing Simulation Method. By the icing wind tunnel experi-
ment [3–5], numerical simulation [6–8], and �ight test [9, 10],
the icing similarity criterion, icing meteorological conditions
and formation mechanism, and ice shape evolution process
[11–14] were studied.

(2) E	ect of Icing on Aerodynamic and Flight Mechanics
Characteristics. �e change rules of aerodynamic parameters
and stability derivatives and nonlinear and stall conditions
aer icing were studied [15–17]. �e dynamic response
characteristics under di�erent ice severity and distribution
conditions [18, 19] and icing in�uence on the overall perfor-
mance, maneuverability and stability of the aircra [20] were
explored.

(3) Icing Tolerance Flight and Boundary Protection. �e
parameters identi�cation method with aircra icing [21, 22],
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the ice detection and warning method [23], the manipulation
method and control law design aer icing [24, 25], and the ice
management system [26, 27] were hot research issues.

(4) Anti-Icing System and Ice Airspace Avoidance.�e e�cient
and e�ective anti-icing methods [28], accurate prediction,
and avoidance meteorology methods of icing airspace [29]
were intensively studied and applied to engineering practice.
Related institutions increased the rules and procedures. For
example, some relevant regulations were added to the icing
airworthiness review in FAA 25.

�e above research and literature have high academic
value, but there are still few relevant theories and methods
in the evaluation and prediction of �ight risk probability
under icing conditions. �e dynamic assessment of �ight risk
under icing conditions is at the centre of current aircra
safety and airworthiness work, and it is an urgent problem
to improve the existing �ight safety analysis theory. �e
existing safety regulations and guidelines, like SAE ARP-
4761 [30], SAE ARP-4754A [31], MIL-HDBK-516B [32],
and MIL-STD-882E [33], have clear ideas and methods
for assessing the probability of �ight accidents due to the
failure of the internal hardware system, but lack quantita-
tive indicators for the dynamic �ight risk induced by the
external environment. �e current research in the theory
and method of �ight risk assessment under the in�uence
of the external environment is mostly qualitative analysis
or static reliability assessment. Such methods have obvious
limitations in assessing the �ight risk probability under icing
conditions: (1) based on the deterministic model, they cannot
re�ect the randomness and uncertainty of the multifactor
coupling system under icing conditions; (2) these methods
cannot evaluate the dynamic �ight risk based on the �ight
process and di�cult to estimate and predict the quantitative
probability index for the �ight risk caused by icing; (3)
�ying with ice is a small probability, high risk �ight subject,
which is impossible to get enough samples data under the
same actual conditions. �e sample size required for the
quantitative analysis of the risk probability is about 3.81× 107-3.85 × 108 (taking 95% con�dence levels). How to
assess the dynamic �ight risk objectively and quantitatively
based on limited samples is an urgent problem to be
resolved.

On the other hand, Copula theory has become a research
hotspot for multivariate extreme problems and has been
applied in small probability events’ evaluation and prediction
such as �nance, disaster early warning, and signal processing
[34–36]. Because Copula function can construct �exible mul-
tivariate distribution function and describe the correlation
among di�erent marginal distribution parameters, especially
nonlinear, asymmetric, and tail correlation, the multivariate
extreme Copula model is much suitable for assessing events
with high hazards and small probability.

Based on the distributed simulation method [37] under
icing conditions and the �ight risk evaluation method [8]
of two �ight parameters with the same type mathematical
distributions, we further proposed a quantitative �ight risk
assessment method of several �ight parameters with di�erent

mathematical distributions in the case of multifactor cou-
pling. �e proposed method could intuitively indicate the
critical factors restricting �ight safety and �ight risk grade.
In view of these, the organization of the paper is as follows.
In Section 2, in order to obtain the �ight state parameters
whose variation could directly re�ect themovement state and
�ight risk, the pilot-aircra-environment real-time simula-
tion platform is constructed. �en, the extremum of �ight
parameters is calculated by the Monte Carlo simulation and
�ight safety critical parameters are de�ned. And also, the
credibility of the simulation method is veri�ed by comparing
the simulation results undertaken by the real pilot in the
loop with the pilot model produced by the Monte Carlo
simulations under the same conditions. �e �ight safety
critical parameters’ distribution characteristics are analyzed
and the �ight risks based on one-dimensional parameters are
calculated in Section 4. In Section 5, in order to emerge from
the limitations of one-dimensional extreme value model,
the construction method of multivariate extreme Copula
model under icing conditions is explored and the �ight risk
probability quantitatively is calculated. Finally, the conclusion
is drawn in Section 6.

2. Modeling of Closed Loop Simulation System
under Icing Conditions

Flying with ice involves the coupling characteristics of the
longitudinal and lateral and other nonlinear characteristics.
To accurately simulate the dynamic response of the aircra,
the six-degree-of-freedom equations are built based on the
F-16 model structure [38] and the wind tunnel experimental
data of a certain transporter model. �e actuator model
can be simpli�ed as a �rst-order lag with rate and position
limits, which were validated to respond correctly and in
accordance with the Transport Class Model (TCM) [39]. And
also, control augmentation is adopted to improve the control
characteristics. Close response characteristic between the
two models demonstrates the e�ectiveness of the established
aircra simulation system.

2.1. Aircra� Dynamic Model. �e nonlinear dynamic model
of the aircra can be expressed as

�̇ = � (�, �) (1)

where � is state vector with airspeed, angle of attack,
sideslip angle, quaternion, roll rate, pitch rate, yaw rate,
and space position parameters; namely, � = [�, �, �, �0,�1, �2, �3, �, �, �, 	�, 
�, ��]�. � is the control vector, including
throttle de�ection, elevator de�ection, aileron de�ection, and
rudder de�ection; namely, � = [��ℎ, ��, ��, ��]�.

In order to avoid singularities in the calculation process,
the quaternion method is used to construct the aircra
dynamic model, as shown in the following.

1 = (��̇ + VV̇ + ��̇)�
2 = (��̇ − ��̇)(�2 + �2)
3 = (V̇� − V�̇)�2 cos �

(2)
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�̇ = �V − �� + � 
V̇ = �� − �� + ! 
�̇ = �� − �V + " 

(6)

where �, V, � are the components of the velocity in the
body coordinate system, respectively; �,!, " are, respec-
tively, the component of the resultant force in the body

coordinate system of aircra; �,�,� are the component
of the resultant moment in the body coordinate system; �	
(# = 1, 2, . . . , 9) are the intermediate variables related to the
moment of inertia.

�e attitude angle of the aircra: $, %, & can be obtained
by quaternion transformation and the sum of squares of
quaternions is equal to 1.

2.2. Pilot Model. Pilot manipulation is essential for �ight
safety; therefore, it is of importance for the pilot to perform
correctly and timely. �e transfer function pilot model
proposed by McRuer has been widely used as in

' (*) = -
/−�� (3* + 1)(3�* + 1) (3�* + 1) (7)

where��, �,��, ��, and �� are pilot behavior characteristic
parameters. �� represents the pilot’s static gain, which is
about 1-100; � represents the pilot’s delayed response time
to sense the change of the aircra attitude, which is about
0.06-0.3 s and related to nerve conduction and stimulation.
For multidegree manipulation, the value is larger than 0.2 s.
�� represents the pilot’s lead compensation time constant,
which is about 0-1s and re�ects the pilot’s prediction of the
dynamic response; �� represents the time delay constant for

the transmission and processing of the central information,
re�ecting the load on the pilot, about 0-1 s; �� indicates
muscle nerve lag time, about 0.1 ± 20% s. �e di�erent
values for the parameters in (7) re�ect the randomness of
di�erent pilot manipulations. How are the values to represent
the randomness identi�ed; in other words, what is the
distribution of the pilot manipulation parameters? Statistics
of the actual pilot operation behavior show that �� follows
the lognormal distribution and the other four parameters
obey the truncated normal distribution. Figures 1 and 2 show
the distribution of�� and �.

Under icing conditions, the pilot manipulation could
be divided into three stages: the pilot senses the change of
�ight state and begins to manipulate aer �1 seconds; pilot
handles the stick, throttle, and pedal to modify the altitude
until the kinematic parameters begin to reverse, here time
comes to �2 and then keep the attitude of the aircra stable.
Pilot input and output models under icing conditions can
be expressed as (8) and Figure 3, where 4(*) and '(*) are
di�erent McRuer models based on the database of pilot
compensation manipulation behavior.

5 (*) =
{{{{{{{{{

0 ;
 ≤ ;1
4 (*) ⋅ (> (*) − ! (*)) ;1 < ;
 ≤ ;2
' (*) ⋅ (> (*) − ! (*)) ;
 > ;2

(8)

2.3. Icing E	ect Model. �rough lots of icing experimental
researches on DHC-6, Bragg [26] developed a physically
representative model to analyze the �ight dynamics of an iced
aircra, as shown in the following.

A(�)	��� = (1 + B-�(�)) A(�) (9)

where 	(�) is an arbitrary performance, stability, or control
derivative a�ected by ice accretion; 
 represents the severity
of icing, and the greater 
, the greater the e�ect of ice on the
aerodynamic parameters. Usually the value of 
 is about 0-
0.3.��(�) is a constant for a certain aircra, which is usually
obtained by �ight test or �ight simulation calculations.

In actual �ight, considering the randomness of ice for-
mation and shedding, there will be asymmetrical life and
drag produced by two-side wings, and further additional roll
moments and yaw moments are generated, which is par-
ticularly problematic and dangerous when one-side deicing
system fails. Lampton [20] developed an asymmetric icing
e�ect model to simulate the di�erence in force and moment,
as shown in

ΔAice = 12A − 12Aice
ΔA�ice = 12A�ice − 12A�
Δ� 	�� = DE�ΔA	��F���
Δ�	�� = DE�ΔA�	��F���

(10)

where 	��	
 and 	��	
 are li coe�cient and drag coe�cient
a�ected by aircra icing; ��	 is the distance along the
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Figure 2: Time delay (�) distribution of the pilot.

body X-axis from the mean geometric chord to the aircra
centerline;� is the dynamic pressure and � is the wing area.

�en (10) can be integrated into the 6-DOF equations to
simulate the �ight dynamic characteristic of the aircraunder
asymmetrical icing conditions. What needs to be emphasized
is that aircra icing not only changes the aerodynamic
parameters, but also deteriorates allowable range of some
critical safety-related parameters. Here, take stall angle of
attack (AOA) as an example and the model [20] is shown as

ΔA = GGGGAice − AGGGG
������ =  (ΔA) (11)

Here, ������ is stall angle of attack a�ected by aircra icing.
It is necessary to note that the above icing e�ect models

are simpli�ed to some extent and suitable for preliminary
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 > 

Figure 3: Schematic diagram of pilot manipulation model.

analysis of the ice accumulation e�ect on aerodynamic
parameters. If high-precision numerical simulation is nec-
essary, the �ight safety parameter ranges under di�erent ice
severities and �ight states should be recorded through icing
wind tunnel tests or �ight tests, stored in the form of a
database, and called by interpolation. �e data in this paper
were obtained by CFD simulation and compared with the
wind tunnel test data, which showed the simulation was
credible. As this is not the focus of this article, it will not be
discussed in detail.

3. Monte Carlo Simulation Process and
Credibility Analysis

3.1. Monte Carlo Simulation Process. �e current general
method of predicting �ight risk is tantamount to observe the
variation of some critical safety parameters, because �ight
risk is usually accompanied by abnormal �ight parameters.
Considering the randomness of pilot model, external envi-
ronment models, and icing e�ect model, combined with
the nonlinear simulation system, the �ight of a typical
icing condition is simulated and �ight parameter extreme
values are extracted based on the Monte Carlo method. �e
simulation process is illustrated in Figure 4.

(1) Simulation Status Setting Module. Set the initial �ight state
of the aircra, the total number of simulation (�), icing time,
and the typical distribution of aircra icing.

(2) Random Variable Extraction Module. �e external envi-
ronment and pilot maneuvering parameters required for
the �th simulation are extracted based on the Monte Carlo
method. According to a certain area’s external environment
database, the aircra ice formation and external distur-
bance factors (such as a sudden wind, turbulence) could be
determined, and the corresponding aerodynamic parameters
could be extracted based on the icing database. Of course, if
we need to study the dynamic e�ects of icing environment
on �ight simulation more accurately, we need to consider
the impact of icing dynamic process on �ight aerodynamics,
such as the dynamic crosslinking of icingCFD simulation and
aerodynamic derivatives.

(3) Flight Simulation Module. Based on the pilot model, icing
e�ect model, environment model, and the aircra model, the
�ight simulation platform is establishedwith theRunge-Kutta
algorithm. �e simulation step length is 0.02s. �e �ight
dynamics model and �ight control system are loaded on the
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real-time simulation computer constructed by LinksTech and
connectwith other simulation knots by the re�ectivememory
network.

(4) Extreme Parameters Storage Module. In each �ight sim-
ulation, the maximum or minimum value of the status
parameters is stored in the extreme value database, such as
the maximum AOA and the minimum airspeed during the
�th simulation.

(5) Simulation Process Control Module. Let � = � + 1, and
determine whether � is greater than the setting number �. If
not, the simulation returns to the second step. Experiment
shows that when � is greater than 2000, the statistical
characteristic is stable. So, set � equal to 2500 to compromise
operation time and result stability.

3.2. Safety Critical Parameters Denition. Select an initial
state of level �ight with �ight height of 3000m, airspeed
120m/s. Aircra enters icing airspace aer 5 s and the right

deicing system is failed.�e variations of �ight parameters in
the 21st simulation are shown in Figure 5.

From Figure 5, with the ice accumulation on the wings
and before the pilot intervenes, the velocity drops slightly due
to the li decreases and drag increases; the aircra rolls to the
right side and begins to yaw, due to the asymmetrical li and
drag caused by the failure of the right deicing equipment; and
at the same time, �ight height rapid decreases. �en, the pilot
senses the change of �ight state and intervenes to manipulate.
�e thrust increases �rst to obtain energy and then decreases
to try to recover the initial state. During the process, the AOA
increased by 103.3%, the rolling angle reached 49.9 degrees,
the speed margin reduced by 58.3%, and the height loss by
116.3 meters. During the same time, the stall AOA decreased,
the lateral control hinge torque increased, and the pilot was
more di�cult to navigate. Here, we choose the AOA, roll
angle, and airspeed as the �ight extremum parameters, which
drastic change and have a signi�cant impact on �ight safety.
Of course, if the pilot performs a take-o� or landing mission,
the height loss is particularly critical. For di�erent missions,
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di�erent �ight parameters are selected to represent the �ight
risk.

3.3. Monte Carlo Simulation Credibility Analysis. About the
limits of natural icing conditions and the limits of statistical
stability for the �ight extreme parameters, it is impossible
to obtain extreme values through more than 2000 �ight
tests under the same natural conditions. Also, it is di�cult
to perform more than 2000 tests using the pilot-in-the-
loop ground simulation platform. It is feasible to obtain the
parameter extremum through the Monte Carlo simulation
method. Judging the reliability of this method is the primary
problem to be resolved.

200 tests are performed, respectively, with the real pilot
in the loop and the pilot model produced by the Monte
Carlo simulations under the same conditions to verify the
credibility [40]. �e distribution of the extracted extreme
parameters for the two di�erent kinds of experiments is
compared in Figure 6, which shows that the distribution
is similar. To further and more clearly verify the similarity
distributions, the Quantiles-Quantiles (QQ) plots, R-square
method, correlation coe�cient method, and Kolmogorov-
Smirnov (K-S) test are performed as Figure 7 and Table 1
show.

�e QQ graphical method plots the quantile scatter of
the two-sample empirical distribution function on the same
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Table 1: Data goodness of �t for simulation of pilot model and real pilot.

Extreme parameters Correlation coe�cient K-S P value R-square

Extreme minimum airspeed 0.9607 0.0850 0.4486 0.9230

Extreme roll angle 0.9797 0.0450 0.9855 0.9599

Extreme AOA 0.9667 0.1050 0.2078 0.9346

graph. �e straight lines in Figure 7 indicate that the two
samples belong to the similar distribution. K-S test is to deter-
mine the goodness of �t of the two samples by calculating
the empirical probability di�erence. �e P value of the K-S
test represents the test statistic obtained from the observation
of the original sample and the minimum signi�cance level
at which the original hypothesis can be rejected. All the P
values are greater than 0.05, which means there is generally
no reason to reject the original hypothesis. �e coe�cient
of correlation and R-square between the samples is greater
than 0.9, indicating that the two-sample data showed a strong
linear correlation. So it is possible to pass the test and accept
the original hypothesis. Considering comprehensively, it can
be concluded that the pilot model simulation data has the
same distribution type as the real test data of the pilot in the
loop, and the pilot model simulation data sample can be used
to evaluate the �ight risk probability.

4. Distribution Characteristics of
One-Dimensional Flight
Extremum Parameters

4.1. Statistical Characteristics Analysis of Flight Extremum
Parameters. �e Monte Carlo simulation method was used
to extract the extreme value samples of �ight parameters. At
a certain con�dence level, the statistical characteristics of the
extremum parameters were analyzed, as shown in Table 2,
in order to study the distribution characteristics of the �ight
extreme parameters.

In Table 2, the kurtosis coe�cients above 3 show that the
extremum samples of the three parameters are more concen-
trated and have longer tails than the normal distribution; the
skewness coe�cients show that the le tail of the minimum
velocity extremum is longer and the right tails of the roll angle
extremumand theAOAextremumare longer.�e three �ight
parameters have heavy tails and di�erent distribution types.

4.2. Mathematical Distribution Type Analysis. �is obvious
heavy-tailed distribution is common in low-frequency and
high risk events. For this type of heavy-tailed distribution,
the most e�ective description method is extreme value
theory [35, 36], which can model the tail of the extreme
value probability distribution of a random sequence, and
calculate the speci�c overlimit probability value based on the
mathematical model. In extreme value theory, extreme value
(EV) distribution, general extreme value (GEV) distribution
candescribe the heavy-tailed distribution. Lognormal (Logn)
distribution, Weibull distribution, and exponential (Exp)
distribution can also describe the heavy-tailed characteris-
tics. Here, �ve typical distribution families are selected to
identify one-dimensional extreme value parameters and the

normal distribution is also listed to compare, as shown in the
following.

EV: 4 (	; I, J) = − exp (−exp (	 − IJ )) (12)

GEV: 4 (	; M, I, J) = exp{−(1 + M ⋅ 	 − IJ )−1/�} . (13)

Lognormal: 4 (	; I, J)
= 1
J√2Q ∫

�

0

exp (− (ln (;) − I)2 / (2J2))
; F; (14)

Weibull: 4 (	; T, U) = ∫�
0
UT−�;�−1 exp(−( ;T)

�)F; (15)

Exponential: 4 (	; I) = 1 − exp(−	I) (16)

Normal: 4 (	; I, J)
= 1
J√2Q ∫

�

−∞
exp(−(; − I)22J2 )F; (17)

�e identi�ed weight parameters for the above equations are
listed in Table 3.

In order to judge the accuracy of the above models, the
goodness of �t test is applied by the K-S test, Anderson-

Darling (A-D) test, and Z2 test. �e results are shown in
Tables 4–6.

In Table 4, K-S test values of EV andWeibull distributions
are both less than 0.1, and P values are both greater than 0.05,
indicating that 95% con�dence levels can pass the test, and
distribution �tting degree is higher. Furthermore, A-D test is
more sensitive to heavy-tailed distribution, Weibull and EV
distribution have smaller test values, and Weibull’s P value is
greater than 0.05.�erefore, by integrating various test rules,
the identi�cation accuracy of Weibull distribution is higher.
Similarly, the accuracy of GEV distribution is the highest in
Tables 5 and 6. In summary, the minimum velocity extremum
accords with the Weibull distribution, and the rolling angle
and the AOA extremum meet the GEV distribution.

4.3. Flight Risk Probability Based on One-Dimensional
Extreme Parameter. Flight risk events are oen accompanied
by �ight parameters exceeding the limit. According to the
mathematics distribution of the above three parameters, a
criterion for the occurrence of �ight risk events is proposed.
For the range of these three parameters is quite di�erent, the
�ight risk criterion is constructed by using the method of
normalization of extremum parameters.
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Table 2: Statistical characteristics of extreme value samples.

Extreme parameters Maximum Minimum Average Median Variance Kurtosis Skewness

Extreme minimum airspeed 115.0038 60.6187 98.9172 102.7124 151.5753 3.2448 -0.9658

Extreme roll angle 103.0343 18.6904 47.4460 44.9050 252.5812 4.0731 0.9875

Extreme AOA 20.9960 4.4056 8.0537 7.1050 8.8444 6.1733 1.7072

Table 3: Identi�ed weight parameters.

Model Extreme Vmin Extreme roll angle Extreme AOA

EV I = 104.4189, J = 8.9329 I = 56.0386, J = 19.1285 I = 9.7361, J = 4.0631
GEV

M = −0.7757, I = 97.6423, M = 0.0012, I = 40.2577, M = 0.3546, I = 6.5188,J = 13.5678 J = 12.3873 J = 1.4989
Logn I = 4.5857, J = 0.1350 I = 3.8070, J = 0.3241 I = 2.0315, J = 0.3163
Weibull T = 103.9547, U = 10.9225 T = 52.9810, U = 3.0961 T = 9.0375, U = 2.7443
Exp I = 98.9172 I = 47.4460 I = 8.0537
Norm I = 98.9172, J = 12.3116 I = 47.4460, J = 15.8928 I = 8.0537, J = 2.9740

By consulting the �ight manual of the certain aircra,
the critical value of the AOA is a function of the Mach
and the position of the �ap. �erefore, according to the
aerodynamic data in the icing and failure conditions, and the
Mach and �ap position when extracting the AOA extreme
value, the critical value of AOA is obtained by interpolation
calculation, and then the normalized AOA is obtained by�max/��(��,�T, #�/). Similarly, the critical value of the roll
angle is 85 deg. Take the airspeed corresponding to the
maximum li coe�cient in the current �ight environment as
the critical value. So, the criterion for �ight risk under icing
condition can be described as

c = 1, if ( �min�� (��, #�/) < 1)

c = 1, if ($max85 > 1)
c = 1, if ( �max�� (��,�T, #�/) > 1)

(18)

c
V
= 41 (�min < 1) (19)

c� = 1 − 42 ($max
> 1) (20)

c� = 1 − 43 (�max > 1) (21)

Based on the mathematical models and the identi�ed
values of the three �ight parameters, the �ight risk can
be calculated, respectively, by (19)-(21). For the above sim-
ulation, the probabilities of �ight risk are 0.0556, 0.0268,
and 0.0051. According to MIL-STD-882D, the �ight risk
calculated, respectively, byminimum airspeed andmaximum
roll angle extreme parameters reaches the B level, namely,
“possible”, while, the �ight risk calculated by maximum
AOA parameter reaches the C level, namely, “occasionally”.
�e �ight risk probabilities based on the di�erent �ight
parameters in the same�ight are di�erent, whichmeans using
a single extremum to access �ight risk is not comprehensive

and it is di�cult to choose a suitable parameter. At the same
time, we can conclude that, in the asymmetric wing icing
conditions, pilot should pay much attention to the airspeed
in case of stall and trying to keep lateral balance in case of
oversize rolling.

To comprehensive and accurate �ight risk evaluation,
in the next section, a risk assessment model based on the
three-dimensional �ight extremum parameters with di�erent
mathematical distributions is built.

5. Three-Dimensional Extreme Risk Model

�e single variable �ight risk assessment model has some
limitations and can not fully re�ect the risk situation. Because
the joint distribution of multivariate variables is not only
related to the edge distribution of each component, but also
to the correlation between variables, the conclusion of the
univariate can not be extended directly to multivariate cases.
�e extreme value character of a single component may
not contain the joint extreme value of the entire vector.
Copula theory is proposed for the evaluation of extremum
distribution and has good applicability for describing the
correlation among multiple parameters. �is section focuses
on the construction of multivariate �ight parameter extreme
risk model with di�erent mathematical distributions.

5.1. Mathematical Distribution Type Hypothesis. Assume
the distribution function of the extremum vector (�min,$max, �max) is 4(�min, $max, �max) and the marginal distribu-
tion functions are 41(�min), 42($max), 43(�max). We have con-
cluded that 41(�min) obeysWeibull distribution and 42($max)
and 43(�max) obey GEV distribution at 95% con�dence
level in Section 4. According to Sklar theorem [8], for any(�min, $max, �max) ∈ >�, there must be a Copula function 	,
which satis�es

A (41 (�min) , 42 ($max) , 43 (�max))
= 4 (�min, $max, �max) (22)
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Table 4: Fitting test of extreme Vmin.

Model K-S P(K-S) A-D P(A-D) Z2
EV 0.0831 0.1193 1.8823 0.1068 25.1681

GEV 0.1033 0.0259 2.8973 0.0309 1.8030

Long 0.1465 0.0003 7.5795 0.0002 3.8987

Weibull 0.0426 0.8455 0.3988 0.8498 0.2305

Exp 0.4823 <0.0001 71.1810 <0.0001 25.9954

Norm 0.0831 0.1193 1.8823 0.1068 25.1681

Table 5: Fitting test of extreme roll angle.

Model K-S P(K-S) A-D P(A-D) Z2
EV 0.1590 0.0001 10.3930 0 15.1128

GEV 0.0295 0.9931 0.1976 0.9911 0.0921

Long 0.0345 0.9650 0.2201 0.9839 0.0876

Weibull 0.0876 0.0876 3.0570 0.0256 1.4002

Exp 0.3942 <0.0001 43.5374 <0.0001 17.6790

Norm 0.0788 0.1583 2.8350 0.0333 1.2308

Table 6: Fitting test of extreme AOA.

Model K-S P(K-S) A-D P(A-D) Z2
EV 0.2606 <0.0001 18.9411 <0.0001 15.5295

GEV 0.0516 0.6413 0.5574 0.6889 0.2089

Long 0.1427 0.0005 4.5021 0.0050 2.4380

Weibull 0.1711 <0.0001 9.8211 <0.0001 5.2385

Exp 0.4548 <0.0001 44.8035 <0.0001 18.1063

Norm 0.1941 <0.0001 10.3963 <0.0001 5.6621

A three-dimensional Copula model is constructed based
on asymmetric Archimedes Copula, as shown in

A (�, V, �) = A1 (�, A2 (�, V))
= e−11 (e1 (�) + e1e−12 (e2 (�) + e2 (V))) (23)

where e(⋅) is Archimedes Copula generating function; �, V, �
is marginal distribution of the sample (�min, $max, �max).
Firstly, Copula A2 is generated by � and V; secondly, CopulaA1 is generated by combining � and A2. �irdly, assuming%1 is the parameter of Copula A2 and %2 is the parameter of
Copula A1, expressions for A2(�, V; %1) and A1(�, A2; %2) are
given; �nally, according to (23), A2(�, V; %1) is brought intoA1(�, A2; %2). �en, the three-dimensional Copula is con-
structed to calculate �ight risk probability. By analogy, more
parameters can be considered for comprehensive evaluation.
If there are too many parameters, convergence and precocity
of Copula weight parameters calculation may be a problem.
Furthermore, in the actual, we only need to select the most
sensitive parameters for �ight safety

Here, 41(�min), 42($max), 43(�max) are all continuous
distribution functions, so Copula A is the only one. �e

commonly used multidimensional Copula models and cor-
responding generators are shown as (24)-(28).

Gumbel Copula:

A (�, V, �) = exp(−{(− ln�)�2

+ [(− ln �)�1 + (− ln V)�1]�2/�1}1/�2)
e (;) = (− ln ;)�

(24)

Frank Copula:

A (�, V, �) = − 1%2 log{1 − (1 − /−�2)
−1 (1 − /−�2�) (1

− [1 − (1 − /−�1)−1 (1 − /−�1 ) (1 − /−�1V)]�2/�1)}
e (;) = ln

1 − /−��1 − /−�

(25)
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Clayton Copula:

A (�, V, �) = [�−�2 + (�−�1 + V−�1 − 1)�2/�1 − 1]−1/�2

e (;) = 1% (;−� − 1)
(26)

GS Copula:

A (�, V, �) = {{{
1 + [( 1� − 1)

�2

+ ((1� − 1)
�1 + (1

V

− 1)�1)�2/�1]
1/�2}}}

−1

e [;] = (1; − 1)
�

(27)

Joe Copula:

A (�, V, �) = 1
− {[(1 − �)�1 (1 − (1 − V)�1) + (1 − V)�1]�2/�1

⋅ (1 − (1 − �)�2) + (1 − �)�2}1/�2
e (;) = − ln [1 − (1 − ;)�]

(28)

5.2. Identication of the Parameters in Copula Functions.
Using nonlinear identi�cation algorithms, the identi�ed
weight parameters %1 and %2 for the above models are
calculated and listed in Table 7.

Goodness of �t test is applied by the Akaike Information

Criteria (AIC), Bayesian Information Criterion (BIC),Z2 test,
and K-S test, in order to judge the Copula model accuracy.
�e results are shown inTable 8.We can analyze that the P(K-S)
test values of Clayton model and Joe model are higher than
those of signi�cance levels 0.01, 0.02, and 0.05; that is, the two
Copula models could pass the test at 99% con�dence level,
while other models could not pass the test. Continuing to
compare AIC values, BIC values, and chi-square statistics, Joe
model can more accurately describe the three-dimensional
extreme value distribution model under the condition than
Claytonmodel.What ismore, Joemodel is sensitive to heavy-
tail characteristic. So we choose Joe model to describe the
joint probability distribution of minimum airspeed extreme,
maximum roll angle extreme, and maximum AOA extreme.

5.3. �ree-Dimensional Extreme Parameter Flight Risk Proba-
bility and Analysis. According to the risk discriminant (18)

Table 7: Identi�ed weight parameters.

Copula model Weight parameters

Clayton Copula %1 = 9.2620 %2 = 9.0787
Gumbel Copula %1 = 1.7251 %2 = 2.4825
Frank Copula %1 = 40.0621 %2 = 35.3235
Gs Copula %1 = 1.5518 %2 = 1.9015
Joe Copula %1 = 12.6297 %2 = 10.6006

and Joe Copula model, the �ight risk probability of three-
dimensional extreme parameters is shown in

c� = 1 − A!"�(41 ( �min�� (��, #�/) < 1) , 42 (
$max85 > 1) ,

43( �max�� (��,�T, #�/) > 1) .
(29)

A!"� represents Joe Copula model based on formula (28).
According to the identi�cation results in Table 7, �ight risk
probability under the above simulation conditions (asymmet-
ric wing icing) is 0.0924. By comparing the �ight risk prob-
ability calculated by one-dimensional extreme GEV model
and Weibul model, it can be found that the risk probability
calculated by themultivariate extremeCopulamodel is larger.
It shows that the �ight risk situation when the extreme values
of three di�erent �ight parameters exceed the limits is fully
considered. Compared with one-dimensional extreme value
of �ight parameters to determine �ight risk, multivariate
extreme value Copula method is more comprehensive and
accurate.

It should be emphasized that the �ight risk probability
calculated here is similar to the accident rate in SAE ARP4761
[30], which is largely a reference value. Flight risks in di�erent
situations can be compared and analyzed horizontally, such
as in di�erent harsh environment conditions, in di�erent
hardware failure conditions, or in di�erent risk task subjects.

In order to intuitively analyze the relationship between
�ight risk and extremum parameters, Figure 8 shows the
joint probability density distribution of Joe Copula model
and Clayton Copula model when �=0.8. �e maps show
strong coupling and high risk probability near the upper
tail and low risk probability in other regions. Compared
with Clayton Copula model, Joe Copula model has more
centralized risk probability distribution and its probability
density gradient is larger near the upper tail. �e distribution
re�ects that when multiple �ight parameters are faced with
overlimit, the �ight risk probability is large, while when a
single �ight parameter is close to overlimit, the �ight risk
gradient is larger, which requires pilots to precisely and
carefully manipulate to avoid cli�-breaking �ight risk. From
another dimension, Joe Copula model shows that the certain
aircra has a high design level and the �ight risk events may
occur only when multiple �ight parameters exceed the limits
with a high probability, which is similar to the �ight test
results of the certain aircra.
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Table 8: Fitting test for di�erent Copula models.

Copula model AIC BIC Z2 K-S P(K-S)
Clayton Copula -1124.1 -1117.5 8.2103 0.1100 0.1668

Gumbel Copula -771.97 -765.37 45035 0.6500 4.3188E-38

Frank Copula -9.6640 -6.6534 0.4119 0.2986 0.0204

Gs Copula -631.4853 -624.887 11.0808 0.2000 5.4431E-4

Joe Copula -1416.8 -1410.2 1.9402 0.1050 0.2078
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Figure 8: Probability density maps of Joe and Clayton copula models (�=0.8).

6. Conclusions

(1) Considering the randomness and uncertainty of the
environment and pilot’smanipulation under icing conditions,
the feasibility of the Monte Carlo method for �ight dynamics
simulation under icing conditions is veri�ed and relevant
experiments are carried out on a real-time simulation plat-
form.

(2) Extremum samples of key �ight risk parameters
are extracted through a large number of simulations, and
the distribution types of di�erent extremum parameters are
obtained. �e minimum velocity extremum obeys Weibull
distribution, maximum roll angle, and AOA extremum obey
GEV distribution. �e �ight risk based on single extremum
parameter is calculated, and the risk values are di�erent. So,
the limitation of single extremum parameter in evaluating
�ight risk is analyzed. Furthermore, combining with the
theory of multivariate extremum, the �ight risk model based
on Joe Copula model is constructed and the correlation
between �ight extremum parameters is further analyzed.

(3) �rough comparative analysis, the minimum speed
extremum has a greater impact on the �ight risk under icing
conditions, and the pilots should pay special attention to the
airspeed. When encountering asymmetric icing, pilots need
be aware of the abnormal roll of the aircra, avoid entering
upset state, and control the aircra quickly and smoothly to
restore normal attitude.

(4) Flight risk probability values proposed in this paper
can be used as an e�ective supplement to the current
�ight safety regulations and have positive signi�cance for

the review of �ight safety and airworthiness. At the same
time, because the �ight risk probability is a reference value,
the �ight risk degree under di�erent icing conditions or
other failure conditions can be compared and analyzed
horizontally. �is paper mainly considers the in�uence of

icing on aerodynamic parameters, but does not consider the
risk factors of icing on engine, sensor and so on. �erefore,

the next step will take into account the �ight risk and the

warning method under the condition of multiple factors

crosslinking aer icing, in order to improve the pilot’s

situational awareness.

Nomenclature

��ℎ: �rottle de�ection��: Elevator de�ection��: Aileron de�ection��: Rudder de�ection�: Airspeed, m/s�: Angle of attack, rad�: Sideslip angle, rade: Roll angle, rad�0, �1, �2, �3: Quaternion, �20 + �21 + �22 + �23 = 1�, �, �: Roll rate, pitch rate, yaw rate, body axis,
rad/s	�, 
�, ��: Space position, m�, V, �: Components of the velocity, body axis, m/s�,!, ": Components of the resultant force, body
axis, N
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�,�,�: Components of the resultant moment,
body axis, N⋅m

��: �e pilot’s static gain

�: �e pilot’s delayed response time, s
	��	
, 	��	
: Li and drag coe�cients a�ected by aircra

icing
��	: Distance along the body X-axis from the

mean geometric chord to the aircra cen-
terline, m

�: Dynamic pressure

�: Wing area, s2c�: Flight risk probability.
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