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ABSTRACT 
We calculate in detail the two-body tidal capture mechanism of Fabian, Pringle, and Rees: 

when two unbound stars have a close encounter, they may become bound by the energy that each 
deposits into nonradial oscillations of the other. After dimensional scalings are removed, the pro- 
cess depends only on a single dimensionless parameter, and on the dimensionless envelope 
structure of the stars. General formulae are derived; for definiteness, we apply them to the 
specific case of stars with an « = 3 polytropic structure. Capture cross sections as a function of 
velocity and capture rates for an isothermal distribution are given for the case of equal-mass 
stars; other cases can easily be computed from the formulae given. 
Subject headings: stars: binaries — stars: stellar dynamics 

I. INTRODUCTION 

Fabian, Pringle, and Rees (1975, hereafter FPR) have drawn attention to a novel mechanism for forming close 
binary stars: if two unbound stars should happen to have a close encounter, then their mutual tidal forces, which 
are time dependent near periastron, will excite nonradial oscillations in the stars. The energy deposited into oscilla- 
tory modes comes from the orbital motion. If enough energy is thus absorbed, the stars will be left as a bound 
system. The mode excitation process will repeat on subsequent periastron passages, gradually circularizing the 
orbit. As FPR note, the details of the dissipation within the stars are unimportant as long as the damping time 
scale for the oscillations is long compared with the duration of periastron passage, and short compared with the 

* (long) time between periastron passages. Even if the latter condition fails, the mechanism will proceed as long as 
the phase of oscillations is random with respect to the times of periastron—and it should take many periastron 
passages for a tidal-locking resonance to destroy this randomness (if it can at all). 

The novelty of the FPR mechanism is that it forms binaries by capture (not during star formation ab initio), so 
that the components of a binary system need not have shared a consistent evolutionary history ; and that the capture 
requires a close approach of only two (not three) bodies, so that capture rates will scale as the square (not cube) of 
stellar population densities. 

FPR proposed the tidal capture mechanism as a means for creating close binaries (and thus X-ray sources) in 
globular clusters. If the new X-ray “bursters” (Grindlay et al. 1976) are in fact associated with globular clusters 
(cf. Bahcall and Ostriker 1976), then models which produce close binary X-ray sources on the model of normal 
galactic binary sources become less compelling. For this reason we are not active proponents of the FPR model. 
However, the tidal capture mechanism seems interesting enough in its own right, and it may be applicable to other 
astronomical situations. For example, Rees (private communication) has noted that the mechanism might form 
close binaries from dense associations of new, early-type stars. Another possible application is in the evolving core 
of relaxed globular clusters: Sanders (1970) has traced this evolution to the point of stellar collisions. Tidal capture, 
as we shall see, becomes important before this point; and the influence of binary stars, once formed, on subsequent 
core relaxation is not at all clear (Heggie 1974, 1976; Aarseth and Lecar 1975; Hills 1975), and may be important. 
The tidal capture of two galaxies has been discussed by Alladin (1965), Sastry and Alladin (1970), and Toomre 
and Toomre (1972). 

The purpose of this paper is just to calculate, in some quantitative detail, the amount of orbital energy which is 
deposited into oscillatory modes during a close periastron passage. We will see that the “tidal capture susceptibility” 
of a star can be boiled down to one or two dimensionless functions of a suitable dimensionless variable. These 
functions depend on the envelope structure of the star (through its normal modes), but do not depend explicitly on 

* Supported in part by the National Science Foundation [PHY 76-14852] at Harvard University, and [PHY 76-07297] at Cornell 
University; also by grant [GP-30799X] at Princeton University, 

t Alfred P. Sloan Foundation Research Fellow. 
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the mass or radius of the star. Therefore we can compute the functions numerically for a polytropic stellar model 
with n = 3, and have some confidence that the results are applicable (with fair approximation) to a wide range of 
early-type stars. Of course, the calculation of this paper could also be repeated using an actual accurate stellar 
model, if there were any compelling reason for doing so. 

The result of this paper is to make the following question instantly answerable for any particular parameters: 
Given the masses of two stars, their radii, and their periastron distance of close approach, how much orbital energy 
is absorbed in the encounter? (Equivalently, what is the cross section for capture between two stars of given relative 
velocity at infinity?) 

In § II we derive a general expression for the energy deposited into oscillatory modes by the perturbing force. In 
§ III we resolve the tidal perturbation into spherical harmonics in the standard way. The dimensionless functions 
mentioned above are defined in § IV. The normal modes of the star enter in § V. The Fourier transform of the 
perturbing force is evaluated in § VI. Results are given in § VII and discussed in § VIII. 

n. THE ENERGY DEPOSITION FORMULA 

To high accuracy, each star perceives the other as a point mass only (tide-tide coupling being of second order in 
the small parameter which measures the amplitude of the tidal perturbations). Therefore we focus attention on one 
star, of mass M* and radius R*, and imagine it to orbit a point object of mass M. 

The rate at which energy is deposited in the star A/* is 

(1) 

Here p is the density of the star, v is the velocity of a fluid element in the star, and U is the gravitational potential 
of the point mass: 

(2) 

where R{t) is the relative orbit of the point mass. For notational convenience, define the scalar product of any two 
vector functions C(r) and D(r) by 

<C|Z>> = J d3xpC(r)-D(r) . (3) 

Then equation (1) can be rewritten 

^ = <i>|Vi/> . (4) 

We shall assume that the effect of VÍ7 on the equilibrium static star can adequately be described by a linearized 
perturbation analysis. Then p in equation (1) can be taken to be the unperturbed stellar density, while the quantity v 
can be expressed in terms of the Lagrangian displacement Ç of a fluid element from its unperturbed position by 
(e.g., Chandrasekhar 1969) 

_ 81 
v et ’ 

Define the Fourier transforms of U and Ç by 

U(t) = Í e~iatO(o>)do>, 
J — CO 

l(t)= r e-iat%{w)dm. 
J— oo 

Since U and Ç are real, 
C/((U)= £/*(-w), Ç(<u) = Ç*(-£«,), 

where an asterisk denotes complex conjugation. Substituting equations (5), (6), and (7) in equation (4) gives 

dE 
dt 

¿a,'(- to)e-«"+“')t<|(a.)|VC7(to')>. 

(5) 

(6) 

(7) 

(8) 

(9) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
77

A
pJ

. 
. .

21
3.

 .
18

3P
 

No. 1, 1977 FORMATION OF CLOSE BINARIES 185 

Thus the total energy deposited is 

A£ = J” = d^-i«>)<f(co)|Vtf*(w)>. (10) 

We now analyze f into normal modes. The normal modes satisfy a linear, self-adjoint eigenvalue equation of the 
form 

(^-pa>n
2)Çn = 0, (11) 

(Chandrasekhar 1964), where the detailed form of the operator 3? is not particularly important. The eigenvectors 
are orthogonal with weight p 

<»> = W (12) 

and without loss of generality they can be taken to be real. The quantity | satisfies an equation of the same form 
as equation (11), with VO providing a driving term on the right-hand side: 

P<o2)i = pVO. 

Expand VC? as a superposition of normal modes, i.e., 

Vtf = 2 An(oj)%n , n 
where the (complex) quantities An are given by 

An(<o) = <?n|Vi7>. 
Then 

t = 2*»(a*)5n, 
n 

where by equations (11), (13), and (14) 

(13) 

(14) 

(15) 

(16) 

(17) 

In order that the response |(i) to the perturbing force be retarded and not advanced, we adopt the usual prescription 
of replacing the denominator con

2 — w2 by ain
2 — at2 — iate and taking the limit as e -> 0. 

Substituting equations (14), (16), and (17) in equation (10) gives 

AE = 2tt dot 
a)n — CO — 27r

22M»K)|2, 
n 

(18) 

where we have used the fact that \An\2 is even in co by equation (8). 
The above analysis is of general applicability to any linear physical system and leads to the simple prescription 

(18) for the energy deposited, where An is determined by the “overlap integral” (15). 

III. ORBITAL MOTION AND TIDAL FORCES 

For situations of interest, the relative velocity of the stars at periastron will be hundreds of km s-1 or more, 
while their velocities at infinity will be tens of km s ~1 or less. Therefore, the eccentricity of the orbit will be within 
10"2 of unity, and we can well approximate the orbit as parabolic (especially near periastron). Let the periastron 
distance between the bodies be Rmin. The relative orbit of the point mass is given parametrically by the equations 

R = ÆminO + *2) » (19) 

t 2-Rmln3 

G(M* + M) + *3/3), (20) 

x = tan (fl>/2), (21) 
where O is the true anomaly. 

Now to compute the tidal perturbation on the star M*, we go to a comoving coordinate system r (or r, 6, <j>) whose 
origin is at M*’s center with the orbital plane at 0 = tt/I. The tidal potential due to M is then given by expanding 
equation (2) in spherical harmonics (cf. Jackson 1962, eq. [3.70]): 

00 l 

v-II J = 2 m=- 

477-GM r‘ 
21 + 1 R1*1 (22) 
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186 PRESS AND TEUKOLSKY Vol. 213 

Here we have deleted from the sum the constant 1 = 0 and vanishing / = 1 contributions. The normal modes of the 
star will be resolved into spherical harmonics in § V, so we can focus attention on the coefiScient of a single Ylm* 
in equation (22) and rewrite it, using spherical harmonic identities, as 

Ulm = fV,„ 
GMr1 

R(t),+11 (23) 

where W¡m is the numerical coefiScient 

tVlm = (-)a+m)/2[2nn (' - "OK/ + m)!]1,2/[2‘(^) '-(4^) !] ' (24) 

Here the symbol (-)k is to be interpreted as zero when k is not an integer. 

IV. REDUCTION TO A NONDIMENSIONAL PROBLEM: THE FUNCTIONS T^rj) 

Natural units of mass, length, time, and energy in this problem are respectively A/*, i?*, (R*3IGM*)112, and 
Consider one value of /, say 1 = 2 (the quadrupole tide). Then in equation (23) the perturbing mass M 

and distance R(t) enter into the strength of the perturbing potential only as multiplicative powers. (A mass eight 
times as great at twice the distance would give the same potential.) However, the time dependence of the perturba- 
tion would be different, since M and Rmin enter into equation (20). In natural units, the time dependence is con- 
trolled by a single parameter, which we call rj. From equation (20), 

The quantity measures the duration of periastron passage, relative to the hydrodynamic time of the star: large r¡ 
means slow passage. 

For a fixed value of 77, the amplitude of the tidally induced oscillations scales with M and Rmin just like the per- 
turbing potential (7Zm, because the time dependence is the same, and because the response of the star’s normal 
modes is (assumed!) linear. The energy of the oscillations is quadratic in the amplitude. Therefore the energy 
deposited into oscillations of spherical harmonic index / must be 

AEt 
= / GM*2 

l R* 
(M/M*)2 

(Rmin/R*)2l + 2 U-n), (26) 

where T)^) is a dimensionless function of y alone. Energy is independently deposited into the modes of each value 
of /. Therefore, the general formula for the total energy deposition is the sum, 

t 21 + 2 
* m. •min/ 

(27) 

In the next section we will give an explicit expression for computing Tfo). However, let us first ask what the relevant 
ranges of / and 77 are. 

We will see later that all of the 7i are about the same order, so successive terms in the sum (27) are smaller by 
the ratio (R*/Rmin)2- If this number is larger than ~ 1/10, the stars are so close to grazing incidence that one ought 
to doubt the whole validity of a linear-mode calculation anyway. Therefore we might as well assume that (R*/Rmin)2 

< 1/10, in which case the neglect of / = 4, 5, ... should contribute a ~ 1% error. Thus we concentrate attention 
on the 1=2 (quadrupole) and 1 = 3 (octopole) tides (although all our equations are valid for higher / as well). 

What is the interesting range of 77 ? An upper limit is set by the fact that the energy deposited becomes very small 
as 77 increases. When it is too small, there is no interesting possibility of tidal capture, which corresponds to such 
slow, distant encounters that the tides respond to the potential quasi-statically. So the upper limit on 77 will be set 
a posteriori. There is a more fundamental lower limit on 77: our calculation is certainly not valid if the star comes 
within the Roche limit of the other mass. Within the Roche limit, one would expect actual hydrodynamic disrup- 
tion of the star. This might well be inelastic enough to leave the stars bound (or even merged), but the normal 
mode calculation of this paper has nothing to say about this violent case (nor about the even more violent case of 
an actual collision!). 

The Roche limit for a parabolic orbit is not accurately known, but numerical evidence (Nduka 1971; see also 
Chandrasekhar 1969, p. 12) indicates that disruption is avoided when 

(R**IM*)(M/Rmin
3) < 0.0724, (28) 
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On the other hand, since Rmin/R* > 1, 

Inequalities (29) and (30) imply 

We need consider no smaller values. 

(29) 

(30) 

(31) 

V. NORMAL MODES AND OVERLAP INTEGRALS 

The normal modes of a spherical star can be labeled by spherical harmonic indices / and m, and by a “radial 
quantum number” n. We adopt the conventions of Chandrasekhar (1961) for vector spherical harmonics, except 
that our T^’s are normalized as in Jackson (1962). Thus a particular normal mode can be written as the sum of 
radial and poloidal pieces: 

%n(r) = %nlm(r) = + £nlS(r)rV]Ylm(6, <f>) . (32) 

[Toroidal modes proportional to (r x V) are not excited by a conservative perturbing force.] Strictly speaking, 
we should use real linear combinations of FZm and _m to agree with our conventions in § II; however, the repre- 
sentation (32) gives the same result. 

The overlap integral (15) can be written, using the Fourier inverse of equation (6), in the form 

Animfan) = J d3xp%nlm(r)-V ^ J dtU{r, t) exp (iœnt) . 

The angular integral in equation (33) can be done by using the expansion (22): 

Vt/(r, 0 = V 2 Ulm(r, t)Ylm*(8, <f>) = GM2 ém^\ler + rV)Ylm*(6, <f>) 
lm Im Im lm 

Equations (34) and (32) and the orthogonality relation 

J ¿n[rvrim(Q)HrV w^n)] = /(/ + 1)8, a 

enable one to reduce equation (33) to the form 

rR* 
Anlm(o>n) = GM Í * r*drplr'-'[e + (/ + l)£s] f 

Jo J -0 
dt 

Wlm exp {i[wnt + wd>(?)]} 
277^(0'+ 1 

(33) 

(34) 

(35) 

(36) 

Now nondimensionalize the integrals in equation (36) by expressing each quantity in the integrands in the natural 
units of § IV. Thus 

where 

and 

. , . (GM2\1I2¡ R* \'+i „ 
AnlmK^n) \ R / \R j / ^¿nl^nlm > 

ôm = Ç r2drplrl-'[$nl
R + (I + l)|nl

s] 
Jo 

Km = ^ dt{w?j)l+1 exP + md>(i)]} 2tt 

(37) 

(38) 

(39) 

Note from the normalization (12) that we are measuring | in units of A/*-1'2. 
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Now from equation (18) we get 

HE = In2 Í R*\ 
R# / \M*} nlm yi^min/ 

21 + 2 
\Qnl\2\Knlm\2 

Comparison with equation (27) gives 

Tfa) = 21T2 2 |ßnl|
2 2 |^nlm|2 . 

n m= -l 

(40) 

(41) 

The ^-dependence in equation (41) can be made explicit by rewriting the integral (39) in terms of the parameter x 
of equations (19)-(21). This gives 

^m = -^23/Vim
(^n): (42) 

where 

Iimiy) = Í dx(l + x2)“1 cos [21/2X* + xzß) + 2m tan"1 x]. (43) 
Jo 

The calculation of Tfa) is now seen to consist of three separate parts: (i) Determine the normal modes fnZ(r) of 
the star (which are independent of m) and hence the g^’s from equation (38). (ii) Without reference to any normal 
modes, compute and tabulate the functions Iim(y) of equation (43). (iii) Evaluating the functions from (ii) at the 
mode frequencies of (i), determine Tfa) by equation (41). 

VI. THE FUNCTIONS/^(X 

The computation of the functions Iim(y) is facilitated by the following recurrence relations which are proved in 
the Appendix: 

T - 10 T 7 - 2l'2y T M,m±l — I ^ ^ Mz + l,m llm + ^ 9 

21—3 
/io = 2rzi/1-x.o + (21 - 2)(/ - 3) I,- 

(44) 

(45) 

Equation (44) enables one to obtain all the /^’s from the I^s, while equation (45) allows the /zo’s for / > 4 to be 
computed from I00, 1109 /2o, and I30. 

The first one, /0o, is a modified Bessel function or Airy function, 

Ioo(y) = 3-ll2KllQ(2*l2y/3) = 7r(2ll2y) "1/3 Ai [(21/2j;)2/3]. (46) 

This is easily evaluated numerically from Abramowitz and Stegun (1965), equation (10.4.2) for small arguments 
and Table 10.11 for large arguments. For the remaining three functions, we have adopted the strategy of evaluat- 
ing them numerically (by fast Fourier transforms), and fitting them to rational function approximations. The results 
are 

ho(y) 

iio(y) 

izoiy) 

laoiy) 

1.5288 + 0.79192//2 - 0.86606v + 0.14593v3/2 / 23'2 \ „ 
1 + 1.6449//2 - 1.2345j + 0.19392/'2 CXp \ y) ioXy 

1.4119 + 18.158/'2 + 22.1527 / 23'2 \ 
1 + 12.24971'2 + 28.5937 CXP \ 3 y) 

for 7 > 4, 

0.78374 + 1.503971,2 + 1.00737 + O/Zll^3'2, 23'2 \w / 23'2 \ 
1 + 1.912871'2 + 1.03847 + 1.28837s'2 V + 3 eXp \ ?> y) ’ 

0.58894 + 0.3238171'2 + 0.456057 + 0.1522073'2 / 23'2 \ / 23'2 \ 
1 + 0.5476671'2 + 0.761307 + 0.5301673'2 y + 3 y) exp \ 3 yj ' 

(47) 

(48) 

(49) 

(50) 

The fractional accuracy of these approximations is around ^0.1%, except for very small and very large values of y 
(which are not of interest anyway; there the error rises to a few percent). Our source of error is «primarily in the 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
77

A
pJ

. 
. .

21
3.

 .
18

3P
 

No. 1, 1977 FORMATION OF CLOSE BINARIES 189 

TABLE 1 
Eigenfrequencies and Overlap Integrals for an « = 3 Polytrope 

Mode 

/ = 2 

I Qnl\ 

/= 3 

I ôni| 

Ps.. 
P4.. 
P3.. 
P2.. 

/!:: 

^2.. 
#3.. 
^4.. 
^5 • • 
£e.. 
^7.. 
^8.. 
^9-. 
^10 • 

gl2- 
gia • 
gi* • 

107.4 
79.25 
55.30 
35.63 
20.35 
10.90 
6.553 
3.771 
2.430 
1.694 
1.248 
0.9585 
0.7593 
0.6165 
0.5106 
0.4300 
0.3671 
0.3171 
0.2768 
0.2437 

0.06790 
0.09422 
0.1378 
0.2199 
0.3043 
0.2258 
0.1064 
0.07217 
0.04345 
0.03147 
0.02024 
0.01509 
0.009930 
0.007556 
0.004990 
0.003869 
0.002528 
0.002008 
0.001280 

121.2 
89.95 
63.55 
41.81 
24.61 
12.55 
9.023 
5.648 
3.849 
2.790 
2.116 
1.660 
1.337 
1.100 
0.9218 
0.7834 
0.6740 
0.5861 
0.5144 
0.4551 

0.05834 
0.07896 
0.1087 
0.1521 
0.2137 
0.2184 
0.2062 
0.1297 
0.09794 
0.07182 
0.05460 
0.04065 
0.03079 
0.02295 
0.01731 
0.01287 
0.009668 
0.007162 
0.005356 
0.003950 

discrete Fourier transform itself, not in the rational fits, so these approximations could easily be improved were 
there any reason to do so. 

The equations of this section render the functions Iim(y) “known,” so we will not dwell on them any further. 

VII. RESULTS FOR « = 3 POLYTROPES 

We have computed eigenmodes for « = 3 polytropes using the method described by Robe (1968), essentially 
“parallel shooting” from surface and center to an intermediate point (cf. Keller 1968, § 2.4). Along with the eigen- 
functions, we simultaneously integrate the overlap integral gni. Results, for / = 2 and / = 3, are shown in Table 1. 
To facilitate comparison with Robe’s work, the tabulated eigenfrequencies have been multiplied by the factor 4/3. 
Our eigenfrequencies agree with Robe’s to about four significant figures for / = 2 (he does not list other /’s). 

v 
Fig. 1.—The dimensionless functions T^O?) and ¡r30?) which determine the energy deposition by the quadrupole and octopole 

tides, respectively. 
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10® 

104 

I03 

I02 

Fig. 2.—Capture impact parameters R0 and corresponding periastron distances Rmin for identical stars as a function of relative 
velocity at infinity. 

With these modes, we compute the functions T2(r¡) and T3(rj) according to equation (41), using the rational 
approximations and recurrence relations of § YI. The results are shown in Figure 1, subject to one remark: The 
figure (which is on log-log axes) shows straight-line power-law behavior for larger values of r¡. In fact, strictly the 
modes of Table 1 give a straight line only over a finite range of rj, followed by an exponential falloff. However, when 
more and more modes are included in order of decreasing eigenfrequency, the straight line extends to higher and 
higher values of r¡ before the exponential sets in. Physically, larger rj means slower tidal perturbations. All stellar 
models have an accumulation point of modes near zero frequency, corresponding to almost-neutral advective modes 
(g modes). As rj increases, more and more of these modes are excited (albeit slightly). This results in the power-law 
behavior which is shown (extrapolated) in the figure. (This point was overlooked in FPR, where an exponential 
falloff, correct for a finite set of modes, was conjectured.) 

The functions T2('n) and T3(r¡) are “universal” in the sense that they hold for stars of arbitrary mass and radius 
(as long as an « = 3 polytrope is an adequate approximation to their envelope structure). Given two stars of par- 
ticular masses and Af2, and radii Ri and R2, one can obtain their particular capture cross section a or impact 
parameter R0 as a function of their relative velocity, 

a(v) = 7rR0(v)2 . 

Using Rmln as a parametrization, one computes in succession (here MT = + M2, p = MiAf2/Afr) 

V3/2 /A/oXi/s/^A^ 
Vi \/îJ ’ 7,2 U/J \R, 

min 
2 

AE=°Ml\(^)V^) + ^ f 
-Kl L x-^mln/ \-Kmin/ J ¿v2 1 \-'Vmin/ v^min/ J 

V = (2AE/p)112 , 

Ro(v) = (2GMTRmln/v2)112. 

(51) 

(52) 

(53) 

(54) 

(55) 

For the case of identical stars, Mi = M2 and Ri — R2, the resulting capture impact parameters and values of 
Rmin are shown in Figure 2. If all distances are measured in units of the stellar radii Ri and velocities in units of 
(MJMoY^RJRq)~1,2 km s_1, then Figure 2 holds for any specific values of Mt and Ri- Note that the unit 
of velocity does not differ much from 1 km s-1 over most of the main sequence. 

The function R0(v) is very nearly a power law: 

R0 a; 1940i)_1,1 (in above units). (56) 
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This is because for identical stars rj is never less than 2, and T2(r¡) is always in its power-law regime (see Fig. 1). 
For stars of unequal mass, rj can be as small as ~ 1 (eq. [31]), and a power law would not be so exact. 

Let us complete the calculation for identical stars by computing the capture rate per unit volume of an isothermal 
star cluster with rms velocity dispersion v0 and number density of stars N. The distribution of relative velocities is 

n(t;)í/3i? = (47tí;o2/3)‘"3/2 exp (—3t;2/4i;o2)47rt;2ö?t;, (57) 

so the capture rate for a particular star is (cf. Clayton 1968, chap. 4) 

T = N(ovy = iV(47rt?0
2/3) “3/2 Í va(v) exp (—3v2/4v0

2)4iTV2dv, 
Jo 

which, using equations (51) and (56) and doing the integral, gives 

r - 1-25 * s"‘ • 

Here we have converted all quantities to physical units. The capture rate per unit volume is 

(58) 

(59) 

-í JVT . 6.24 , (60) 

The factor i appears because we are dealing with identical stars. 

vm. DISCUSSION 

To compare our results with the estimates of FPR, we take their parameters Æi ä 5 x 1010 cm, M1 ä 0.5 A/©, 
N ä 104pc“3, v0 ä lOkms-1, and obtain from equation (59) F ä 4.36 x 10"20s"1. Setting their parameter 
x = 3 in the second equation after their equation (2) gives F(FPR) ä 4.8 x 10-20 s"1, a remarkable agreement. 
Thus the FPR proposal to explain globular cluster X-ray sources remains viable. For a volume of ^(0.5 pc)3, we 
obtain from equation (60) at total rate of ~ 1 x 10“16 s“1, and so we expect a globular cluster now (at an age 
~5 x 1017 s) to have formed ~50close binary systems. 

It is of interest to compare the tidal capture rate with the rate for direct collisions. This can easily be computed 
from equations (58), (51), and (55) if Rmin in equation (55) is replaced by l?! + R2 = 2Rx. We find 

= 7.73 x IO" 4^) ^ ) -U-JLA 
\R0/\M0/\10 km s“1/ \104 pc“3/ 

(61) 

a result consistent with that of Hills and Day (1976). The dependence on Rl9 Mu and v0 is very similar to that of the 
capture rate, but the numerical coefficient is of course smaller. 

The rate of formation of close binaries by tidal capture should increase as cores relax to higher densities. Why 
we do not see globular clusters which have relaxed all the way to a singular state is not well understood (cf. Lynden- 
Bell 1975). If core densities substantially larger than N ~ 104 pc“3 exist, then the influence of tidal capture (as well 
as collisions) may be dramatic. 

It remains to be seen whether the curious physical process of two-body tidal capture has application to other 
astronomical situations. 

We thank Martin Rees, John Bahcall, and Jerry Ostriker for helpful discussions. 

APPENDIX 

RECURRENCE RELATIONS FOR Ilm(y) 

From equation (43) we have 

-f 
dx(\ + x2)~‘ cos [x4(x) ± 2 tan-1 x], 

where 
A(x) = 21/2j(x + x3/3) + 2m tan-1 x. 

(Al) 

(A2) 
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Using the expansion for cos (A ± B) and the relations 

cos (2 tan"1 x) = 2/(1 + x2) - 1, sin (2 tan"1 x) = 2x/(l + x2), 
we find 

Il.m±l = 2/|+i,m - 7lm + 2 Í dxx(l + x2) Jo 
.2\ — l — l sin [/4(x)]. 

(A3) 

(A4) 

Now integrate the last term by parts, differentiating sin [4(x)] in the integrand. The result is equation (44) of the 
text. 

To obtain a recurrence relation on / for m = 0, start with the relation 

1 1 f 2/ - 3 d\ x 1) 
(1 + x2)‘ 2/ - 2\(1 + x2)'-1 dx [(1 + x2)'”1]/ 

(A5) 

Then equation (43) gives 

Im = 
2/ 
2/ - 2 h- l.o + I dX C0S [21'Mx + x3/3)] 4 [(1 + X2)1-1] • (A6) 

Integrating the second term twice by parts gives equation (45) of the text. 
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Note added in proo/.—Heggie (M.N.R.A.S., 173, 729 [1975]) has emphasized that the effect of binaries on the 
evolution of a cluster depends crucially on whether they are “hard” (orbital velocity larger than cluster dispersion 
velocity) or “soft” (the reverse). The tidal capture impact parameter R0(v) of equation (55) includes both hard 
and soft captures; however, it is readily shown [eqs. (52M55) and using the power-law regime of T2(v)] that the 
capture impact parameter for hard captures alone is ~ R0(v)l21110, which is smaller by only ~7%. For all prac- 
tical purposes, then, tidal capture yields binaries which are hard in the Heggie sense. 
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