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The severe decrease of flow duration in shock tubes operating at low pressures, previously reported
by Duff, is confirmed by experiment and by an analysis of the effects of the laminar—boupdary layer
behind the shock wave. The latter leads to a shock tube similarity length parameter X, which depends
on the tube pressure, diameter and shock Mach number, and to a flow duration parameter T. The
theoretical relation T = T(X) is determined and compared with experimental results. From the theo-
retical result Tmex = 1, the maximum possible flow duration =, in a shock tube is determined; it
increases linearly with the initial pressure and the square of the tube diameter and decreases strongly

with shock Maeh number,

1. INTRODUCTION

N THE theory of the ideal shock tube, the length
I, of the slug of shock-processed gas contained
hetween the shock wave and contact surface (Fig. 1)
satisfies the relation p,l; = p&, where z is the
distance from the diaphragm to the shock position.
That is, all the gas between the shock and the contact
surface was initially between the position 2 and
the diaphragm. Thus

(1)

li = 55/77;
where
n = P2/P1-

Correspondingly, the ideal flow duration r, is given
by 7 = l./u, (Fig. 1). The velocity u, of the shocked
gas is related to the shock speed U, by the continuity
equation p,u; = p,(U, — u,), from which we have

Uy = Ua("l - 1)/1}. (2)
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Contact Surface —
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= Shock
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Fic. 1. 2-i plane. [ is the length of shocked gas. « is the flow
duration at z.

Combining this with Eq. (1), we obtain for the flow
duration ‘ .

z/[U(n — D},

Il

Ti
or

z/a[M.(n — D], 3
where a; is the speed of sound in the undisturbed
gas and M, = U,/a, is the shock Mach number.

Values of flow duration, plotted in the dimension-
less form a,r,/x against M,, are shown in Fig. 2,

T =

for air. The theoretical curves were obtained from

Eq. (3), using values of the density ratio computed
for constant specific heat and for real air.' The
real-gas effect on the density ratio and thus on flow
duration is appreciable.

Also shown in Fig. 2 are experimental values of
a,7/z, measured in a 2-in. diam. shock tube, 21 ft
from the diaphragm. These measured values fall
below even the theoretical real-gas curve; the
discrepancy increases with increasing Mach number
and decreasing initial pressure p,

It has been well known that actual flow durations
are shorter than the ideal values; a factor of one-
half has been used as a rule of thumb which is
useful at higher pressures (ef. Fig. 2 at p, = 5 mm).
This loss of flow duration has been a point for con-

18, Feldman, “Hypersonic gas dynamic charts,”” Avco
Research Laboratory (1957).
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Fi1c. 2. Flow duration.

siderable speculation, it being usually attributed to
effects connected with the nonideal diaphragm
opening. At low values of p,, the factor can actually
be much less than one-half. The severe effect at
low pressures was apparently first noted by Duff®
who found that, at given p,, there is, in fact, a
limiting value of 7; i.e., 7 cannot be increased by
Increasing x indefinitely. Duff gave a qualitative
explanation of the loss, noting that the low speed
gas in the boundary layer near the wall “leaks”
past the contact surface.

In an apparently independent paper,® Anderson
calculated the flow past the contact surface,
obtaining some numerical results for a turbulent
boundary layer, which gave r/7, = } for a typical
case.

In the present paper we obtain some experimental '

and theoretical results for the flow duration at
pressures low enough to ensure that the boundary
layer is laminar. Our results appear to corroborate
the effects which Duff described qualitatively and
which seemed to be rather remarkable.

II. FLOW PAST THE CONTACT SURFACE

Figure 3 shows three coordinate systems from
which the boundary layer behind the shock wave
may be viewed. In the figure (a) shows the laboratory
coordinates with shock wave moving at speed U,,
the fluid behind it moving at u,, and velocity zero
at the wall. The coordinate system in (b) is obtained
from (a) by a velocity transformation which brings
the shock wave to rest. This system, in which the

2 R. E Duff, Phys. Fluids 2, 207 (1959).
3G. Anderson, J. Aero/Space Sci. 26, 184 (1959).
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boundary-layer flow is steady, is the one usually
adopted for studying the shock tube boundary-
layer problem. In Fig. 3 (¢), which is obtained by
another velocity transformation, the contact surface
is at rest and the wall is moving past it with the
speed u,. Thus all the fluid in the boundary layer
flows past the contact surface, from region 2 to region
3. It is this flow which accounts for the loss of
shocked gas from region 2.

The mass flow past the contact surface in a
tube of circular cross section® with diameter d
may be written in the form,

4)

where p,, is the density at the wall, u, is the speed
at the wall, and & the mass flow thickness.

If the boundary layer is laminar, the thickness
8 may be written in the form

= Blpol/ putiz)?, (3)

where u,, is the viscosity at the wall, corresponding
to the wall temperature T, ! is the development
distance of the boundary layer, from shock wave to
contact surface (Fig. 3), and B is a parameter
which depends on conditions outside the boundary
layer. Thus we have for the flow out of region 2,
past the contact surface,

()

P2 \puls/

On the other hand the rate at which gas is being
added to region 2 through the shock front [ef.
Fig. 3(c¢)] is

e = 7d(puuz ),

(6)

mc = Wdﬂpzuz

xd’ _ Py 7rd

(U, — uz)ps ~— 1 — 4

™

m, =

The mass between shock front and contact surface
is increasing at the rate

®)

me - mu
where

9

Putting relations (6), (7), and (9) into Eq. (8),

,‘2; (z)%
Uw=

Fia. 3. Coordinate systems. (a) Shock tube system; gas in (1)
at rest. (b) Shock wave at rest. (¢) Contact surface at rest.

ug = Ug~uz

@ ®

Us-ug
N

U‘ 2 o

4 The final results are applicable also to a square tube of
side d, since the ratio of cross-sectional to wetted area is the
same as for the circular one.
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we obtain, for the rate of increase of the length of
region 2, the equation
3
4 Puw Uz (ﬂ) I
6 P2 d pwuZ

a_ _u (10)
III. SIMILARITY SOLUTION

at - g —1_

The first term in Eq. (10) gives the ideal rate of
increase of I, due to inflow at the shock front, while
the second term is the loss due to leakage past the
contact surface. We note that [ reaches a maximum
value I, when di/dt = 0. Setting the right-hand
side of Eq. (10) equal to zero, we find

l —_ 1 <&)2 d pwuZ
™ 166° \p/ (1 — 1) m
and then rewrite Eq. (10) in the form

d_
dt 7 —1

(1)

or

L= (/)]
d(/1)

w2 -1 ()

The variables in the last equation may be identified
as follows:

l T
Z; - T = T: (12)
Usl U,t z
A A ¢ 1
= Dl . (13)

Thus T is the dimensionless flow duration and X
the dimensionless distance of the shock wave from
the diaphragm. These are actually similarity
parameters, and the differential equation now
reduces to the form

dT/dX = 1 — Tt (14)
In the corresponding equation for an ideal shock
tube, the second (leakage) term is absent and then

dr,/dX =1, or T, =X,

while for the viscous case we have, from the solution
of Eq. (14),

X/2=—-In(1 -TH — T (15)
In these similarity parameters the maximum testing
time is
T,.=1

which is reached asymptotically as X — «.
‘ Equation (15) is plotted in Fig. 4, and the ideal
testing time is shown for comparison. It may be
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seen that at X = 1, T/T; = 0.5, while at X = 10,
T/T; = 0.1.
We now have to identify the similarity parameters

in terms of the real variables of the problem. From
Eqgs. (13) and (11),

2 2
_apg(pe) (1= 1) pe T
X = 166 <P2> n Pl d2

Noting that
po = (pu/p2) 101
u, = Ufn — 1)/n = M,a(n — 1)/n
By =, since T, =T,
we have

X = 168 Pul =1 H T

P2 n
Finally, if we introduce standard (room temperature
and atmospheric pressure) values of viscosity,
iy Psy Do, €bc. and assume that the initial temperature
Tl = Tn; we ha’ve M1 = U, a1 = Ay p1 = (pl/pn)pa =
(01/p,)0.. Therefore,

X = 16<L) 629_’”_17_:_1_1_1)8 z.

== 16
pals pr m M,p d (16)

To write out T = 7/r, = 1/, we note that
l = upyr = Uyr(n — 1)/9 = M,aur(n — 1)/9 and
that I, = z/(nX) [ef. Eq. (13)]. Thus

T = X(n — DM (a.7/x). 17

The ratio p./p. which appears in the expressions
for X and T is the density ratio across the boundary
layer. Since the pressure across the boundary layer
is constant, we may write

b T (18)
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where Z is the compressibility factor (1 for a perfect
gas) and T,/T, is the temperature ratio across the

shock. We may now express the shock parameters
in the form
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and write the similarity parameters
X = 16(;%) 8F(M,) %;% (20)
T = IG(L) "G(M,) B 7.
oa) ! (M) nd

F(M,) and G(M,) are plotted in Figs. 5 and 6.

@D

IV. THE PARAMETER 8

The boundary layer parameter 8 introduced in
the definition of mass flow thickness [Eqs. (4) and
(5)] will be a function of the Mach number M, of
the flow behind the shock and of the temperature
ratio (T»/T, = T,/T,) across the boundary layer.
Thus it is indirectly also a function of the shock
Mach number M,. In the later paragraphs we shall
discuss some attempts to evaluate it. For the present,
we assume it to be a constant, fitted to the experi-
mental data.

Choosing 8 = /3 and using Eqgs. (20) and (21)
to evaluate X and T from measurements in shock
tubes we obtain the experimental points shown
plotted in Fig. 4. They were obtained by the method
described next.

V. SHOCK TUBE MEASUREMENTS

In his experimental results, Duff® used an electron
beam to detect the passage of shock wave and con-
tact surface, and thus measured the flow duration.

In our experiments we used a fine wire, arranged
like a standard hot-wire anemometer normal to
the flow direction, to detect the passage of the
shock wave and contact surface. The constant
current, through the wire is low and does not heat
the wire appreciably. When the shock passes, the
wire suddenly finds itself in the hot flow in region 2
and begins to heat up. With uniform conditions
in region 2 the heat transfer rate to the wire is
constant. and thus the wire temperature rises
uniformly.® The resulting wire resistance changes
are translated into a voltage signal, in the usual
way, and recorded on an oscillograph. An example
is shown in Fig. 7 on which the uniform temperature
rise time between shock arrival and contact surface
arrival are clearly visible. More complete details
of this use of fine wire calorimeters in shock tubes
are reported elsewhere.’

A few determinations of contact surface arrival

6 In this statement we are neglecting the fact that the
temperature loadin% (T. — decreases as the wire
temperature rises; for strong shocks the wire heats up to
only a fraction of its equilibrium value 7T'., and thus the heat
transfer rate is practically constant.

¢ Walter H. Christiansen, Phys. Fluids 3, 1027(1960).

wire
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were also obtained by means of a stagnation point
heat transfer gauge, a technique that is well known
in shock tube work. These agree with the fine wire
measurements; the fine wire technique, however,
can be used down to much lower pressures.

The experiments were made in the 2-in. diam and
3-in. sq shoek tubes at this Laboratory. Measure-
ments were obtained at several distances from the
diaphragm, up to 23 ft; shock speeds were deter-
mined in a conventional way, using thin-film resist-
ance gauges on the side wall and an electronic
chronometer to measure the time of passage over
a known length. Driver gases were nitrogen and
helium, driven gases were air and argon, initial
pressures had values between 0.1 and 10 mm Hg.
The round tube has a leakage rate of 6 u Hg/hr,
ensuring that the low pressures can be accurately
determined and that there is no leakage contamina-
tion in the argon experiments. Shock Mach numbers
varied from 2.5 to 9; the higher Mach numbers
were obtained with the help of an electric heater
in the driver of the round tube.

For reducing the measurements into similarity
form, we found it convenient to write Egs. (20)
and (21) in the form”

X = AF(M,) z/(p, d°) (22)
T = AG(MS) alT/(pl d2)) (23)

where 4 = 16(u/pa),8’p, = 0.0650 for air and
0.0623 for argon if p, is measured in millimeters of
Hg, d in inches, and §8° = 3.

VI. THE MAXIMUM FLOW DURATION

The maximum value of the similarity parameter
T.. = 1. Therefore, from Eq. (21) we have for the
maximum flow duration

L e(®) g2 | 2L
n = [1‘3(,:):3 7’8] GQT,)

The maximum flow duration is proportional to the
initial pressure in the tube, as found experimentally
by Duff,® and to the square of the diameter, as had
been inferred by Duff. In addition it decreases
rapidly with shock Mach number, since G(M,)
increases rapidly with M, (Fig. 6). The Mach
number effect is considerably greater than for the
ideal shoek tube (Fig. 3), the greater effect being
due to the fact that the density ratio aecross the
boundary layer and thus the density near the cool
wall, as well as the leakage velocity, increase with
M.

(29)

7 One can also compute T conveniently from Eq. (17).

839

Fra. 7. Oscillogram of output from 0.0006-in. tungsten wire
probe. M, = 5.35; p» = 3 mm Hg; horizontal sweep 50
usec/division; vertical sweep 5 mv/division; voltage across
wire 12.5 mv.

If p, is measured in millimeters of Hg, d in inches,
and r in milliseconds, then Eq. (24) may be written
1.13p, &*/G for air,

1.27p, &°/G {for argon.

Tm

(25)

Tm

Trom a comparison with the experimental results
in Fig. 4, it appears that these formulas will be
conservative for air and slightly nonconservative
for argon.

VII. MAXIMUM TUBE LENGTH

The maximum flow duration r,,(T = 1) is attained
at X = o, but 909 of it (T = 0.9) is attained
already at X = 4. Taking this as the criterion for
tube length, we obtain from Eq. (22) the correspond-
ing tube length

zy = 4 pd’/(AF).
With p, in millimeters Hg and d in inches, the
expression becomes
x,/d = 62 p, d/F(M,) for air,
2o/d = 64 p; d/F(M,) forargon.

For given conditions, there is little to be gained by
making the tube longer than w,. (Obviously, in
practice, there is a lower limit on z,/d which is
determined by other considerations, e.g., the distance
required for the shock to develop.)

(26)

VHI. BOUNDARY LAYER THICKNESS

The maximum value which the mass flow thick-
ness 8 can attain in region 2 may be calculated by
putting I,, in Eq. (5):

_ @éa)*
5, = (ek=).
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With Eq. (11) for L, this becomes

w 1T, 1

d  4T,n—1
Except for very weak shocks (i.e., n — 1 < 1), the
value of 8,./d is small. This is a consequence of the
fact that (i) the density near the wall is high and
(ii) the growth of the layer is limited by the limited
growth of region 2.

For estimating the effect of the boundary layer
on density measurements which utilize a beam that
traverses the tube, we note that in the ideal case
the mass traversed by unit area of the beam would
be p,d, but because of the boundary layer the addi-
tional mass seen by the beam is (p, — p.)/(26).
Thus the fractional increase in mass seen by the
beam is

@7

Am/m = 2[(pu/ps) — 1] 8/d.
Using Fq. 5 for 8, and rearranging, we find

Am (To/T, — 1) Pl w ) @
m 25[(T2/T1)Ms("7 - 1):| (plal) d’

where # is the distance behind the shock wave.
If T, =T, = T,, p, is measured in millimeters of
Hg and £ and d in inches, we can put 28(u;/p.a,) =
1(A/p))?}, where 4 is given in Sec. V.

(28)

IX. EVALUATION OF g8 FROM
MIRELS’ SOLUTION
To obtain a better estimate of 3 we need the
velocity and density profiles in the boundary layer,
in order to evaluate the mass flow integral

m, = wdf ou dy.
0

This integral is written in contact surface coordinates
[Fig. 3(c)]; it is convenient to rewrite it in shock
coordinates [Fig. 3(b)] in which system the boundary
layer flow is steady. The result is

i, = wd [ Gou — pau) dy. (29)

Several authors have obtained solutions of the
shock tube boundary layer problem, all of them
limited by various assumptions. Probably the most

complete solutions are those given by Mirels.®* He
TaBLE I.
n 1.5 2 3 4 5 6
M. 1.29 1.58 2.24 3.16 5.00 o
B 0.91 1.13 1.33 1.42 1.42 1.52

8 H. Mirels, National Advisory Committee for Aeronautics,
Tech. Note 3401 (1955).
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makes the following assumpticns: Prandtl number
is unity, u ~ T'; the gas is perfect. Introduction of
the Howarth-Dorodnitzyn similarity transformation,

pdy = pu(2u.t/ o)t dt (30)
u/u, = (),

leads to total differential equations for f(¢), which
were solved on an electronic computer.®

To make use of Mirels’ solution, we introduce the
transformation (30) in Eq. (29), which becomes

ou(225) [} 70 ~ panae

Mirels’ solution leads to an expression for y.:
_ T (2l)
Yo = Tw PuU,
T. U,
{eot (- 1o - v/ { B 1}

1=t M[jf (fu = £) + f”«»]}-

With this in Eq. (31), and noting that «,/u, = 7,
T., = T,, comparison with Eq. (6) leads to

B = (;‘T)*I:(fm - m)(l + — I{TZ

— L:_l 2y L:_l 2117 :|
—Latza) — L5 a0

The difference (f. — {.) is finite, and may be
obtained together with f/(0) from the tables of
solutions in reference 8. The results, for the values
of 5 tabulated there, are given in Table I and may
be compared to our empirically chosen constant
value, 8 = V3 = 1.73.

X. AN INTEGRAL SOLUTION

m./md = (1)

_.|_

(32)

If we introduce the Crocco transformation
dy = p du/,

where 7 is the shearing stress, then the mass flow
integral, Eq. (28), may be expressed in the form

o u=u 1

_/'ZL_t_:_ — : E — pw“w 2 _‘l/_

- fu=0 pu du o Us fo p A dA, (33)
where
A= ufuz; YN = pp/(pw)w; g = 7/74. (349

We now have to make some assumptions about ¢
and g. We will assume that ¢ is linear with respect
to A and that g varies as A:

YD = ¢+ 1 — N gy = N, (35)
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where
(36)
Putting these assumed forms into Eq. (33), we get

do/rd = = (3 + 29p) Ptz (37)
15 Tw

It is now necessary to evaluate r, for the assumed
profiles of g and ¥. This can be accomplished by
starting with the well-known integral expression,
written for the steady flow coordinate system
[Fig. 3(b)],

Ty = (%fo ou(u, — w) dy

and using the Crocco transformation to rewrite
it in the form

ot L[ L[ 8 ]
Tw = PuMolU, d£ [Tw ﬁ g (0' - 1)0' da ’ (38)

where ¢ = u/u,, ¥(¢) = pu/(ou)., and g(o) = 7/7,.
We again assume linear and square root functions,
respectively,

¥o) = ¥+ (1 = ¥a)(c — 1/(n — 1);
g(o) = [(o = 1/(n — D%

With these, and noting that u,/u, = 5, we can
evaluate the integral, which we call a:

2
®= 105 (n — 1’[9(15 + 6¢2) + 6 + 8¢,).
Solution of the differential equation, Eq. (38),
integrating from £ = 0 to £ = I, then gives
T = (apouul/20)}
which in Eq. (37) leads to

the/rd = = @)i@ + 2¢2>(Z—j)%pwu2(uwl/pwuz)*.

On comparing with Eq. (6) and noting that
Uy/u, = n — 1, it is seen that

g = 28 (n = DB 4 2¢,)° .

15 "1(15 + 6¢2) + 6 + 8'//2
To estimate the accuracy of the integral method,
we can compare with Mirels’ exact solution, in
which it was assumed that u ~ 7. In our results

this corresponds to ¥, = 1, and then Eq. (39)
reduces to

B8 = (20/3)[(n — 1)/Bn + 2)]. (40)

For the values of » computed by Mirels we obtain

(39)

841

TasLE II.
7 1.5 2 3 4 5 6
B8{Eq. (40)] 0.72 0.91 1.10 1.20 1.25 1.29
g(TableI) 0.91 1.13 1.33 1.42 1.42 1.52

the results in Table II, and compare them with
Mirels’ values from Table I. The integral method
gives consistently low values. Other choices of
fitting curve for g were tried. A quadratic gives
nearly the same results as Eq. (40), while a linear
curve gives values somewhat higher than the exact
values of 8. We did not investigate the effect of
choosing other than linear variations for ¢.

To estimate the effect of the viscosity law, the
Sutherland law was used to evaluate ¢, in Eq. (39).
The results are shown in Table IIT for perfect air

TasLE I1II.
M, 2 4 6 8 o
8 (air) 1.02 1.11 1.09 1.09 0.94
8 (argon) 0.94 1.02 1.00 0.97 0.88
(y = 1.4) and argon (y = 1.67). With real gas

values for 9 and the Sutherland formula for viscosity,
the results for air are as shown in Table IV. If the

TasLe IV,
M, 2 4 6 8 10
B (p. = 1 mm) 1.02 1.13 1.13 1.14 1.15
B(pr =01mm) 1.02 1.13 1.13 1.15 1.22

trend for the real gas values is the same as for the
case in Table II, then we could expect an exact
solution to give higher value of 8 than those in
Table IV, but whether they would be as high as
our empirical value 4/3 is not clear.

XI. EFFECT OF SHOCK ATTENUATION

In our calculations of flow duration, the boundary
layer has been calculated for constant shock speed
and constant conditions in region 2, i.e., as if the
shock motion were given by the ideal theory. How-
ever, the loss of gas from this region affects the
motion of the shock relative to the contact surface:
the shock speed U, must tend toward the contact
surface speed u,. In the ideal case, with no loss of
gas, we have U,/u, = /(93 — 1), Eq. (2), while in
the limiting case, when r = r,,, we have U,/u, = 1.
If 7 is large, as for strong shocks in air, these two
values do not differ much and thus the decrease in

Downloaded 14 Dec 2005 to 131.215.225.171. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



842 ANATOL
shock speed cannot be large (neglecting possible
viscous effects on the driver gas). At low shock
Mach numbers, the difference is appreciable, and
neglect of the shock deceleration will lead to appreci-
able error in the estimate of flow duration.

In a given case it may be possible to compute
the boundary layer development correctly, simul-
taneously with the changing shock speed and
changing conditions in region 2, but it will probably
be too complicated to enable general conclusions
to be drawn. Instead we shall attempt to estimate
the effect as follows.

Suppose that at the test station the flow duration
has reached its maximum value r,. Then U, = u,,
and u,/a, = U,/a, = M,. Assuming that u, is
constant from the beginning of the motion, we can
compute the shock Mach number M,, at the
beginning, when no leakage has yet occurred. This
is given by

Mao(nﬂ - 1)’70 = u2/al = Ms' (41)

This establishes a definite relation between the
Mach number M, at the limiting condition and the
corresponding initial value M,,. Typical values are
given in Table V.

Now the values of 7, and [,, obtained by previous
considerations will be too high because the leakage
rate m, was written for constant M,, whereas in
fact the values of M, and correspondingly of m,
are higher in the earlier portions of the motion.
For a lower limit on 7, we could calculate r,, for
M,, instead of the observed value M,, i.e., use
G(M,,) instead of G(M,) in Eqs. (24) and (25).
The resulting estimates for r,, should be conservative.

In obtaining Eq. (41) we have assumed constant
us, but in fact it will be changing since the driver
gas must adjust itself to a changing pressure p,.
The correct computation can be easily carried out,
but the result then depends on the driver gas. For
example, one ean solve the shock tube equation for
the condition® u, = U,, compare it with the ideal
equation, and thus find a correspondence between
M,, and M,. The simpler results of Eq. (41) will
serve for the estimate we require.

TasLe V.

M, 15 2 3 4 6 8 10
M,
air(p: = 1mm) 2.32 2.76 3.86 4.91 6.97 8.97 11.00
argon (v = 1.67) 2.41 3.00 4.24 5.51 8.12 10.75 13.40

® The result is nearly the same as the modified shock
tube equation obtained by Duff with a somewhat different
assumption.

ROSHKO

XII, CONCLUDING REMARKS

The main assumptions made in deriving the
similarity law and in plotting the experimental data
to fit it were the following: (a) constant M,; (b)
constant 8; (e) no relaxation effects. Of these the
first seems to be the most serious, and we have
tried to obtain an estimate of its effects in the
preceding article. We may note that most of our
data are for high values of M,, for which the effect
in air is not too serious. It probably accounts also
for the systematic discrepancy between the asymp-
totic behavior of the plotted values for air and
argon (Fig. 4).

We have not settled the question of how closely
our empirical value of 8 would agree with an exact
computation, using a correct viscosity law. The
indications are that the empirical value is a little
high; the effect described in the preceding article
would tend to make it so. Furthermore, 8 will not
actually be a constant with respect to M,, v, real-gas
effects, etc. However, until account is taken of the
effects mentioned in the preceding article, we feel
that the simplifications introduced are reasonable,
and they lead to a fairly simple law for estimating
the effects of pressure, M,, and tube diameter on
flow duration.

We may conclude that the loss of flow duration
at low pressures is due mainly to the loss of shocked
gas by leakage of the boundary layer past the con-
tact surface, as proposed by Duff and independently
by Anderson. An alternative picture is to regard
the wall as a sink (the displacement thickness is
negative). We may also conclude with Duff that
the deceleration of the shock wave toward the
contact surface plays an important role in its
over-all deceleration.

Care must be exercised in interpreting the results
of experiments carried out in small shock tubes at
low pressure, practicularly with strong shock waves,
as 1s now the fashion. All three factors contribute toa
decrease of flow duration and of distance between
shock wave and contact surface; these may hecome
vanishingly small!

Finally, the mass accumulation on the walls
must be taken into account in density measurements
which utilize a traversing beam.
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