
On Floating-point Summation ∗

T. O. Espelid †

Abstract

In this paper we focus on some general error analysis results in floating-point sum-
mation. We emphasize analysis useful from both a scientific and a teaching point of
view.

Keywords: Floating-point summation, rounding errors, orderings.
AMS subject classification. primary 65G05, secondary 65B10.

1 Introduction

The floating-point summation has, over the years, got considerable attention since Wilkin-
son’s, [11, 12], famous backward analysis from the early sixties. Over the last five years
several papers have been published focusing on this topic, e. g. Robertazzi and Schwartz,
[10], Dixon and Mills, [3], Goldberg, [5], and Higham, [6]. Comprehensive lists of references
can be found in [5, 6].

This author too studied this subject in the late seventies, Espelid [4]. My interest
stemmed from teaching numerical analysis courses: all textbooks that I knew would present
the backward result. I observed that in doing so they failed to give good advice to students
on how to compute e. g. the denominator in Aitken extrapolation for a linearly converging
series . . . , ti−1, ti, ti+1, . . . → t: d = ti+1 − 2ti + ti−1. The backward analysis is of course
important, but in my opinion the true nature of floating-point summation becomes hidden
if one gives results for the backwards analysis only.

This paper has been inspired by Higham’s discussions in [6]. However, instead of exper-
imenting with different orderings I want to highlight some main results from [4] and [6] in
a less technical manner. I do hope that both scientists and teachers of numerical analysis
courses may find this presentation as useful as I have over the years.

Before we start on the floating-point discussion let us first consider the following natural
summation algorithm

∗Published by: SIAM Review, 37(4), Dec. 1995, 603-607.
†Author’s address: Department of Informatics, University of Bergen, Høyteknologisenteret, 5020 Bergen,

Norway

1

Algorithm Sum

Initialize: Given a set of n+ 1 numbers {xi}n0
while n > 0 do

Pick two numbers from the set, say x and y.
Compute z ← x+ y.
Let z replace x and y in the set,
and put n← n− 1.
end

Higham, [6], uses the term insertion for this type of algorithm which is discussed in [4]
too. We may associate a binary summation tree with this algorithm: the leaves contain
the values xi, i = 0, 1, 2, . . . , n, and the internal nodes contain the intermediate sums
si, i = 1, 2, . . . , n. Obviously we have for the root of the tree

sn =
n∑

i=0

xi.

Each si is the exact sum of a subset of the n + 1 x-values. Thus to each si, or to each
internal node in the binary summation tree, we may associate the indices corresponding to
this particular subset of x-values.

By making different choices in the algorithm we may get different binary summation
trees. Define two binary summation trees as different if there is one internal node in one of
the trees, with a particular associated index set, which does not appear in the other tree.
A natural question is then: how many different binary summation trees are there?

Let g(m) be the number of different binary summation trees with m leaves. We find by
simple counting, with g(1) = 1, that

g(m) =
1

2

m−1∑

j=1

(
m
j

)g(j)g(m − j), for m ≥ 2.

The factor 1/2 comes from symmetry considerations. Define g(0) = −1, then this can be
written

m∑

j=0

(
m
j

)g(j)g(m − j) = 0, for m ≥ 2.

Defining the generating function F (x) =
∑

m≥0 x
mg(m)/m! it is easy to see that (F (x))2 =

1− 2x and using this fact we find g(m) = 1 · 3 · 5 · · · (2m− 3) = (2m− 3)!!, known as double
factorial. Thus the number of different ways to add the n+1 numbers increases enormously
with n: 1, 3, 15, 105, 945, 10 395, 135 135, This expression for g(m) is probably well
known: e. g. it is given in Knuth [8, p. 639].

2

2 Floating-point summation

Assume that we have a machine with standard floating-point arithmetic with rounding. Let
x̂ denote a floating-point machine number approximating the exact number x.

Lemma 1 Let u be the unit roundoff on a machine with standard floating-point arithmetic.
Then the floating-point error may be represented both as

fl(x̂ op ŷ)− (x̂ op ŷ) = (x̂ op ŷ) φ, |φ| ≤ u, (1)

and
fl(x̂ op ŷ)− (x̂ op ŷ) = fl(x̂ op ŷ) ψ, |ψ| ≤ u, (2)

with ψ = φ/(1 + φ). op can be either +, -, * or /.

(1) is the standard representation used for backward analysis, while (2) was introduced by
Babusǩa [1]. Observe that the relation between φ and ψ implies that −u/(1 + u) ≤ φ ≤ u
and −u ≤ ψ ≤ u/(1 + u), a fact of no practical value.

The error in x̂, as an approximation to x, will in the following be denoted ex̂ = x̂− x.
Define ẑ = fl(x̂ + ŷ) then (2) implies

eẑ = ex̂ + eŷ + ψẑ, |ψ| ≤ u. (3)

Now assume that we implement Algorithm Sum on this machine using floating-point arith-
metic. Assume furthermore that we make the same choices as with exact arithmetic pro-
ducing, from the machine values {x̂i}ni=0, the intermediate machine sums ŝi, i = 1, 2, . . . , n.
Using (3) on each node in the binary summation tree we formulate the result in a theorem.

Theorem 1 The total error in the computed sum ŝn, using Algorithm Sum (assuming no
over-/under-flow), and producing intermediate machine sums ŝi, i = 1, 2, . . . , n, may be
written

ŝn − sn =
n∑

i=1

ψiŝi +
n∑

j=0

ex̂j
,with |ψi| ≤ u, i = 0, 1, . . . , n, (4)

giving a bound for the error

|ŝn − sn| ≤ u
n∑

i=1

|ŝi|+
n∑

j=0

|ex̂j
|. (5)

In my opinion this theorem contains the essence of floating-point summation. The initial
errors have an effect on the final sum which is independent of the choices made in Algorithm
Sum. The choices made will influence the final sum through the intermediate sums ŝi. Thus
making choices that create small intermediate sums seems like the best advice in general.
This result should appear in textbooks and will make floating-point summation less obscure
to beginners in this field.

The typical student question about how to compute the denominator in Aitken accel-
eration is now trivial. Indeed the situation is even more pleasant than Theorem 1 indicates
in this case due to the following well known result concerning cancellation.

3

Lemma 2 Let x̂ and ŷ be machine numbers in a binary floating-point machine such that
x̂ŷ < 0 and 2|ŷ| ≥ |x̂| ≥ |ŷ|. Then fl(x̂+ ŷ) = x̂+ ŷ.

The optimal way of computing the Aitken denominator is

d = (ti+1 − ti)− (ti − ti−1).

Using a binary floating-point machine we get ψ1 = ψ2 = 0, giving only a small relative
error due to the last subtraction since the terms in the sequence {ti} are approximately
equal when i is large.

In order to do a complete backward analysis of the implementation of Algorithm Sum
we may use (1) to obtain the following result

|eẑ| ≤ (|ex̂|+ |eŷ|+ u|z|)(1 + u). (6)

This gives a bound for the error in any internal node in the binary summation tree expressed
by the error in each of it’s children and the error introduced when computing ẑ from these
children expressed by the exact sum z. In order for the bound to be true we have to perturb
the bound by the factor (1+u) which is unnecessary if we replace z by ẑ. The nice property
of (6) is that it is easy to use recursively in the binary summation tree (by induction in the
height of the tree) giving an alternative to (5)

Theorem 2 The total error in the computed sum ŝn may be bounded using the exact in-
termediate sums si, i = 1, 2, . . . , n,

|ŝn − sn| ≤ (u
n∑

i=1

|si|+
n∑

j=0

|ex̂j
|)(1 + u)h, (7)

where h denotes the height of the binary summation tree and dlog2(n + 1)e ≤ h ≤ n.
Alternatively we may write

|ŝn − sn| ≤ (u
n∑

i=1

mi|xi|+
n∑

j=0

|ex̂j
|)(1 + u)h, (8)

where mi is the distance from the leaf containing xi to the root of the binary summation
tree, with 1 ≤ mi ≤ h.

To prove (8) recall that si is the exact sum of a subset of the exact x-values. Let mi be the
number of additions xi has been part of, either explicitly or embedded in some sj, then this
is equivalent to the distance from the leaf containing xi to the root. With this observation
(8) follows from (7). We see that while (5) and (7) are realistic upper bounds (may be
achieved) on the error (8) may be a substantial overestimate if the terms in the sum are of
different sign.

Minimizing the height in the binary summation tree, known as Linz/Babusǩa summa-
tion, [1, 9], gives h = dlog2(n+ 1)e and thus the minimum maximum perturbation of each
xi in (8).

4

Recursive summation, that is ŝ1 = fl(x̂0 + x̂1) and ŝi = fl(ŝi−1 + x̂i), on the other hand
gives h = m0 = n and mi = n− i+ 1, i = 1, 2, . . . , n, establishing the most cited backward
result by Wilkinson. The factor (1 + u)h may be replaced by

(1 + u)h < exp(uh),

giving a perturbation of the bound less than 1.1 if uh ≤ .1. Let us consider a case where it
is of little value to spend extra effort on the floating-point summation:

Theorem 3 Assume that the relative initial error is uniformly bounded, e. g. |ex̂j
| ≤ ε|xj |,

then

|ŝn − sn| ≤ (uh+ ε)(
n∑

i=0

|xi|)(1 + u)h. (9)

This follows directly from (8). We see from (9) that when un < ε (recall h ≤ n) then this
backward analysis suggests that we should not worry about the choices in Algorithm Sum
(at least for un << 1). On the other hand if ε = O(1)u then the same analysis indicates
that the summation error may be dominating and such an effort may be worthwhile. From
(9) we see that Linz/Babusǩa summation will minimize this bound, but (7) suggests that
we can do even better in many cases.

Since the number of different binary summation trees becomes enormous with large
values of n it is out of the question, in general, to search all these for the optimal summation
tree (that is: the tree that minimizes either (5) or (7) or both) for a given set of x-values.
However, in some cases the optimal tree is easy to find.

1) If xi > 0, i = 0, 1, . . . , n, then we may choose the two smallest values x and y (each
time) in Algorithm Sum to get the optimal tree. It is well known that this is optimal,
see D. Huffman’s procedure , [7], or Caprani [2]. If the set is sorted in advance then this
procedure is in addition easy to apply.

Recursive summation is optimal in the equal sign case if the set is sorted in increasing
order and each intermediate sum is less than all the remaining (except the smallest) x-
values. An example is: 0 < xj−1 ≤ αxj , j = 1, 2, . . . , n with 0 < α ≤ (

√
5− 1)/2.

Linz/Babusǩa summation is optimal if all x-values are approximately equal. In this
case (9) gives a very nice relative error bound that is realistic too with h minimal.

2) In [6] a number of different strategies were considered when we have the different
sign situation. None of the strategies was a general winner in the experiments performed
in [6]. One of these strategies, the separation strategy, is to compute the sum of all positive
and negative x-values separately, using a good strategy for each subproblem. As remarked
in [6] this is almost never optimal.

I feel that such strategies appear in the literature due to the fact that results like (4),
(5) and (7) never have, to this authors knowledge, been given in textbooks. Everyone
knows that cancellation may be harmful, and indeed this separation strategy minimizes
the number of possible cancellations! However, as illustrated by the theorems 1 and 2 and
Lemma 2, cancellation in floating-point summation is the best thing that can happen and
the more frequent the better! Here we should note that our Aitken example makes use of
this particular fact. The trouble with cancellation is the conflict between large initial errors
and the fact that the final sum may be quite small. If this is a major concern then one

5

should reformulate the problem to avoid the summation! If not, then take advantage of the
cancellations!

Of course it is possible to experience cases where the separation strategy is optimal:
assume that xi > 0, i = 0, 1, 2, . . . , n−1, and xn ≤ −2

∑n−1
i=0 xi then we see indeed that the

separate summation of positive and negative values is optimal. This fact illustrates how
hard it is to design an algorithm which is optimal in general and at the same time implies
a reasonable amount of extra work relative to the n floating-point additions which is the
original job to be done.

References

[1] I. Babusǩa. Numerical stability in mathematical analysis. In Proc. IFIP Congress,
Information Processing 68, pages 11–23. North-Holland, Amsterdam, 1969.

[2] O. Caprani. Roundoff errors in floating-point summation. BIT, 15:5–9, 1975.

[3] L. C. W. Dixon and D. J. Mills. The effect of rounding errors on the available metric
method. Technical Report 229, Numerical Optimization Centre, Hatfield Polytechnic,
Hatfield, UK, 1990.

[4] T. O. Espelid. On floating-point summation. Report 67, Dept. of Appl. Math., Univ.
of Bergen, 1978.

[5] David Goldberg. What every scientist should know about floating-point arithmetic.
ACM Computing Surveys, 23(1):5–48, 1991.

[6] Nicholas J. Higham. The accuracy of floating point summation. SIAM J. Sci. Comput.,
14:783–799, 1993.

[7] Donald Knuth. Sorting and Searching, volume 3 of The art of computer programming.
Addison-Wesley, 1 edition, 1973.

[8] Donald Knuth. Seminumerical algorithms, volume 2 of The art of computer program-
ming. Addison-Wesley, 2 edition, 1981.

[9] Peter Linz. Accurate floating-point summation. Comm. ACM, 13:361–362, 1970.

[10] T. G. Robertazzi and S. C. Schwartz. Best “orderings” for floating-point summation.
ACM Trans. Math. Softw., 14:101–110, 1988.

[11] J. H. Wilkinson. Error analysis in floating-point computation. Numer. Math., 2:319–
340, 1960.

[12] J. H. Wilkinson. Rounding errors in algebraic processes. Technical Report 32, Her
Majesty’s Stationary Office, London, 1963.

6

