
On form factors of the conjugated field in the nonlinear Schrödinger model
K. K. Kozlowski 
 
Citation: J. Math. Phys. 52, 083302 (2011); doi: 10.1063/1.3625628 
View online: http://dx.doi.org/10.1063/1.3625628 
View Table of Contents: http://jmp.aip.org/resource/1/JMAPAQ/v52/i8 
Published by the American Institute of Physics. 
 
Related Articles
Group-theoretical derivation of Aharonov-Bohm phase shifts 
J. Math. Phys. 54, 021703 (2013) 
The equivalence of the Chern-Simons-Schrödinger equations and its self-dual system 
J. Math. Phys. 54, 021502 (2013) 
Symmetry classification of variable coefficient cubic-quintic nonlinear Schrödinger equations 
J. Math. Phys. 54, 023502 (2013) 
The Schrödinger equation with friction from the quantum trajectory perspective 
J. Chem. Phys. 138, 054107 (2013) 
The existence of steady solutions for a class of Schrödinger equations in nonlinear optical lattices 
J. Math. Phys. 54, 011505 (2013) 
 
Additional information on J. Math. Phys.
Journal Homepage: http://jmp.aip.org/ 
Journal Information: http://jmp.aip.org/about/about_the_journal 
Top downloads: http://jmp.aip.org/features/most_downloaded 
Information for Authors: http://jmp.aip.org/authors 

Downloaded 26 Feb 2013 to 131.169.5.177. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions

http://jmp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/617818922/x01/AIP/MapleSoft_JMPCovAd_1640x440Banner_02_04_05and10_2013/Physics_advert_May2012.jpg/7744715775302b784f4d774142526b39?x
http://jmp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=K. K. Kozlowski&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3625628?ver=pdfcov
http://jmp.aip.org/resource/1/JMAPAQ/v52/i8?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4792234?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4790487?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4789543?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4788832?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4769384?ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://jmp.aip.org/about/about_the_journal?ver=pdfcov
http://jmp.aip.org/features/most_downloaded?ver=pdfcov
http://jmp.aip.org/authors?ver=pdfcov


JOURNAL OF MATHEMATICAL PHYSICS 52, 083302 (2011)
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Izergin-Korepin’s lattice discretization of the nonlinear Schrödinger model along with
Oota’s inverse problem provides one with determinant representations for the form
factors of the lattice discretized conjugated field operator. We prove that these form
factors converge, in the zero lattice spacing limit, to those of the conjugated field
operator in the continuous model. We also compute the large-volume asymptotic
behavior of such form factors in the continuous model. These are, in particular,
characterized by Fredholm determinants of operators acting on closed contours.
We provide a way of defining these Fredholm determinants in the case of generic
parameters. C© 2011 American Institute of Physics. [doi:10.1063/1.3625628]

I. INTRODUCTION

Finite volume lattice discretizations provide a natural way of circumventing problems related
with the ultraviolet and infrared divergencies of quantum field theories in infinite volume. As
such, they offer a possibility of a rigorous analysis of the spectrum and correlation functions, the
strategy being first to obtain expressions for the lattice discretized finite-volume model and then
take appropriate limits so as to reach the results relative to the continuous models of quantum
field theory in infinite volume. Clearly, in general, carrying out such a program is hopeless in as
much as finite-volume lattice discretizations introduce tremendous complication of the model. Yet,
in the case of integrable quantum field theories in (1 + 1) dimensions it has been shown that, for
a wide variety of models, there do indeed exist finite volume lattice discretizations preserving the
integrable structure of the model.1, 6, 18 The latter can be solved either by means of the algebraic Bethe
Ansatz3, 6 or through the quantum separation of variables.1, 3, 16 Such methods lead eventually to the
characterization of the spectrum by means of nonlinear integral equations.4, 23 It is then possible to
take the continuous (infinite number of sites) limit on the level of such nonlinear integral equations.
This gives access to the spectrum of the associated quantum field theory infinite volume. In such
a way, it was shown for several models4, 15 that the infinite volume limit of such a description
reproduces the predictions24 for the S matrix and the spectrum that were building on the factorizable
scattering theory in infinite volume.

The purpose of this paper is to push the study of continuous limits of integrable lattice regu-
larizations of quantum field theories a step further, this time in respect to the correlation functions.
We will focus on the simplest possible example, the nonlinear Schrödinger model (NLSM). Starting
from its lattice discretization introduced by Izering and Korepin,6 we recall the inverse problem
of Oota17 and Slavnov’s scalar product formula21 so as to provide determinant representations for
the lattice approximation of the conjugated field operator. By generalizing and simplifying the
approach of Ref. 5, we show that these form factors, along with the generic scalar products and
norms, converge, when the lattice spacing goes to zero, to the associated quantities arising in the
continuous model in finite volume L . This constitutes the main result of the paper. Our approach
can be applied to many other correlators in this model. In particular, it provides the missing steps in
the derivation of the previously obtained determinant representations for the field, conjugate field,
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and current operators12, 17 in the continuous model. Finally, building on the techniques introduced
in Ref. 22 and further developed in Refs. 7 and 9, we compute the large volume L behavior of
the properly normalized determinant representation for the conjugated field’s form factors. These
results are alternative to those obtained in Ref. 2 in as much as we start from different determinant
representations. The large volume asymptotics, we obtain are used in Ref. 13 to derive the long-time
and large-distance asymptotic behavior of the so-called one particle reduced density matrix in the
NLSM. We also would like to recall that such large L asymptotics of properly normalized form
factors involve Fredholm determinants of integral operators acting on a closed contour. These de-
terminants may fail to be well defined in the case of arbitrary excited state. In the core of this paper
we provide a way to circumvent such difficulties.

This paper is organized as follows. In Sec. I, we introduce the lattice discretization of the NLSM
and recall several known facts about the model. In Sec. II, we present the main result of the paper:
the convergence (in the zero lattice spacing limit) of the form factors for the lattice discretization of
the model to those of the continuous model. We also provide determinant representations for these
form factors in the continuum. In Sec. III, we provide formulas for the large volume limit for these
form factors in the so-called n-particle/hole sector. In addition, we prove a theorem providing some
clarification in respect to the definition of the Fredholm determinants occurring in these expressions.
The proof of Theorem 2.2, which is slightly technical, is gathered in Appendix.

II. THE LATTICE DISCRETIZATION OF THE MODEL

A. The Lax matrix

The Lax matrix proposed by Izergin and Korepin6 for the lattice nonlinear Schrödinger model
reads

L0n (λ)=

⎛⎜⎝−i
λ

2
� + Zn + cχ∗

n χn/2 −i
√

cχ∗
n ρZn

i
√

cρZn χn i
λ

2
� + Zn + cχ∗

n χn/2

⎞⎟⎠ , where Zn = 1 + (−1)n c�/4.

(2.1)
It is represented as a 2 × 2 matrix on the auxiliary space V0 � C2 whose entries are opera-
tors acting on some dense subspace of Hn � L2 (R). The operators χn , χ∗

m are canonical Bose
fields with commutation relations

[
χn, χ

∗
m

] = �δn,m . In particular, χ∗
n is the adjoint of χn and ρZn

= √Zn + cχ∗
n χn/4. The parameter � plays the role of the lattice spacing.

The index n labels the copy of the quantum space Hn , where the canonical fields χn, χ∗
n act

non-trivially. It is readily checked that the various fields entering in the definition of the Lax matrix
satisfy to the additional relations

χn ρZn− �c
4

= ρZn χn and ρZn− �c
4

χ∗
n = χ∗

n ρZn . (2.2)

The Lax matrix (2.1) satisfies the Yang-Baxter equation

R00′ (λ − μ) L0n (λ) L0′n (μ) = L0′n (μ) L0n (λ) R00′ (λ − μ) , (2.3)

driven by the rational R-matrix R00′ (λ) = λ − icP00′ , with P00′ being the permutation operator in
V0 ⊗ V0′ . The matrix R (λ) becomes a one-dimensional projector at λ = ic. As a consequence, the
Lax matrix L0n (λ) satisfies the quantum determinant relation

L0n (λ) σ
y

0 Lt0
0n (λ + ic) σ

y
0 = �2

4

(
λ − 2i Zn

�
+ ic

)(
λ + 2i Zn

�

)
= �2

4
(λ − νn) (λ − νn + ic) with νn = −2i Zn

�
. (2.4)

Above and in the following, z stands for the complex conjugate of z.
It was observed by Izergin and Korepin6 that the zeroes of the quantum determinant define the

values of the spectral parameter, where the Lax matrix has rank one. Namely, the Lax matrix (2.1)
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becomes a direct projector at the points νn, νn − ic,

[L0n (νn)]ab = α(+)
a (n) β

(+)
b (n) , with α(+)(n) =

(√
c χ∗

n
2iρZn

)
, β(+)(n) = 1

2

( √
c χn

−2iρZn

)
,

(2.5)

[L0n (νn − ic)]ab = α(−)
a (n) β

(−)
b (n) , with α(−)(n) =

(−2iρZn−�c/4√
c χn

)
,

β(−)(n) = 1

2

(
2iρZn−�c/4√

c χ∗
n

)
. (2.6)

It is a reverse projector at the points νn + ic, νn ,

[L0n (νn + ic)]ab = δ
(+)
b (n) γ (+)

a (n) , with δ(+)(n) = 1

2

( √
c χn

−2iρZn−�c/4

)
,

γ (+)(n) =
( √

c χ∗
n

2iρZn−�c/4

)
, (2.7)

[L0n (νn)]ab = δ
(−)
b (n) γ (−)

a (n) , with δ(−)(n) =
(

2iρZn√
c χ∗

n

)
, γ (−)(n) = 1

2

(−2iρZn√
c χn

)
.

(2.8)

B. The lattice and the continuous models

The Hamiltonian for the lattice model on an even number of sites M is built out of the monodromy
matrix

T0;1...M (λ) ≡ T0(λ) = L0M (λ) . . . L01 (λ) =
(

A (λ) B (λ)

C (λ) D (λ)

)
with M ∈ 2Z . (2.9)

We have represented it as a 2 × 2 matrix on the auxiliary space V0 whose entries are operators acting
on the quantum space H = ⊗M

n=1Hn . In the following, we set

ν ≡ ν2n−1 = ν2n + ic = −2i

�
+ i

c

2
. (2.10)

The fact that Lax matrices become projectors (or reverse projectors) at λ = ν allows one to build
the below local Hamiltonian out of the transfer matrix τ (λ) = tr0 [T0 (λ)],

τ−1(ν) · τ ′(ν) =
M/2∑
k=1

{
t0
[
β(+)(2k + 1)

]
L02k(ν) L02k−1(ν) γ (+)(2k − 2)

}−1

· t0
[
β(+)(2k + 1)

]
∂λ [L02k(λ) L02k−1(λ)]′|λ=ν γ (+)(2k − 2) ,

where t0 refers to the operation of transposition of the vector β(+)(2k + 1). According to Izergin and
Korepin,6 the above local Hamiltonians goes, in the continuum limit

� → 0 with L = �M fixed (2.11)

to the Hamiltonian of the NLSM,

HNLS =
L∫

0

{
∂y�

†(y) ∂y� (y) + c �†(y) �†(y) � (y) � (y)
}

dy. (2.12)

In (2.12) � and �† are canonical Bose fields subject to L periodic boundary conditions. In such a
continuous limit, the kth site of the lattice model can be thought of as contributing to the “continuous
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coordinate” xk = k�. Then, the discreet fields χn are expected to be related to the canonical Bose
fields � (x) as

χn =
(n+1)�∫
n�

� (x) dx . (2.13)

However, such an identification can only be given a formal sense in as much as, strictly speaking, the
rhs does not have a precise mathematical meaning. On the other hand, the lhs has a sense in its own:
the local operators χn and χ∗

n can be constructed explicitly, for instance as the harmonic oscillator
creation/annihilation operators.

C. The spectrum and eigenvectors

The transfer matrix λ 
→ τ (λ) is diagonalized by means of standard considerations of the
algebraic Bethe Ansatz. One introduces the so-called pseudo-vacuum state | 0 〉 = | 0 〉1 ⊗ . . . | 0 〉M ,
where | 0 〉n is uniquely defined by the condition χn | 0 〉n = 0 for all n. The commutation relations
issuing from the Yang-Baxter equation (2.3),

A (λ) B (μ) = λ − μ + ic

λ − μ
B (μ) A (λ) − ic

λ − μ
B (λ) A (μ) , (2.14)

D (λ) B (μ) = λ − μ − ic

λ − μ
B (μ) D (λ) + ic

λ − μ
B (λ) D (μ) , (2.15)

lead to the conclusion that the state∣∣ψ ({λa}N
1

)〉 = B (λ1) . . . B (λN ) | 0 〉 (2.16)

is an eigenstate of the transfer matrix τ (λ) associated with the eigenvalue

�
(
λ | {λ}N

1

) = a (λ)
N∏

p=1

λ − λp + ic

λ − λp
+ d (λ)

N∏
p=1

λ − λp − ic

λ − λp
, (2.17)

where

a(λ) =
{
−i

λ�

2
+ 1 + c�

4

} M
2

·
{
−i

λ�

2
+ 1 − c�

4

} M
2

and

d (λ) =
{

i
λ�

2
+ 1 + c�

4

} M
2

·
{

i
λ�

2
+ 1 − c�

4

} M
2

(2.18)

provided that the parameters {λa}N
1 solve the Bethe Ansatz equations (BAE),

d (λr )

a (λr )
=

N∏
p = 1
p �= r

λr − λp + ic

λr − λp − ic
, r = 1, . . . , N . (2.19)

The solutions to (2.19) are real valued, satisfy to the so-called repulsion principle,

if a �= b, then λa �= λb , (2.20)

and are in a one-to-one correspondence with a certain subset (depending on � and L for �M = L
fixed) of the sets of all ordered integers �1 < · · · < �N , �a ∈ Z. More precisely, given any choice of
integers �1 < · · · < �N , there exists a �̃ such that, for � < �̃ (with �M = L fixed) there exists a
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unique solution to the below set of logarithmic Bethe equations

− i ln

(
d
(
μ�r

)
a
(
μ�r

)) +
N∑

p=1

θ
(
μ�r − μ�p

) = 2π

(
�r − N + 1

2

)
, r = 1, . . . , N with

θ (λ) = i ln

(
ic + λ

ic − λ

)
. (2.21)

Finally, using elementary properties of (2.21), it can be shown that, given a fixed product �M = L
and any choice of integers �1 < · · · < �N , there exists a �0 > 0 such that the parameters μ�a

= μ�a (�) are continuous in � ∈ [ 0 ; �0 ].
In fact, the � → 0, M� = L limit of such a solution μc

�a
= lim�→0 μ�a (�) gives rise to the

set of parameters solving the logarithmic Bethe equations arising in the N quasi-particle sector of
the continuous model described by the Hamiltonian (2.12),

Lμc
�r

+
N∑

p=1

θ
(
μc

�r
− μc

�p

)
= 2π

(
�r − N + 1

2

)
, r = 1, . . . , N . (2.22)

Throughout this paper, we will always use the superscript c so as to indicate that {μc
�a

}N
1 stands for

the solution of the Bethe Ansatz equations for the continuous model. Likewise, the absence of such
a superscript will indicate that one deals with the solution of the model at finite �. We will omit the
explicit writing of this � dependence.

It has been shown in Ref. 5 that the vectors
∣∣∣ψ ({μ�a

}N

1

) 〉
converge, in some suitable sense, to

the eigenfunctions,

∣∣�({μc
�a

}N
a=1

)〉 = L∫
0

ϕ
(
x1, . . . , xN | {μc

�a
}N

1

)
�† (x1) . . . �† (xN ) | 0 〉 dNx, (2.23)

of the continuous Hamiltonian (2.12) in the N quasi-particle sector. The function
ϕ
(
x1, . . . , xN | {λa}N

1

)
can be constructed by means of the coordinate Bethe Ansatz14 and reads

ϕ
(
x1, . . . , xN | {λa}N

1

)=(−i
√

c
)N ∑

σ∈SN

N∏
a<b

{
λσ (a) − λσ (b) − icsgn (xa − xb)

λσ (a) − λσ (b)

}
·

N∏
a=1

eiλσ (a)xa e−iλσ (a)
L
2.

(2.24)
In (2.24), we made use of the following definition for the sign function:

sgn (x) = 1 for x > 0, sgn (x) = 0 for x = 0, sgn (x) = −1 for x < 0 . (2.25)

D. Structure of the space of states

The very setting of the algebraic Bethe Ansatz allows one to characterize the structure of the
space of states by providing determinants representations for the norms11 and the scalar products
between Bethe vectors.21

Proposition 2.1 (Ref. 11 ): Let
{
μ�a

}N+1
1 be any solution to the Bethe Ansatz equations (2.21),

then the norm of the associated Bethe state admits the below determinant representation

∥∥∥ψ ({μ�a

}N+1
1

)∥∥∥2
=

N+1∏
a=1

{
2iπ L ξ̂ ′

{�a}
(
μ�a

)
a(μ�a )d(μ�a )

} N+1∏
a,b=1

(
μ�a − μ�b − ic

)
N+1∏

a, b = 1
a �= b

(
μ�a − μ�b

) detN+1
[
�(μ)] .

(2.26)
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The entries of the matrix �(μ) read

�
(μ)
jk = δ jk − K

(
μ�a − μ�b

)
2π L ξ̂ ′

{�a}
(
μ�b

) with ξ̂{�a} (ω) = − i

2π L
ln

(
d (ω)

a (ω)

)

+ 1

2π L

N+1∑
p=1

θ
(
ω − μ�p

) + N + 2

2L
, (2.27)

and we have agreed upon K (λ) = θ ′(λ).

Theorem 2.1 (Ref. 21): Let {μ�a }N+1
1 be a solution to the logarithmic Bethe equations (2.21)

and {λa}N+1
1 a generic set of parameters. Then, the below scalar product reads

〈
ψ
({μ�a }N+1

1

) ∣∣ψ ({λa}N+1
1

) 〉 =
N+1∏
a=1

d
(
μ�a

)
N+1∏
a>b

(
μ�a − μ�b

)
(λb − λa)

detN+1
[
�
({μ�a }, {λa}

)]
, (2.28)

where

[� ({μa}, {λa})] jk = a (λk) t
(
μ j , λk

) N+1∏
a=1

(μa − λk − ic) − d (λk) t
(
λk, μ j

) N+1∏
a=1

(μa − λk + ic)

(2.29)
and

t (λ,μ) = −ic

(λ − μ) (λ − μ − ic)
. (2.30)

It was found by Oota17 that the reduction of the Lax matrix to projectors at zeroes of the quantum
determinant that allows one to build local Hamiltonians from the transfer matrix can also be used to
reconstruct certain local operators of the theory. In particular, one has the identity

τ−1(ν) · B (ν) =
{ 2∑

r=1

γ (+)
r (M) β(+)

r (1)

}−1

· γ
(+)
1 (M) β

(+)
2 (1) . (2.31)

Using the explicit formulas for γ (+) (k) β(+) (k), one gets

2∑
r=1

γ (+)
r (M) β(+)

r (1) = c

2
χ∗

M χ1 + 2ρZ M − �c
4

ρZ1 and γ
(+)
1 (M) β

(+)
2 (1) = −i

√
c χ∗

M ρZ1 .

(2.32)
Thus, at least formally, one expects the below reconstruction formula for operators in the continuous
model to hold

τ−1(ν) · B (ν) = − i
√

c

2
��†(0) + O

(
�2
)

. (2.33)

III. FORM FACTORS OF THE CONJUGATED FIELD OPERATOR

The formal identification (2.33) of products of entries of the monodromy matrix with operators
in the continuous model can be made rigorous. This is one of the main results of this paper. It allows
one to provide the missing steps in the passage from determinant representations for certain local
operators in the lattice model obtained through the solution of the inverse problem17 to those for the
form factors of the local operators in the continuous case. The proof of this theorem is postponed
to Appendix. There, we also prove a similar result for the determinant representations of scalar
products for the continuous model.
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Theorem 3.1: Let {λ�a }N
1 be a solution of the logarithmic Bethe equations (2.21) in the N

particle sector and {μa}N
1 a set of generic, pairwise distinct complex numbers. Then the below

scalar product in the lattice model converges, in the � → 0 limit, to the scalar product in the
continuous model〈

ψ
({μa}N

1

) ∣∣ψ ({λ�a }N
1

) 〉 −→
�→0

L∫
0

dN x

N !
ϕ
(
x1, . . . , xN | {μa}N

1

)
ϕ
(
x1, . . . , xN | {λc

�a
}N

1

)
. (3.1)

As a consequence, one has the below determinant representation for the scalar products in the
continuous model

N∏
a=1

d
(
λc

�a

)
N∏

a>b

(
λc

�a
− λc

�b

)
(μb − μa)

detN
[
�
({λc

�a
}N

1 , {μa}N
1

)]
. (3.2)

Theorem 3.2: Let {μ�a }N+1
1 and {λra }N

1 be any two solution of the logarithmic Bethe equations
(2.21) in the N + 1 and N particle sectors, respectively. Then, the expectation value,

F (�)
�†

({μ�a }N+1
1 ; {λra }N

1

) = 2i

�
√

c
· 〈ψ ({μ�a }N+1

1

) ∣∣ τ−1(ν) B (ν)
∣∣ψ ({λra }N

1

) 〉
, (3.3)

converges to the below form factor of the field operator in the continuous model

F�†

({μc
�a

}N+1
1 ; {λc

ra
}N

1

) =
L∫

0

dN x

N !
ϕ
(
0, x1, . . . , xN | {μc

�a
}N+1

1

) · ϕ
(
x1, . . . , xN | {λc

ra
}N

1

)
. (3.4)

The latter admits the below determinant representation

F�†

(
{μc

�a
}N+1

1 ;
{
λc

ra

}N

1

)
= i

√
c

N+1∏
a=1

e
i L
2 μc

�a ·
N∏

k=1

{
e− i L

2 λc
rk

[
1 − e−2iπ F̂c(λc

rk
)
] N+1∏

b=1

μc
�b

− λc
rk

− ic

μc
�b

− λc
rk

}
detN

× [δ jk + U jk
]
, (3.5)

U jk = −i
N+1∏
a=1

λc
r j

− μc
�a

λc
r j

− μc
�a

+ ic
·

N∏
a=1

(
λc

r j
− λc

ra
+ ic
)

N∏
a = 1
�= j

(
λc

r j
− λc

ra

) ·
K
(
λc

r j
− λc

rk

)
e−2iπ F̂c(λc

r j
) − 1

. (3.6)

Here, we made use of the so-called the discrete shift function F̂c for the continuous model

e−2iπ F̂c(ω) =
N+1∏
a=1

μc
�a

− ω + ic

μc
�a

− ω − ic
·

N∏
a=1

λc
ra

− ω − ic

λc
ra

− ω + ic
. (3.7)

A. Determinant representation in the lattice model

Determinant representations for the form factors of the conjugated field operator in the NLSM
have been obtained in Ref. 10 through the use of the two-site models and in Ref. 17 with the
help of the inverse problem previously discussed. These results all relied on the hypothesis of the
convergence of the lattice discretization to the continuous model has been proven in Theorem 3.2
above. Actually, we have provided a slightly different (in respect to the aforecited Refs. 10 and 17)
determinant representation for F�†

({μc
�a

}N+1
1 ; {λc

ra
}N

1

)
. The equivalence of our representation with
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the previous one can, in principle, be checked with the help of determinant identities analogous to
those established in Refs. 7 and 8. We now derive a determinant representation for F (�)

�† defined in
(3.3). This provides a slightly different representation in respect to the one obtained by Oota.17

Proposition 3.1: The discrete approximation F (�)
�†

({μ�a }N+1
1 ; {λra }N

1

)
defined in (3.3) admits the

determinant representation

F (�)
�†

({
μ�a

}N+1
1 ; {λa}N

1

)
= −2

√
c

�

N+1∏
a=1

ν − μ�a

ν − μ�a − ic

N∏
a=1

(
λra − ν + ic

)
N+1∏
a=1

(
μ�a − ν

)
N+1∏
a=1

N∏
b=1

1

μ�a − λrb

N+1∏
a=1

d
(
μ�a

) N∏
k=1

{
a
(
λrk

) [
1 − e−2iπ F̂(λrk )

] N+1∏
b=1

(
μ�a − λrk − ic

)} · detN

[
δ jk + U (�)

jk

]
, (3.8)

U (�)
jk = −i

N+1∏
a=1

λr j − μ�a

λr j − μ�a + ic
·

N∏
a=1

(
λr j − λra + ic

)
N∏

a = 1
�= j

(
λr j − λra

) · K
(
λr j , λrk | ν

)
e−2iπ F̂(λr j ) − 1

, (3.9)

and, recalling that K (λ) = θ ′ (λ) with θ (λ) given in (2.21) and ν in (2.10),

K
(
ω,ω′ | ν

)= ν − ω − ic

ν − ω

{
K
(
ω − ω′)−i

(
1 − ν − ω′ + ic

ν − ω′ − ic

)(
1

ω − ω′ + ic
− 1

ω − ν + ic

)}
.

(3.10)

Also, above, we made use of the so-called the discrete shift function F̂c for the continuous model

e−2iπ F̂(ω) =
N+1∏
a=1

μ�a − ω + ic

μ�a − ω − ic
·

N∏
a=1

λra − ω − ic

λra − ω + ic
. (3.11)

Proof: Using that
∣∣∣ψ ({μ�a

}N+1
1

) 〉
is an eigenstate of τ−1(λ) for any λ, it readily follows that

F (�)
�†

({
μ�a

}N+1
1 ;

{
λra

}N

1

)
= 2i

�
√

c
[d (ν)]−1

N+1∏
a=1

ν − μ�a

ν − μ�a − ic
·
〈
ψ
({

μ�a

}N+1
1

) ∣∣ψ ({λra

}N+1
1

) 〉
.

(3.12)
In the scalar product formula, we agree upon λrN+1 ≡ ν.

Using techniques proposed in Refs. 7 and 8, it is possible to factor out a Cauchy determinant
from the determinant of �. This leads to the representation

detN+1
[
�
({

μ�a

}
,
{
λra

})] = detN+1

[
1

μ�a − λrb

]
· detN+1 [S] . (3.13)

The matrix S takes the form

Sjk = δ jkY
(
λrk | {μ�a

}N+1
1

)
+

N+1∏
a=1

(
λr j − μ�a

)
N+1∏
a = 1
a �= j

(
λr j − λra

) · ∂

∂y j
Y (λk | {ya}) |{ya}={λra } (3.14)

for k ∈ [[ 1 ; N + 1 ]], j ∈ [[ 1 ; N ]] and SN+1 k = Y
(
λrk | {λra

})
.
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Above, we have set

Y
(
λ | {τ }N+1

1

) = a (λ)
N+1∏
k=1

(τk − λ − ic) + d (λ)
N+1∏
k=1

(τk − λ + ic) . (3.15)

One can reduce the dimensionality of detN+1 [S] by 1 thanks to the below linear combination of
columns

Ck ← Ck −
Y
(
λrk | {λra

}N+1
1

)
Y
(
ν | {λra

}N+1
1

) · CN+1 . (3.16)

Then, using explicitly that λrN+1 = ν, one gets

detN+1 [S] = Y
(
ν | {λra

}N+1
1

)
· detN

⎡⎣Sjk − Sj N+1

Y
(
λrk | {λra

}N+1
1

)
Y
(
ν | {λra

}N+1
1

)
⎤⎦ . (3.17)

The functions Y
(
λrk | {μ�a

}N+1
1

)
can be recast in terms of the shift function F̂

(
λrk

)
given in (3.11),

Y
(
λrk | {μ�a

}N+1
1

)
= a (λk)

N+1∏
a=1

(
μ�a − λrk − ic

) · {1 − e−2iπ F̂(λrk )
}

. (3.18)

To obtain (3.18), we have used that
{
λrk

}N

k=1 is the solution of the N -particle BAE. Then, computing
explicitly the difference in the determinant and factoring out the Y functions, we get that

detN+1
[
�
({

μ�a

}
,
{
λra

})] = Y
(
ν | {λra

}N+1
1

)
·

N∏
k=1

Y
(
λrk | {μ�a

}N+1
1

)
· detN+1

[
1

μ�a − λra

]
detN

[
δ jk + U (�)

jk

]
. (3.19)

It only remains to put all the formulas together.

IV. LARGE VOLUME BEHAVIOR OF THE FORM FACTORS OF CONJUGATED FIELDS

In this subsection, we provide formulas for the large volume limit of the form factors F�† for a
specific class of excited states. Namely, we assume that the state described by {μc

�a
}N+1

1 corresponds
to an n-particle/hole excitation above the N + 1-quasi particle ground state, whereas the state {λc

ra
}N

1
stands for the ground state (i.e., ra = a for a = 1, . . . , N ) in the N -quasi particle sector. The methods
for carrying out such computations have been developed in Refs. 7, 9, and 22.

A. Rudiments of the thermodynamic limit in the NLSM

Given the set of Bethe roots {λc
a} for the ground state in the N quasi-particle sector, one builds

their counting function as

ξ̂ (ω) ≡ ξ̂
(
ω | {λc

a

}N

1

)
= ω

2π
+ 1

2π L

N∑
a=1

θ
(
ω − λc

a

) + N + 1

2L
, i.e., ξ̂

(
λc

a

) = a

L
. (4.1)

The latter has the below behavior in the thermodynamic limit of the model (i.e., N , L → +∞ with
N/L → D),

ξ̂ (ω) = ξ (ω) + O(L−1), where ξ (ω) = p (ω)

2π
+ D

2
with p (λ) −

∫ q

−q

θ (λ − μ) p ′ (μ)
dμ

2π
= λ.

(4.2)
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The parameter q corresponds to the right end of the Fermi interval [ −q ; q ] on which the ground
state’s Bethe roots condensate in the thermodynamic limit. It is defined as the unique solution to
p (q) = π D.

Recall that any solution {μc
�a

}N+1
1 of the Bethe equations in the N + 1 quasi-particle sector is

uniquely determined by the choice of N + 1 integers �1 < · · · < �N+1. It is convenient to param-
eterize the integers � j in terms of particle-hole excitations above the N + 1 quasi-particle ground
state

� j = j for j ∈ [[ 1 ; N + 1 ]] \ h1, . . . , hn and �ha = pa for a = 1, . . . , n. (4.3)

The integers pa and ha are such that pa �∈ [[ 1 ; N + 1 ]] ≡ {1, . . . , N + 1} and ha ∈ [[ 1 ; N + 1 ]].
One can actually associate a counting function to any solution {μc

�a
}N+1

1 by

ξ̂{�a} (ω) ≡ ξ̂{�a}
(
ω | {μc

�a
}N+1

1

) = ω

2π
+ 1

2π L

N+1∑
a=1

θ
(
ω − μc

�a

)+ N + 2

2L
. (4.4)

By construction, it is such that ξ̂{�a}
(
μc

�a

) = �a/L , for a = 1, . . . , N + 1. Actually, ξ̂{�a} (ω) defines
a set of background parameters {μ̂a}, a ∈ Z, as the unique solutions to ξ̂{�a} (μ̂a) = a/L . The latter
allows one to define the rapidities μ̂pa , respectively, μ̂ha , of the particles, respectively, holes, entering
in the description of {μc

�a
}N+1

1 .
It can be shown that the shift function

F̂c (ω) = L
[̂
ξ (ω) − ξ̂{�a} (ω)

]
(4.5)

has a well-defined thermodynamic limit

F (λ) ≡ F
(
λ
∣∣ {μpa }

{
μha

} ) = −Z (λ) /2 − φ (λ, q) −
n∑

a=1

[
φ(λ,μpa ) − φ

(
λ,μha

)]
, (4.6)

where the dressed phase φ (λ,μ) and the dressed charge Z (λ) solve the linear integral equations

φ (λ,μ) −
q∫

−q

K (λ − τ ) φ (τ, μ)
dτ

2π
= 1

2π
θ (λ − μ) and Z (λ) −

q∫
−q

K (λ − τ ) Z (τ )
dτ

2π
= 1.

(4.7)
This thermodynamic limit of the shift function depends on the particles’ {μpa } and holes’ {μha }
positions in the thermodynamic limit. These are defined as the solutions to

ξ (μpa ) = pa/L and ξ
(
μha

) = ha/L . (4.8)

We remind that the above shift function measures the spacing between the ground state roots λa and
the background parameters μ̂a defined by ξ̂{�a} : μ̂a − λa = F (λa) · [Lξ ′(λa)

]−1 (
1 + O

(
L−1
))

.

B. Thermodynamic limit of form factors

By applying Propositions 2.1 and 3.1, it readily follows that the normalized modulus squared
of the form factor of the conjugated field admits the factorization∣∣〈� ({μc

�a
}N+1

1

) ∣∣�† (0)
∣∣� ({λc

a}N
1

) 〉∣∣2∥∥� ({μc
�a

}N+1
1

)∥∥2 ∥∥� ({λc
a}N

1

)∥∥2
= D̂N

({μc
�a

}N+1
1 ; {λc

a}N
1

)
ĜN
({μc

�a
}N+1

1 ; {λc
a}N

1

)
, (4.9)

into the products of its so-called smooth part ĜN and discreet part D̂N .
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The smooth part reads

ĜN
({μc

�a
}N+1

1 ; {λc
a}N

1

) = WN

( {μc
�a

}N
1

{λc
a}N

1

) N∏
a=1

∣∣∣∣∣ λc
a − μc

�N+1
− ic

μc
�a

− μc
�N+1

− ic

∣∣∣∣∣
2

·detN
[
δ jk + U jk

]
detN

[
δ jk + U jk

]
detN+1

[
�(μ)
] · detN

[
�(λ)
] . (4.10)

There

WN

( {za}N
1

{wa}N
1

)
=

N∏
a,b=1

(za − wb − ic) (wa − zb − ic)

(za − zb − ic) (wa − wb − ic)
. (4.11)

The discrete part takes the form

D̂N
({μc

�a
}N+1

1 ; {λc
a}N

1

) =
∏N

k=1

{
4 sin2

[
π F{�a}(λc

k)
]}

N+1∏
a=1

{
2π L ξ̂ ′

{�a}(μ
c
�a

)
} N∏

a=1

{
2π L ξ̂ ′(λc

a

) } ·
N∏

a=1

(
μc

�a
− μc

�N+1

λc
a − μc

�N+1

)2

· det2N

[
1

μc
�a

− λc
b

]
. (4.12)

In the remainder of this subsection, we discuss the large-L behavior of these two quantities.

1. The smooth part

ĜN is called the smooth part as its thermodynamic limit Gn only depends on the value of the
rapidities of the particles {μpa }n

1 and holes {μha }n
1 entering in the description of the thermodynamic

limit of the excited state. We recall that these are defined as in (4.8). The function Gn can be readily
expressed7 in terms of the thermodynamic limit F (4.6) of the shift function associated with the
excited state {μc

�a
}N+1

1 ,

ĜN
({μc

�a
}N+1

1 ; {λc
a}N

1

) = Gn

( {μpa }{
μha

}) [F] × (1 + O
(
L−1
))

, (4.13)

with

Gn

( {μpa }{
μha

}) [F] =
n∏

a=1

∏
ε=±

{
μha − q + εic

μpa − q + εic

e2iπC[F](μha +εic)

e2iπC[F](μpa +εic)

}
· e

−2iπ
∑
ε=±

C[F](q+εic)

det2 [I − K/2π ]
eC0[F]

×Wn

( {μpa }{
μha

}) · detCq

[
I + U [F]

({μpa }n
1, {μha }n

1

)]
detCq

[
I + U [F]

({μpa }n
1, {μha }n

1

)]
.

(4.14)

There, C [F] is the Cauchy transform on [−q ; q ] and C0 [F] is given by a double integral

C [F] (λ) =
q∫

−q

dμ

2iπ

F (μ)

μ − λ
and C0 [F] = −

q∫
−q

F (λ) F (μ)

(λ − μ − ic)2 dλdμ . (4.15)

All determinants appearing in (4.14) are Fredholm determinants of integral operators of the type
I + A. The integral operator I − K/2π acts on [−q ; q ]. The integral kernels U and U are given by

U
(
ω,ω′) [F] = −1

2π

ω − q

ω − q + ic

n∏
a=1

{
(ω − μpa )

(
ω − μha + ic

)(
ω − μha

)
(ω − μpa + ic)

}

·eC[2iπ F](ω)−C[2iπ F](ω+ic) K
(
ω − ω′)

e−2iπ F(ω) − 1
(4.16)
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and

U
(
ω,ω′) [F] = 1

2π

ω − q

ω − q − ic

n∏
a=1

{
(ω − μpa )

(
ω − μha − ic

)(
ω − μha

)
(ω − μpa − ic)

}

·eC[2iπ F](ω)−C[2iπ F](ω−ic) K
(
ω − ω′)

e2iπ F(ω) − 1
. (4.17)

Above, so as to lighten the notations, we have kept the dependence on the particles’ and holes’
rapidities implicit. The operators I + U [F] and I + U [F] should de understood as acting on
function defined on a counterclockwise contour Cq surrounding the interval [−q ; q ] but not any
other singularity of the integrand. In particular, the poles at ω = μha are located inside of Cq , whereas
the zeroes of λ 
→ e−2iπ F(λ) − 1 are located outside of the contour. In Sec. IV C below we provide a
more precise definition of these determinants as, in principle, the existence of such a contour is not
guaranteed for all possible choices of parameters {μpa } and {μha }.

2. The discrete part

The name discrete part originates in that the leading thermodynamic behavior of D̂N not only
depends on the “macroscopic” rapidities {μpa } and

{
μha

}
entering in the description of the excited

state but also on the set of integers {pa} and {ha} characterizing the excited state. By using the
techniques developed in Refs. 7, 9, and 22, one readily shows that the leading in L thermodynamic
behavior of D̂N takes the form

D̂N
({μc

�a
}N+1

1 ; {λc
a}N

1

) = D0 [F]RN ,n

( {μpa }; {pa}{
μha

}
; {ha}

)
[F] ×

(
1 + O

(
ln L

L

))
, (4.18)

where

D0[ν] = 2q

2π
· (κ−[ν])ν−

(κ+[ν])ν++2

n∏
a=1

(
λN+1 − μpa

λN+1 − μha

)2 G2 (1 − ν−) G2 (2 + ν+)

(2π )ν+−ν− ·[2q Lξ ′+
](ν++1)2+ν2−

· e
1
2

q∫
−q

ν′(λ)ν(μ)−ν′(μ)ν(λ)
λ−μ

dλdμ

.

(4.19)
The parameter λN+1 appearing above is defined as the unique solution to Lξ (λN+1) − F(λN+1)
= N + 1, G is the Barnes function and

κ [ν] (λ) = exp

{
−

q∫
−q

ν (λ) − ν (μ)

λ − μ
dμ

}
. (4.20)

Finally, we agree upon,

RN ,n

( {μpa }; {pa}{
μha

}
; {ha}

)
[F] =

n∏
a=1

{
ϕ
(
μha , μha

)
ϕ
(
μpa , μpa

)
eℵ(μpa )

ϕ
(
μpa , μha

)
ϕ
(
μha , μpa

)
eℵ(μha )

}

×

n∏
a<b

ϕ2
(
μpa , μpb

)
ϕ2
(
μha , μhb

)
n∏

a �=b
ϕ2
(
μpa , μhb

) det2n

[
1

ha − pb

] n∏
a=1

(
sin
[
πν
(
μha

)]
π

)2

·�2

( {pa − N − 1 + ν(μpa )}, {pa} ,
{

N + 2 − ha − ν
(
μha

)}
,
{
ha + ν

(
μha

)}
{pa − N − 1} , {pa + ν(μpa )}, {N + 2 − ha} , {ha}

)
.

(4.21)

There

ℵ (ω) = 2ν (ω) ln

(
ϕ (ω, q)

ϕ (ω,−q)

)
+ 2

q∫
−q

ν (λ) − ν (ω)

λ − ω
dλ and ϕ (λ,μ) = 2π

λ − μ

p (λ) − p (μ)
.

(4.22)
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Above, we have used the standard hypergeometric-type representation for products of �-functions

�

( {ak}
{bk}
)

=
n∏

k=1

� (ak)

� (bk)
. (4.23)

C. The Fredholm determinants

In this section, we provide a way to define Fredholm determinants entering in the leading
asymptotic behavior of the properly normalized form factors of the conjugated field in the case
where the contour Cq , as it has been described previously, does not exist. Actually, this definition
holds as well in the case of complex valued rapidities. Prior to stating the result, we need to introduce
some notations. Given δ > 0 and ε > 0, we introduce

Uδ =
{

z ∈ C : |� (z)| < δ
}

and Kε =
{

z ∈ C : |� (z)| < δ/2 and |� (z)| < q + ε
}

.

(4.24)

Finally, given β0 ∈ C, we denote

Uβ0 = {z ∈ C : 10� (β0) ≥ � (z) ≥ � (β0) and
∣∣� (z)

∣∣ ≤ � (β0)
}

(4.25)

and agree that D0,ε stands for the open disk of radius ε that is centered at 0. Also, S refers to the
closure of the set S.

Proposition 4.1: Let m ∈ N be fixed and ε, δ > 0 be small enough. Assume that one is given
two holomorphic function ν and h on U2δ , such that

h (U2δ) ⊂ {z : � (z) > 0} and z 
→ � (h (z)) is bounded on U2δ . (4.26)

Then, there exists

• β0 ∈ C with � (β0) > 0 large enough and � (β0) > 0 small enough;
• γ0 > 0 but small enough;
• a small counterclockwise loop Cq around K ε and in U2δ;

such that given νβ (λ) = ν (λ) + iβh (λ), one has

e−2iπγ (ν+iβh)(λ) − 1 �= 0 ∀λ on and inside Cq and uniformly in (β, γ ) ∈ Uβ0 × D0,γ0 .

(4.27)

Moreover, given an integral kernel U
[
γ νβ

]({μpa }n
1,
{
μha

}n

1

)
(ω,ω′) as defined by (4.16), the function

F
(
z
) = G

(
1 − γ νβ (−q)

)
G
(
2 + γ νβ (q)

) n∏
a=1

(
e−2iπγ νβ(μha ) − 1

)
· detCq

[
I + γU

[
γ νβ

]({μpa }n
1,
{
μha

}n

1

)]
(4.28)

is holomorphic in z = ({μpa }n
1,
{
μha

}n

1 , β, γ
)

belonging to D0 = U n
δ × K n

ε × Ũβ0 × D0,γ0 , this
uniformly in 0 ≤ n ≤ m.

It admits a (unique) analytic continuation to D = U n
δ × K n

ε × {z ∈ C : � (z) ≥ −ε}
× D0,1+ε .

Proof: We beginning by proving the first statement. We choose a small counterclockwise loop
Cq around K ε and in U2δ . We denote by K the compact, such that ∂K = Cq . Then one has, ∀λ ∈ K ,

�(νβ (λ)
) ≥ − sup

K
|� (ν (λ))| − � (β0) sup

K
|� (h(λ))| + � (β0) inf

K
[� (h(λ))] . (4.29)
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Thus, �(νβ (λ)
)

> 0 provided that β ∈ Uβ0 , with � (β0) = δ and � (β0) , such that

� (β0) >
1

infK [� (h(λ))]

[
sup

K
|� (ν (λ))| + � (β0) sup

K
|� (h(λ))|

]
. (4.30)

Then, γ0 is chosen such that

0 < γ0 ≤ 1

2

[
sup

K
|ν (λ)| + (10� (β0) + � (β0)) sup

K
|h (λ)|

]
. (4.31)

It is then easy to show that, for such a γ0, one has γ0 supK

∣∣νβ(λ)
∣∣ ≤ 1/2. This estimate holds

uniformly in (β, γ ) ∈ Uβ0 × D0,γ0 . As a consequence, the function λ 
→ ϕ (λ, β, γ ) with

ϕ (λ, β, γ ) = e−2iπγ νβ (λ) − 1 , (4.32)

has no zeroes in K .
Hence, the integral kernel of the operator γU

[
γ νβ

]({μpa }n
1,
{
μha

}n

1

)
is smooth on Cq × Cq .

As Cq is compact, this aforementioned operator is trace class on L1(Cq ). Moreover, it depends
holomorphically on {μpa }n

1 ∈ U n
δ , {μha }n

1 ∈ K n
ε , and (β, γ ) ∈ Uβ0 × D0,γ0 . Standard properties of

operator determinants20 then ensure that F(z), as defined in (4.28) is holomorphic in z ∈ D0.
We remind that, for the purpose of this section, a bold letter z refers to vectors of the type z
= ({μpa }n

1, {μha }n
1, β, γ

)
.

Let A be the set

A =
{

z ∈ D :
∏
ε=±

γ −1
(
e−2iπγ νβ (εq) − 1

) n∏
a=1

γ −1
(
e−2iπγ νβ (μha ) − 1

) = 0

}
. (4.33)

By definition A is an analytic set. Moreover, since it is realized as the locus of zeroes of a single,
non-zero, holomorphic function on D, it has at least codimension 1 (cf. Ref. 19).

It follows from the first part of the proof that F
(
z
)

is indeed well defined on D0. It can be
naturally extended to a holomorphic function on the set D \ A by deforming the original contour Cq

in such a way that the zeroes of e−2iπγ νβ (λ) − 1 are not surrounded by Cq , whereas the points ±q and
μh1 , . . . , μhn are surrounded by it. Such a deformation is always possible as, on the one hand, z /∈ A
so that the zeroes of e−2iπγ νβ (λ) − 1 are indeed distinct from the points ±q and μh1 , . . . , μhn . On
the other hand, it is allowed to deform the contour by applying the Cauchy theorem: the integrand
is a holomorphic function on the region, where the deformation of interest takes place. Indeed, the
only terms that are not explicitly holomorphic in the integral kernel (4.16) are the various Cauchy
transforms. However, as νβ is holomorphic on U2δ , the cut of the Cauchy transform can be deformed
within U2δ as long as it keeps its endpoints on ±q.

It thus remains to show that F(z) can be analytically continued through A. For this, it is enough
to show that given any z(0) ∈ A, there exists an open neighborhood U of z(0), such that setting
W = (D \ A) ∩ U , F|W is bounded.

We parameterize z(0) ∈ A as z(0) =
(
{μ(0)

pa
}n

1, {μ(0)
ha

}n
1, β

(0), γ (0)
)

. This means that if ρ ∈ D \ A

and is sufficiently close to z(0), there exists zeroes (not necessarily distinct) z1 (ρ) , . . . , z� (ρ) of
λ 
→ ϕ

(
λ, β, γ

)
that will approach ±q or μ

(0)
h1

, . . . , μ
(0)
hn

in the limit ρ → z(0) in D \ A.
Indeed, the zeroes of a holomorphic function form discrete sets. Hence, there exists a con-

tour �z(0) consisting of small counterclockiwse circles around ±q and μ
(0)
h1

, . . . , μ
(0)
hn

such that
ϕ
(
λ, β(0), γ (0)

) �= 0 for all λ ∈ �z(0) .
The function (λ, β, γ ) 
→ ϕ (λ, β, γ ) is continuous and �z(0) is compact. Hence, there exists

an open neighborhood B(0) of
(
β(0), γ (0)

)
in C2, such that ϕ (λ, β, γ ) �= 0 for any λ ∈ �z(0) and

(β, γ ) ∈ B(0). As a consequence, we get that for any (β, γ ) ∈ B(0), the number of zeroes (counted
with their multiplicities) of λ 
→ ϕ (λ, β, γ ) is constant and equal to some integer �.

Let V0 be an open set contained in the bounded connected component of C \ �z(0) and let
ρ = ({μpa }n

1, {μha }n
1, β, γ

) ∈ D \ A be such that μha ∈ V0 for any a = 1, . . . , n and (β, γ ) ∈ B(0).
As ρ ∈ D \ A, we necessarily have that the zeroes of λ 
→ ϕ (λ, β, γ ) all differ from ±q and μha ,
a = 1, . . . , n. By deforming, if necessary, the initially introduced contour Cq , we can represent the
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Fredholm determinant by its Fredholm series

detCq

[
I + γU

[
γ νβ

]
({μpa }n

1; {μha }n
1)
] =
∑
m≥0

1

m!

∫
Cq

dnω detm
[
Uβ (ωa, ωb)

] m∏
a=1

γ

e−2iπγ νβ (ωa ) − 1
,

(4.34)
where we have set

Uβ

(
ω,ω′) = −1

2π

ω − q

ω − q + ic

n∏
a=1

{
(ω − μpa )(ω − μha + ic)

(ω − μha )(ω − μpa + ic)

}
·eC[2iπγ νβ ](ω)−C[2iπγ νβ ](ω+ic) K

(
ω − ω′) . (4.35)

We set C̃ = Cq ∪ �z(0) . Due to the symmetry of the integrand, we may carry out the substitution

1

m!

∫
C̃∪{−�z(0)}

dmω =
m∑

s=0

1

s! (m − s)!

∫
C̃

dm−sω

∫
{−�z(0)}

s∏
j=1

dωm− j+1. (4.36)

Note that −�z(0) appearing above stands for the contour �z(0) but endowed with the opposite ori-
entation. Further, notice that for any symmetric function f (ω1, . . . , ωs) that is holomorphic in a
neighborhood of the points z j (ρ) and vanishing on the diagonals (ω� = ωp for � �= p), one has∫

−�z(0)

f (ω1, . . . , ωs)
s∏

a=1

γ

e−2iπγ νβ (ωs ) − 1
· dsω = s!

∑
[[ 1 ; � ]] = α− ∪ α+

|α+| = s

f
(
zα1 (ρ), . . . , zαs (ρ)

)

×
s∏

j=1

1

ν ′
β

(
zα j (ρ)

) . (4.37)

Above, the sum runs through all the partitions of [[ 1 ; � ]] into two disjoint subsets α+ ∪ α−, such
that α+ = (α1, . . . , αs) contains s elements, i.e., |α+| = s. Note that we have here tacitly assumed
that all of the roots are simple. The case of multiple roots can then be obtained by carrying out a
limiting procedure on (4.37).

Therefore, we obtain the below representation for the Fredholm determinant

detCq

[
I + γU

[
γ νβ

]]=∑
m≥0

min(m,p)∑
s=0

(−1)m

(m − s)!

∑
[[ 1 ; p ]]=α− ∪ α+

|α+| = s

∫
C̃

dm−sω

(2π )m detm
[
K (ωk − ω j )

]
s∏

b=1

{
zαb (ρ)−q

zαb (ρ)−q+ic

n∏
a=1

[
(zαb (ρ)−μpa )

(
zαb (ρ)−μha +ic

)(
zαb (ρ) − μha

)
(zαb (ρ) − μpa +ic)

]
eC[2iπγ νβ](zαb (ρ))−C[2iπγ νβ](zαb (ρ)+ic)

ν ′
β

(
zαb (ρ)

) }
m−s∏
k=1

{
ωk − q

ωk − q + ic

n∏
a=1

[
(ωk − μpa )

(
ωk − μha + ic

)(
ωk − μha

)
(ωk − μpa + ic

)

]
γ

eC[2iπγ νβ](ωk )−C[2iπγ νβ](ωk+ic)

e−2iπνβ (ωk ) − 1

}
, (4.38)

and we agree upon the shorthand notation ωm− j+1 = zα j (ρ) for j = 1, . . . , s for the determinant
that occurs in the first line.

For any fixed ρ, one has the decomposition in respect to zeroes,

e−2iπγ νβ (ω) − 1 =
�∏

a=1

(ω − za(ρ)) · Vβ,γ (ω) , (4.39)
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with Vβ,γ (ω) a holomorphic function on Kε that has no zeroes on C̃ and V0 uniformly in (β, γ )
∈ B(0). It thus follows that the function

n∏
a=1

{(
e−2iπγ νβ (μha ) − 1

) s∏
b=1

1

zαb (ρ) − μha

}
(4.40)

is bounded on ρ belonging to (D \ A) ∩ U with U = U n
δ × V n

0 × B(0). Note that the above reason-
ing holds for simple roots. In the case of multiple roots, one should first carry out a limiting procedure
on the level of (4.38), which will lead to the appearance of derivatives. The final conclusion, however,
still holds. We leave these details to the reader.

It only remains to focus on the Cauchy transforms. The latter can be represented as

eC[2iπγ νβ](ω) = exp

{ q∫
−q

γ
νβ (λ) − νβ (ω)

λ − ω
dλ

}(
ω − q

ω + q

)γ νβ (ω)

. (4.41)

As a consequence, the only divergencies that can arise from the Cauchy transform are located at
ω = ±q.

If there exists a k such that zk(z(0)) = ±q, then there exists �k ∈ Z such that γ νβ(zk(z(0))) = �k .
As a consequence, the Cauchy transforms occurring in the second line of (4.38) may introduce
divergent contributions. Yet, since the Barnes function has a simple zero of order p + 1 at −p, with
p ∈ N, it is easy to see that

G
(
1 − γ νβ (−q)

)
G
(
2 + γ νβ (q)

)
(zk(ρ) − q) ·

�∏
k=1

(
zk(ρ) − q

zk(ρ) + q

)γ νβ (zk (ρ))

(4.42)

is bounded for ρ ∈ (D \ A) ∩ U . The fact that all other terms in (4.38) are bounded is evident. The
theorem then follows after applying the analytic continuation theorem in many variables.19

V. CONCLUSION

In this paper, we proved the convergence towards naturally associated quantities in the contin-
uous model of scalar products and form factors arising in the lattice discretizations of the NLSM.
This provides the last missing step towards the proof of determinant-based representations for these
object in the continuum. Our approach was based on a generalization and simplification of the tech-
niques proposed in Ref. 5. We have also provided a unambiguous procedure for defining the class
of Fredholm determinants that occurs in the large volume limit of properly normalized form factors
in integrable models, this on the example of the NLSM. It would be quite natural to continue this
kind of considerations for lattice discretizations of more involved models such as the Sine-Gordon
model. However, in this case additional complications will arise due to the non-conservations of the
number of particles.
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APPENDIX: PROOF OF THEOREM

1. Combinatorial representation of the eigenstates

Lemma 1.1: Let {λ j } be N generic parameters, then the below representation holds

B (λ1) . . . B (λN ) | 0 〉 =
∑

1 ≤ n1 ≤
· · · ≤ nN ≤ M

M∏
a=1

1

(#�a)!
· f{λ} (n1, . . . , nN ) · β∗

n1
. . . β∗

nN
| 0 〉 , (A1)

where we agree upon β∗
k = −i

√
cχ∗

k ρZk and �k = {� : n� = k}, k = 1, . . . , M. In (A1), we have
set

f{λ} (n1, . . . , nN )=
∑

σ∈SN

N∏
a<b

λσ (a)−λσ (b)+icsgn (nb−na)

λσ (a) − λσ (b)

N∏
a=1

{
α
(
λσ (a)

)}[ na −1
2

] {
α
(
λσ (a)

)}[ M−na
2

]

×
N∏

a=1

{
1 − (−1)na �

(
c

4
− i

λσ (a)

2

)}
. (A2)

The sign function appearing above has been defined in (2.25), [·] stands for the floor function and
we agree upon

α (λ) =
(

1 − c�

4
+ i

λ�

4

)(
1 + c�

4
+ i

λ�

4

)
and α (λ) = α (−λ) . (A3)

Proof: It is a standard fact11 that, for any generic set of parameters {λ j }, the action of a product
of B operators on the pseudo-vacuum can be expressed as a sum over all the possible partitions of
the set [[ 1 ; N ]] into M non-intersecting sets �1, . . . , �M ,

N∏
k=1

B (λk) | 0 〉 =
∑

[[ 1 ; N ]]
= ∪M

k=1�k

M∏
�=2

�−1∏
m=1

{ ∏
a∈�m

∏
b∈��

λa − λb + ic

λa − λb

∏
a∈��

(
Zm + i

�λa

2

)

×
∏

b∈�m

(
Z� − i

�λb

2

)}
·

M∏
a=1

(
β∗

a

)#�a | 0 〉 . (A4)

We stress that in the above decomposition, the ordering of the partition counts, i.e., {1, 2, 3} ∪ {∅}
is different from {∅} ∪ {1, 2, 3}. Also, we have denoted by #�a the cardinality of the set �a .

Note that there is a one-to-one correspondence between the set of all such partitions and choices
of N integers n1, . . . , nN in [[ 1 ; M ]] by the formula �k = {� : n� = k}. One can thus recast the
sums in (A4) as ones over such choices of integers. Namely,

N∏
k=1

B (λk) | 0 〉 =
∑

1 ≤ n1 ≤
· · · ≤ nN ≤ M

M∏
a=1

1

(#�a)!
· f{λ} (n1, . . . nN ) · β∗

n1
. . . β∗

nM
| 0 〉 , (A5)

where

f{λ} (n1, . . . nN ) =
∑

σ∈SN

M∏
�=2

�−1∏
m=1

{ ∏
a :

nσ−1(a) = m

∏
b :

nσ−1(b) = �

{
λa − λb + ic

λa − λb

}

∏
a :

nσ−1(a) = �

(
Zm + i

�λa

2

) ∏
b :

nσ−1(b) = m

(
Z� − i

�λb

2

)}
. (A6)
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In (A5), we have recast the sum over na ∈ [[ 1 ; M ]] into one over the ordered choices of integers
1 ≤ n1 ≤ · · · ≤ nN ≤ M , this by introducing an additional sum over permutations σ ∈ SN in (A6).
However, so as not to count elements twice, for each given choice of integers 1 ≤ n1 ≤ · · · ≤ nN

≤ M , we divide by
∏N

a=1 (#�a)!. Indeed, the permutation group leaves the diagonals unaltered, and
each of such diagonals corresponds to elements in the set �a , occurring in the partition ∪�a .

Then, it is enough to observe that

M∏
�=2

�−1∏
m=1

∏
a :

n
σ−1(a) = m

∏
b :

n
σ−1(b) = �

{
λa − λb + ic

λa − λb

}
=

N∏
a<b

λσ (a) − λσ (b) + icsgn (nb − na)

λσ (a) − λσ (b)
(A7)

and

M∏
�=2

�−1∏
m=1

∏
a :

nσ−1(a) = �

(
Zm + i

�λa

2

) ∏
b :

nσ−1(b) = m

(
Z� − i

�λb

2

)

=
N∏

a=1

{
α
(
λσ (a)

)}[ na −1
2

] {
α
(
λσ (a)

)}[ M−na
2

]
×

N∏
a=1

{
1 − (−1)na �

(
c

4
− i

λσ (a)

2

)}
.

In fact, given a solution {λ�a }N
1 of the Bethe equations (2.21), the associated function f{λ} as

defined in (A2) is bounded uniformly in � small enough. This is an important property in respect to
taking the � → 0 limit.

Lemma 1.2: Let {λ�a }N
1 be a solution of the Bethe equations (2.21) associated with the choice of

integers �1 < · · · < �N . Then, there exists �0 small enough and a constant C{�a} solely depending
on N , L, �0, and the choice of integers {�a}, such that∣∣ f{λ} (n1, . . . , nN )

∣∣ ≤ C{�a} uniformly � ∈ [ 0 ; �0 ] , (A8)

where f{λ} has been defined in (A2) .

Proof: It follows from the continuity in � on [ 0 ; �0 ] of � 
→ λ�a , a = 1, . . . , N ,
(cf. Sec. I C ) that the function � 
→ mina<b

∣∣λ�a − λ�b

∣∣ is continuous on [ 0 ; �0 ]. Thus, it at-
tains its minimum at some �̃ ∈ [ 0 ; �0 ]. However, in virtue of the repulsion principle (2.20), this
minimum must be strictly positive, and thus

m{�a} = inf
�∈[ 0 ;�0 ]

min
a<b

∣∣λ�a − λ�b

∣∣ > 0 . (A9)

For each �, the associated parameters λ�a are bounded. Hence, the function � 
→ maxa

∣∣λ�a

∣∣ is well
defined and continuous in � ∈ [ 0 ; �0 ]. As argued before, this implies that

M{�a} = sup
�∈[ 0 ;�0 ]

max
a

∣∣λ�a

∣∣ < +∞ . (A10)

Hence, given any choice of integers 1 ≤ n1 ≤ · · · ≤ nN ≤ M ,∣∣∣∣∣
N∏
na

{
1 − (−1)na �

(
c

4
− i

λσ (a)

2

)}∣∣∣∣∣ ≤
(

1 + �

4

(
c + 2M{�a}

))N

(A11)

and, for any a ∈ [[ 1 ; n ]],

|α (±λa)| ≤ eM{�a }�+ c�
2 . (A12)

Thus, as M� = L ,∣∣∣∣∣
N∏

a=1

{
α
(
λσ (a)

)}[ na −1
2

] {
α
(
λσ (a)

)}[ M−na
2

]∣∣∣∣∣ ≤ e
(M{�a }+ c

2 )�
N∑

a=1

[
na −1

2

]
+[ M−na

2

]
≤ e(M{�a }+ c

2 ) N L
2 . (A13)
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Last but not least ∣∣∣∣∣
N∏

a<b

λσ (a) − λσ (b) + icsgn (nb − na)

λσ (a) − λσ (b)

∣∣∣∣∣ ≤
(

2M{�a} + c

m{�a}

) N (N−1)
2

. (A14)

Putting all these estimates together leads to

∣∣ f{λ} (n1, . . . , nN )
∣∣ ≤ N !

(
1 + �0

4

(
c + 2M{�a}

))N

e(M{�a }+ c
2 ) N L

2

(
2M{�a} + c

m{�a}

) N (N−1)
2

, (A15)

uniformly in � ∈ [ 0 ; �0 ] and 1 ≤ n1 ≤ · · · ≤ nN ≤ M .

2. The scalar product formula

By setting β∗
k = −i

√
cχ∗

k ρZk , βk = i
√

cρZk χk , and hk = Zk + χ∗
k χk it is easy to see that these

satisfy [
βk, β

∗
n

] = �c hk δkn and
[
hk, β

∗
n

] = �c

2
β∗

k δkn . (A16)

These commutation relations readily lead to

〈 0 | (βk
)n · (β∗

p

)m | 0 〉 = δn,m
(
δk,p + δn,0δm,0

)
(�c)n n!

n∏
�=1

(Zk + (� − 1) �c/4) . (A17)

Thus, given a solution of the Bethe equations {λ�a }N
1 defined by the integers �1 < · · · < �N , and a

set of generic parameters {μa}N
1 that are bounded, and satisfy the condition mina<b |μa − μb| > 0,

building on the representation for the Bethe vectors (A1), one gets〈
ψ
({μa}N

1

) ∣∣ψ ({λ�a }N
1

) 〉 = (�c)N
∑

1 ≤ n1 ≤
· · · ≤ nN ≤ M

f{μ} (n1, . . . , nN ) f{λ} (n1, . . . , nN )

×
M∏

a=1

#�a−1∏
p=1

Zna + p�c/4

p + 1
. (A18)

Note that, to obtain (A18), we have used that

〈 0 | βn′
1
. . . βn′

N
β∗

n1
. . . β∗

nN
| 0 〉 �= 0 with 1 ≤ n′

1 ≤ . . . n′
N ≤ M and 1 ≤ n1 ≤ . . . nN ≤ M ,

(A19)

only if na = n′
a for any a. It is convenient to split in (A18) the contributions form the diagonals

(na = na+1 for some a) from those lying purely off the diagonal〈
ψ
({μa}N

1

) ∣∣ψ ({λ�a }N
1

) 〉 = L1 + L2 , (A20)

where

L1 = (�c)N
∑

1 < n1 <

· · · < nN ≤ M

f{μ} (n1, . . . , nN ) f{λ} (n1, . . . , nN )
N∏

a=1

Zna , (A21)

and

L2 = (�c)N
N−1∑
k=1

∑
1 ≤ n1 ≤ . . .

≤ nk = nk+1 ≤
· · · ≤ nN ≤ M

f{μ} (n1, . . . , nN ) f{λ} (n1, . . . , nN )
N∏

a=1

#�a−1∏
p=1

Zna + p�c/4

p + 1
. (A22)
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The multiplicative factor in L2 is bounded due to∣∣∣∣∣∣
N∏

a=1

#�a−1∏
p=1

Zna + p�c/4

p + 1

∣∣∣∣∣∣ ≤
N∏

a=1

#�a∏
p=1

1 + �cp/4

p
≤ eN�M c

4 . (A23)

By applying Lemma 1.2 to the function f{λ} (n1, . . . , nN ) and carrying out a similar reasoning to the
one of the lemma, we get f{μ} (n1, . . . , nN ) ≤ CN ({μ}), uniformly in � ∈ [ 0 ; �0 ] and for some μa

dependent constant CN ({μ}). Hence, as L = �M ,

|L2| ≤ N (�c)N M N−1C{�a} · CN ({μ}) e
N L
4 c = O (�) . (A24)

As a consequence, L2 does not contribute to the � → 0 limit of the scalar product.
It remains to treat L1. Using that the parameters λ�a are all continuously differentiable in respect

to �, it is readily seen that, uniformly in the choices 1 < n1 < · · · < nN ≤ M and yk ∈ ] xnk−1 ; xnk

]
with x p = p�, one has

f{λ} (n1, . . . , nN ) = c− N
2 e

iπ
2 N ϕ
(
y1, . . . , yN | {λc

�a
}N

1

) · (1 + O (�)) (A25)

and likewise

f{μ} (n1, . . . , nN ) = c− N
2 e

iπ
2 N ϕ

(
y1, . . . , yN | {μa}N

1

) · (1 + O (�)) . (A26)

As a consequence,

L1 =
L∫

0

ϕ (y1, . . . , yN | {μa}) · ϕ
(
y1, . . . , yN | {λc

�a
}) · g� (y1, . . . , yN ) dNy , (A27)

with

g� (y1, . . . , yN ) =
∑

1 ≤ n1 <

· · · < nN ≤ M

N∏
k=1

1] xnk −1 ;xnk ] (yk) · (1 + O (�)) , (A28)

where 1] a ;b ] (x) denotes the indicator function of the interval ] a ; b ].
It is readily seen that, for � small enough, sup[ 0 ;L ]N |g�| ≤ 2, that g� ∈ L1

(
[ 0 ; L ]N

)
and

that, almost everywhere

g� (y1, . . . , yN ) → 1D (y1, . . . , yN ) , where D =
{

(y1, . . . , yN ) : 0 ≤ y1 < · · · < yN ≤ L
}
.

(A29)

As both functions ϕ are bounded on [ 0 ; L ]N , we are in position to apply the dominated convergence
theorem: (A27) converges to the rhs of (3.1).

We have thus proven that the scalar product defined in terms of products of B operators and their
adjoints do converge, in the � → 0 limit, to the scalar product of the continuous model. However, as
follows from Theorem 2.1, such scalar products admits a finite-size N determinant representation. It
is straightforward to compute the � → 0 limit of the rhs in (2.28) hence obtaining the determinant
representation for the scalar products in the continuous model.

3. The form factors of the conjugated field operator

In order to prove Theorem 3.2, we first notice that the restrictions of the operators χk and χ∗
k to

the N -particle Hilbert space HN = Vect
{
χ∗

n1
. . . χ∗

nN
| 0 〉 , 1 ≤ n1 ≤ · · · ≤ nN ≤ M

}
are bounded

operators

χk : HN → HN−1 ‖χk‖N ,N−1 =
√

N� and χk : HN → HN+1

∥∥χ∗
k

∥∥
N ,N+1 =

√
(N + 1) �.

(A30)
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Above, ‖·‖N ,N+1 stands for the operator norm on linear operators from HN to HN+1. It then follows
that, for � small enough, ∥∥τ−1(ν) · B (ν) − β∗

M/2
∥∥

N ,N+1 = O
(
�3/2

)
. (A31)

There, τ−1(ν) · B (ν) is given by (2.31) and β∗
k is as defined in Lemma 1.1.

The bound (A31) follows from the fact that all the operators ρZk are bounded on HN and that
they can be represented there, for � small enough, are uniformly convergent series. The rest follows
from standard estimates of bounded operator-values series.

One can then represent the form factor as

F (�)
{λ};{μ} = 〈ψ ({μ�a }N+1

1

) ∣∣ τ−1(ν) B (ν)
∣∣ψ ({λra }N

1

) 〉 = F (�,1)
{λ};{μ} + F (�,2)

{λ};{μ} , (A32)

where

F (�,2)
{λ};{μ} = 〈ψ ({μ�a }N+1

1

) ∣∣ {τ−1(ν) B (ν) − β∗
M/2
} ∣∣ψ ({λra }N

1

) 〉
(A33)

and

F (�,1)
{λ};{μ} = 1

2

〈
ψ
({μ�a }N+1

1

) ∣∣β∗
M

∣∣ψ ({λra }N
1

) 〉
. (A34)

The Cauchy-Schwarz formula leads to∣∣∣F (�,2)
{λ};{μ}

∣∣∣ ≤ ∥∥ψ ({μ�a }N+1
1

)∥∥ · ∥∥ψ ({λra }N
1

)∥∥ · ∥∥τ−1(ν) B (ν) − β∗
M/2
∥∥

N ,N+1 = O
(
�

3
2
)

. (A35)

There, we have used the results following from Sec. 2 of Appendix that norms of Bethe vectors are
bounded uniformly in � small enough and the estimates (A31).

It remains to analyse the limit of
∣∣∣F (�,1)

{λ};{μ}
∣∣∣. By computing the scalar products likewise to what

has been done in Sec. 2 of Appendix, we obtain

F (�,1)
{λ};{μ} = (�c)N+1

2

∑
1 ≤ n1 ≤

· · · ≤ nN ≤ M

f{μ} (n1, . . . , nN , M) f{λ} (n1, . . . , nN )
M∏

a=1

#�a−1∏
p=1

Zna + p�c/4

p + 1
.

(A36)
Above, the sets �a are subordinate to the sequence of inegers {n1, . . . , nN , M = nN+1}. Very similar
estimates and calculations to those gathered in Sec. 2 of Appendix, lead to the conclusion that

�−1 ·F (�,1)
{λ};{μ} −→

�→0
− i

√
c

2

L∫
0

ϕ
(
y1, . . . , yN , L | {μc

�a
}) · ϕ

(
y1, . . . , yN | {λc

ra
})1D (y1, . . . , yN ) dNy.

(A37)
Since, �−1F (�,2)

{λ};{μ} → 0 in the � → 0 limit, we get that indeed, �−1F (�)
{λ};{μ} does indeed converge to

the form factor of the operator −i
√

c�† (0) /2 in the continuous model. The determinant represen-
tation for the form factor of the �† operator in the continuous model then follows from taking the
� → 0 limit on the determinant representation given in Proposition 3.1, which is straightforward.
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