
On Forward Closure

and the Finite Variant Property⋆

Christopher Bouchard1, Kimberly A. Gero1,
Christopher Lynch2, and Paliath Narendran1

1 University at Albany—SUNY, Albany, NY, USA
{cbou,kgero001,dran}@cs.albany.edu

2 Clarkson University, Potsdam, NY, USA
clynch@clarkson.edu

Abstract. Equational unification is an important research area with
many applications, such as cryptographic protocol analysis. Unification
modulo a convergent term rewrite system is undecidable, even with just
a single rule. To identify decidable (and tractable) cases, two paradigms
have been developed — Basic Syntactic Mutation [14] and the Finite
Variant Property [6]. Inspired by the Basic Syntactic Mutation approach,
we investigate the notion of forward closure along with suitable redun-
dancy constraints. We show that a convergent term rewriting system
R has a finite forward closure if and only if R has the finite variant
property. We also show the undecidability of the finiteness of forward
closure, therefore determining if a system has the finite variant property
is undecidable.

Keywords: Equational unification, Finite variant property, Forward
closure, Term rewriting, Undecidability.

1 Introduction

Equational unification is an important research area which has applications in
cryptographic protocol analysis, automated theorem proving, and automated
reasoning. However, unification modulo a convergent term rewrite system is un-
decidable in general, even if the system has just a single rule [1]. Consequently,
there is interest in identifying decidable instances of equational unification. Two
important syntactic paradigms have been developed to identify such instances.
One paradigm was developed in “Basic Syntactic Mutation”, by Christopher
Lynch and Barbara Morawska [14]. They give syntactic criteria on equational
axioms E which guarantee that the corresponding E-unification problem is in
NP. If the system satisfies some additional criteria, they provide a polynomial-
time decision algorithm for that E-unification problem. The second paradigm
was developed in “The finite variant property: How to get rid of some algebraic

⋆ C. Bouchard, K. Gero, and P. Narendran were supported in part by NSF grant
CNS 09-05286. C. Lynch was supported in part by NSF grant CNS 09-05378.

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCos 2013, LNAI 8152, pp. 327–342, 2013.
© Springer-Verlag Berlin Heidelberg 2013

328 C. Bouchard et al.

properties” by Hubert Comon-Lundh and Stéphanie Delaune [6]. Here it was
shown that E-unification is decidable if E has the finite variant property, and
Escobar, Meseguer, and Sasse showed how narrowing can be used to implement
an E-unification decision algorithm for such an E [9].

In studying the BSM algorithm in the context of convergent rewrite sys-
tems [5], we found that the notion of saturation by paramodulation is equivalent
to that of forward closure if the system is convergent and suitable redundancy
constraints are added. Hermann considers the idea of forward closure chains in
“Chain Properties of Rule Closures” [10], and he proved that the finiteness of
forward closure is undecidable for general rewrite systems—in particular, the
system he considers has an undecidable termination problem. Hermann did not,
however, consider any sort of redundancy.

In this paper, we extend the notion forward closure1 to allow redundancy
constraints and show that a convergent term rewriting system R has a finite
forward closure if and only if R has the finite variant property. In showing this
equivalence we define the IR-boundedness property which characterizes the finite
variant property. Additionally, we show the undecidability of the finiteness of
forward closure for convergent rewrite systems, and therefore that determining if
a system has the finite variant property for such systems is undecidable. Finally,
we show that the finiteness of forward closure is a modular property, i.e., if two
disjoint rewrite systems have a finite forward closure, their union also has a finite
forward closure.

In the interest of space, several proofs and examples have been omitted or
shortened in this version. They are given in full in a tech report [4].

2 Notation and Preliminaries

We consider rewrite systems over ranked signatures, usually denoted Σ, and
a possibly infinite set of variables, usually denoted X . We assume the reader
is familiar with the usual notions and concepts in term rewriting systems [2]
and equational unification [3]. The set of all terms over Σ and X is denoted as
T (Σ,X). Given a term t, we denote by Pos(t) the set of all positions in t, and
by FPos(t) the set of all non-variable positions in t. An equation, e.g. in [2] is
an ordered pair of terms (s, t), usually written as s ≈ t. Here s is the left-hand
side and t is the right-hand side of the equation [2]. A rewrite rule is an equation
s ≈ t where Var(s) ⊇ Var(t), usually written as s → t. A term rewriting system
is a set of rewrite rules.

Our focus in this paper is on unifiability modulo theories that have convergent
term rewriting systems. Let R be a convergent term rewriting system. We assume
that there is a well-founded reduction ordering ≻ on terms such that →+

R ⊆ ≻.
Let ≺ be the inverse of ≻, i.e., s ≺ t if and only if t ≻ s. We further assume
that the ordering is total on ground terms. We extend this order to equations
as (s ≈ t) ≻ (u ≈ v) if and only if {s, t} ≻

mul
{u, v}, where ≻

mul
is the multiset

1 From this point on, we will use “forward closure” to mean “forward closure with

redundancy constraints”.

On Forward Closure and the Finite Variant Property 329

order induced by ≻. A term t is an innermost redex of a rewrite system R if
and only if all proper subterms of t are irreducible and t is an instance of the
left-hand side of a rule in R.

The following proposition holds since →R ⊆ ≻ and since ≻ is transitive.

Proposition 1. Let R be a convergent rewrite system and let t, l, and r be
terms such that t ≻ l and t ≻ r. If l ↓R r, then every term that appears in the
rewrite proof (“valley proof”) is below t in the reduction ordering ≻.

3 Strict Redundancy

Given a set of equations E, the set of ground instances of equations in E is de-
noted by Gr(E). An instance is ground if its terms do not contain any variables.
A ground equation e is strictly redundant in E if and only if it is a consequence
of equations in Gr(E) which are smaller than e modulo the ordering we use to
show termination [14]. An equation e is strictly redundant in E if and only if
every ground instance e′ of e is strictly redundant in E. In our setting, with con-
vergent rewriting systems R and reduction orderings ≻, this can be formulated
as follows. For a ground equation s ≈ t we define the following (possibly infinite)
ground term rewriting system:

G
≺(s≈t)
R := {l → r | (l → r) ∈ Gr(R) and (l → r) ≺ (s ≈ t)}

Now a ground equation s ≈ t is strictly redundant in R if and only if

G
≺(s≈t)
R ⊢ s ≈ t

Since our focus in this paper is on convergent rewrite systems, we first give a

condition on R such that G
≺(s≈t)
R is convergent.

Lemma 1. Let R be a convergent rewrite system, and let s and t be ground

terms such that s ≻ t. Then G
≺(s≈t)
R is convergent.

Now we explore conditions on equations that force those equations to be
redundant in a rewrite system. The following lemma follows almost directly

from the definition of G
≺(s≈t)
R .

Lemma 2. Let R be a convergent rewrite system. Then an equation s1 ≈ s2 is
strictly redundant in R if and only if for every ground instance δ(s1) ≈ δ(s2) of

s1 ≈ s2, δ(s1) and δ(s2) are joinable modulo G
≺(δ(s1)≈δ(s2))
R .

Lemma 3. Suppose R is a convergent rewrite system such that the rule l → r

is strictly redundant in R. Then the rule θ(l) → θ(r) is strictly redundant in R

for any substitution θ.

Lemma 4. Let R be a convergent rewrite system, and let l and r be terms
joinable modulo R such that l ≻ r and a proper subterm of l is reducible. Then
l ≈ r is strictly redundant in R.

330 C. Bouchard et al.

Proof. Suppose l ≈ r is not strictly redundant in R. Then, by Lemma 2, there
is a ground instance δ(l) ≈ δ(r) such that δ(l) and δ(r) are not joinable in

G = G
≺(δ(l)≈δ(r))
R . Since a proper subterm of l is reducible, there is a rule l′ → r′

in R and a position p �= ǫ in Pos(l) such that l|p = σ(l′) and l →R l[σ(r′)]p.
Therefore δ(l)|p = δ(σ(l′)) and δ(l) →R δ(l[σ(r′)]p). Since →R ⊆ ≻, we have
that δ(l) ≻ δ(l[σ(r′)]p), and since reduction orders are closed under substitutions,
δ(l) ≻ δ(r). Thus, by Proposition 1, there are rewrite sequences

δ(r) →∗
R t ←∗

R δ(l[σ(r′)]p)

such that each term in the rewrite sequences is below δ(l) in the ordering ≺.
Therefore, since each term is ground, δ(r) and δ(l[σ(r′)]p) are joinable in G .

Since δ(l) = δ(l[σ(l′)]p) = δ(l)[δ(σ(l′))]p, and since the ordering ≺ has the
subterm property on ground terms, δ(σ(l)) ≺ δ(l). Thus δ(l) →G δ(l[σ(r′)]p).
So δ(l) and δ(r) are joinable in G , which is a contradiction. Therefore s ≈ r is
strictly redundant in R. ⊓⊔

Lemma 5. Let R be a convergent rewrite system and l ≈ r be an equation such
that l is an innermost redex and l →+

R r. Then l ≈ r is strictly redundant in R

if there is a term r′ such that l →R r′ and r′ ≺ r.

Proof. If l →R r′ and l is an innermost redex, then l → r′ is an instance of a rule
in R and (l ≈ r′) ≺ (l ≈ r). Since R is confluent, r′ ↓R r and, by Proposition 1,
every term that appears in the rewrite proof is below l in the ordering. Thus
every ground instance of l → r can be proven using only smaller instances of
rules in R, and therefore l ≈ r is strictly redundant in R. ⊓⊔

Unfortunately, the converse cannot be proved unless additional assumptions
are made about the ordering. However, for ground equations we can prove both
directions:

Lemma 6. Let R be a convergent rewrite system and l ≈ r be a ground equation
such that l is an innermost redex and l →+

R r. Then l ≈ r is strictly redundant
in R if and only if there is a ground term r′ such that l →R r′ and r′ ≺ r.

Proof. The “if” part follows from Lemma 5.
Suppose now that there is no term r′ ≺ r such that l →R r′, but l ≈ r is

strictly redundant in R. Then by Lemma 2, l and r must be joinable modulo

G
≺(l≈r)
R . Thus there must be a rule l → r′′ in G

≺(l≈r)
R , and so (l → r′′) ≺ (l ≈ r).

We then have that r′′ ≺ r. This is a contradiction, so l ≈ r is not strictly
redundant in R. ⊓⊔

This leads us to a very useful lemma. In practice many of the equations we
look at will be rewrite rules whose right-hand side is in normal form. This gives
us a simple syntactic check for the redundancy of such rules.

Lemma 7. Let R be a convergent rewrite system, and let l ≈ r be an equation
such that l is reducible and r is the normal form of l. Then l ≈ r is strictly
redundant in R if and only if a proper subterm of l is reducible.

On Forward Closure and the Finite Variant Property 331

4 A (Slightly) Stronger Notion of Redundancy

A rule ρ1 = l1 → r1 is said to be an instance of a rule ρ2 = l2 → r2 if and only
if there is a substitution σ such that σ(l2) = l1 and σ(r2) = r1. We write this as
ρ2 ⊒ ρ1 or as ρ2 ⊒σ ρ1 if the substitution σ is of significance. For instance, the
rule f(x, x) → x is an instance of the rule f(x, y) → x.

A rule ρ is redundant2 in R if and only if it is either strictly redundant in R

(i.e., every ground instance of ρ is strictly redundant in R) or there is a rule ρ′

in R such that ρ′ ⊒ ρ.
We can extend Lemma 3 from the previous section to redundancy as follows.

Lemma 8. Let R be a convergent rewrite system such that the rule l → r is redun-
dant in R. Then the rule θ(l) → θ(r) is redundant in R for any substitution θ.

5 Forward Closure

Following Hermann [10], the forward-closure of a term rewrite system R is de-
fined in terms of the following operation on rules in R. Let ρ1 = l1 → r1 and
ρ2 = l2 → r2 be two rules in R, and let p ∈ FPos(r1). Then

ρ1 �p ρ2 := σ(l1 → r1[r2]p)

where σ = mgu(r1|p =? l2). We call this the forward overlap of ρ1 and ρ2 at p.

Proposition 2. Let ρ1, ρ2, and ρ3 be rules such that ρ3 = ρ1 �p ρ2 for some
position p. If t →ρ

3
t′ then ∃ t′′ : t →ρ

1
t′′ and t′′ →ρ

2
t′.

Given rewrite systems R1, R2, and R3 we define FOV(R1, R2) (the set of
forward overlaps) and N (R1, R2, R3) (the set of non-redundant rules) as

FOV(R1, R2) := {ρ1 �p ρ2 | ρ1 = (l1 → r1) ∈ R1, ρ2 ∈ R2, and p ∈ FPos(r1)}

N (R1, R2, R3) := {ρ | ρ ∈ FOV(R1, R2) and ρ is not redundant in R3}

We now simultaneously define NRk(R) (new rules step) and FC k(R) (forward
closure step) for all k ≥ 0.

NR0(R) := R NRk+1(R) := N (NRk(R), R,FC k(R))

FC 0(R) := R FC k+1(R) := FC k(R) ∪ NRk+1(R)

Finally, we define the forward closure of R.

FC (R) :=
∞
⋃

i=1

FC i(R)

Note that FC k(R) ⊆ FC k+1(R) for all k ≥ 0. A set of rewrite rules R is
forward-closed if and only if FC (R) = R.

2 This is referred to as non-strictly redundant in [15].

332 C. Bouchard et al.

Example 1. The following rewrite system has a finite forward closure:

Rex = {f(s(x)) → f(x), s(s(s(x))) → x}

There is an overlap of the first rule with itself, and we see that the rewrite system
has one forward overlap,

FOV(NR0(Rex), Rex) = {f(s(s(x))) → f(x)}

This rule is not redundant in Rex, as the ground instance f(s(s(a))) ≈ f(a)

cannot be proven by G
≺(f(s(s(a)))≈f(a))
Rex

, i.e. smaller rules in Gr(Rex). Thus we
see that

NR1(Rex) = {f(s(s(x))) → f(x)}

FC 1(Rex) = {f(s(s(x))) → f(x), f(s(x)) → f(x), s(s(s(x))) → x}

To compute the next set of forward overlaps, we can only overlap the new
rule with the first rule of Rex. So there is one new forward overlap,

FOV(NR1(Rex), Rex) = {f(s(s(s(x)))) → f(x)}

However, this rule is redundant by Lemma 7, since the subterm s(s(s(x))) at
position 1 of the left-hand side is reducible. Thus NR2(Rex) = ∅, and the rewrite
system has a finite forward closure FC (Rex) = FC 1(Rex). ⊓⊔

Now we will give constraints that must be satisfied to have a finite forward
closure.

Lemma 9. Given a convergent rewrite system R, FC (R) is finite if and only if
there is a k > 0 such that NRk(R) = ∅.

Corollary 1. Given a convergent rewrite system R, FC (R) is finite if and only
if there is a k > 0 such that FC (R) = FC k(R).

Now we will discuss the case where a term t is an innermost redex.

Lemma 10. Let R be a convergent rewrite system, and let t and t′ be terms
where t is an innermost redex. If t →FCk′(R) t

′ then t →k
R t′ for some k ≤ k′+1.

Proof. Suppose k′ = 0. Then FC k′(R) = R, and thus t →R t′.
Otherwise, assume that if t →FCk′

−1(R) t′ then t →k
R t′ for some k ≤ k′. If

t →FCk′(R) t
′ then either t →FCk′

−1(R) t
′ or t →NRk′ (R) t

′. In the first case we are
done. In the second case, t → t′ is in NRk′(R) = N (NRk′−1(R), R,FC k′−1(R)).
Therefore (t → t′) = ρ1 �p ρ2, for ρ1 in NRk′−1(R), ρ2 in R, and position
p. Since NRk′−1(R) ⊆ FC k′−1(R), t →FCk′

−1(R) t
′′ →R t′ for some t′′. By our

assumption, t →k
R t′′ for some k ≤ k′, so t →k+1

R t′. ⊓⊔

In the next lemma we show that when our initial rewrite system R is con-
vergent then at every step in our forward closure procedure the rewrite system
returned is convergent.

On Forward Closure and the Finite Variant Property 333

Lemma 11. Let R be a convergent rewrite system. Then for all k ≥ 0, FC k(R)
is convergent.

Throughout the remainder of the section we will show that our forward closure
procedure will get an innermost redex “closer and closer” to its normal form. The
section culminates in a theorem that will be used to show one of the main results
in this paper.

Lemma 12. Let R be a convergent rewrite system, and let t and t′ be terms
where t is a ground innermost redex and t →

FCk(R) t
′ for some k ≥ 0. If t′ is

not in normal form then there exists a term t′′ ≺ t′ such that t →
FCk+1(R) t

′′.

Proof (Sketch). If t′ is not in normal form, then there is some rule in FCk(R)
that rewrites t to t′. This rule will be overlapped with a rule from R in the next
step of forward closure, resulting in a new rule to a lower term. ⊓⊔

Lemma 13. Suppose R is a convergent rewrite system and t an innermost redex
with normal form t̂ where t →k′

R t̂. Then there is a k such that t →
FCk(R) t̂.

Proof. Let θ be a substitution that maps each variable x in t to a distinct free
constant cx. Let s = θ(t) and ŝ = θ(t̂). Note that θ(t̂) is still irreducible, so ŝ is
the normal form of s. Also note that, by Lemma 11, since R is convergent so is
FC k(R) for any k ≥ 0.

Suppose there is no k such that s →
FCk(R) ŝ. Then, by Lemma 12, if s →

FCk(R)

sk for some k and some ground term sk, then there is a ground term sk+1 ≺ sk
such that s →

FCk+1(R) sk+1. Thus there is an infinitely descending chain

s ≻ · · · ≻ sk ≻ sk+1 ≻ sk+2 ≻ · · ·

and therefore the ordering ≻ is not well-founded. This is a contradiction, so there
must be a k such that s →

FCk(R) ŝ. Since s = θ(t) is an innermost redex, this

rewrite occurs at the root. Thus there is a rule ρ = (l → r) in FC k(R) such that
ρ ⊒σ (θ(t) → θ(t̂)).

Suppose now that t does not rewrite to its normal form in one step modulo
FC k(R). Then ρ �⊒ (t → t̂). If θ ⊒τ σ, then ρ ⊒τ (θ(t) → θ(t̂)) since θ ◦ θ = θ

(i.e., θ is idempotent). But then ρ ⊒σ (t → t̂). So θ �⊒ σ. This means there is a
position p in l such that l|p = cx for some x. This is a contradiction since each

cx is free. Thus t →FCk(R) t̂. ⊓⊔

Corollary 2. If R is a convergent rewrite system and t an innermost redex with
normal form t̂, then t →

FC (R) t̂.

Theorem 1. A convergent rewrite system R is forward-closed if and only if
every innermost redex can be reduced to its R-normal form in one step.

Proof. If R = FC (R) then, by Corollary 2, for any innermost redex t with normal
form t̂, t →R t̂. Thus we have proven the “only if” part.

To prove the “if” part, assume that every innermost redex can be reduced to
its normal form in one step, but R is not forward-closed. Thus there is a rule

334 C. Bouchard et al.

l → r in FC (R) that is not in R. If l is not an innermost redex in R then, by
Lemma 4, l → r is redundant in R. So l must be an innermost redex in R and
can be reduced to its normal form l̂ in one step. Since (l → l̂) ≺ (l → r), and
since R is confluent, l and r are joinable using only smaller instances of rules
in R and thus l → r is redundant in R. This is a contradiction, so R must be
forward-closed. ⊓⊔

6 Equivalence of Finiteness of Forward Closure and the
Finite Variant Property

In this section we show that a system has a finite forward closure (with redun-
dancy) if and only if it has the finite variant property, as defined by Comon-
Lundh and Delaune [6]. We will adopt the notation used in [7].

Definition 1. Let R be a convergent rewrite system. A term-substitution pair
(t, θ) is an R-variant of a term s if and only if θ is R-normalized and θ(s) →!

R t.
An R-variant (t, θ) of a term s is said to be more general than another R-variant
(t′, θ′) of the same term s, denoted as (t, θ) ⊒ (t′, θ′), if and only if there is a
substitution ρ such that t′ = ρ(t) and θ′ = ρ ◦ θ. A complete set of R-variants
of a term s, denoted as [[s]]

⋆
, is a set of R-variants of s, such that for every

R-variant (s′, γ) of s there is a variant (t, θ) ∈ [[s]]⋆ such that (t, θ) ⊒ (s′, γ). A
convergent term rewriting system R has the finite variant property if and only
if every term s has a finite complete set of R-variants.

Comon-Lundh and Delaune showed that the finite variant property is equiv-
alent to the boundedness property.

Definition 2. A rewrite system R has the boundedness property (or is bounded)
if, for every term t, there exists an integer n such that for every normalized
substitution σ, the normal form of σ(t) is reachable by a derivation whose length
can be bounded by n (thus independently of σ):

∀t ∃n ∀σ : (σ↓)(t)
≤n
−−−→R σ(t)↓

We first introduce a different notion of boundedness for a term rewriting
system and prove that this new notion is equivalent to the standard notion.

Definition 3. A rewrite relation →R (alternatively, a term rewriting system R)
is IR-bounded if and only if there is a “global” bound n such that every innermost
redex can be reduced to its normal form in n steps or less:

∃n ∀t :
[

t is an innermost redex ⇒ t
≤n
−−−→R t↓

]

Lemma 14. Suppose a convergent rewrite system R is bounded. Then R is IR-
bounded.

On Forward Closure and the Finite Variant Property 335

Proof. For each function symbol f in Σ, consider the term tf = f(x1, . . . , xm),
where m is the arity of f and x1, . . . , xm are variables. Since R is bounded,

there is an nf such that for any normalized substitution θ, θ(tf)
≤nf
−−−→R θ(tf)↓.

Let u be a innermost redex with f as its root symbol. Note that there is a

normalized substitution θ such that θ(tf) = u, and thus u
≤nf

−−−→R u ↓. Let
n be the largest such nf for any f in Σ. Then for any innermost redex u′,

u′ ≤n
−−−→R u′↓. Therefore, R is IR-bounded. ⊓⊔

Lemma 15. Suppose a convergent rewrite system R is IR-bounded. Then R is
bounded.

Proof. Since R is IR-bounded, there is a bound n such that for any innermost

redex u, u
≤n
−−−→R u↓. Let t be a term, and θ be a normalized substitution. The

set of positions where θ(t) could be rewritten is a subset of FPos(t). Consider
a position p in FPos(t) such that θ(t)|p is an innermost redex. Since R is IR-

bounded, θ(t)|p
≤n
−−−→R (θ(t)|p) ↓. Once θ(t)|p is rewritten, the only subterms

that can become new innermost redexes are its ancestors. Clearly then the entire
term θ(t) can be rewritten in no more than n · |FPos(t)| steps. Therefore R is
bounded. ⊓⊔

With this result, we can easily show one direction of the equivalence.

Lemma 16. Suppose a convergent rewrite system R has a finite forward closure
FC (R). Then R has the finite variant property.

Proof. If FC (R) is finite, then FC (R) = FC k(R) for some k. By Corollary 2,
given an innermost redex t, t →FC (R) t↓. So t →FCk(R) t↓, and by Lemma 10

there is a k′ ≤ k + 1 such that t →k′

R t ↓. Therefore R is IR-bounded. By
Lemma 15, R is bounded, and thus R has the finite variant property. ⊓⊔

In the other direction, things are a bit more complicated. We relate the vari-
ants of a rewrite system to redundancy. First, given a rewrite system R, we
define the following set of rules, VR.

Definition 4. For a convergent rewrite system R that has the finite variant
property, we define

VR = {θ(l) → l′ | l → r ∈ R and (l′, θ) ∈ [[l]]
⋆
and θ(l) is an innermost redex}

The rules in VR correspond to variants of the left-hand sides of rules in R.
The next three lemmas use this set to prove that a convergent system with the
finite variant property has a finite forward closure.

Lemma 17. Suppose a convergent rewrite system R has the finite variant prop-
erty. Then there is a k > 0 such that each rule in VR is redundant in FC k(R).

336 C. Bouchard et al.

Proof. Since R has the finite variant property, for any term t, [[l]]⋆ is finite. Thus
VR is finite. For each θ(l) → l′ in VR, θ(l) is an innermost redex and l′ is its
normal form. Thus, by Lemma 13, there is a k > 0 such that θ(l) →

FCk(R) l′.

Let k′ be the max of all such k. Each rule in VR is redundant in FC k′ (R). ⊓⊔

Lemma 18. Suppose a convergent rewrite system R has the finite variant prop-
erty, and let k > 0 be such that each rule in VR is redundant in FC k(R).
Then every innermost redex can be reduced to its normal form in one step mod-
ulo FC k(R).

Proof. Let θ(l) be an innermost redex where l is the left-hand side of a rule
in R. Let s be its normal form. Clearly the substitution θ has to be a normalized
substitution (over Var(l)) for otherwise θ(l) would not be an innermost redex.
Since R has the finite variant property, there is a variant (l′, σ) of l such that
(s, θ) ⊑ (l′, σ). Thus there is a substitution η such that θ = η ◦ σ and s = η(l′).
Thus, since σ(l) is also an innermost redex, θ(l) → s is an instance of the rule
σ(l) → l′ ∈ VR. Since l′ is the normal form of σ(l), by Lemma 7, σ(l) → l′ must
not be strictly redundant in FC k(R). So σ(l) → l′, and therefore θ(l) → s, must
be an instance of a rule in FC k(R) and we are done. ⊓⊔

Lemma 19. Suppose a convergent rewrite system R has the finite variant prop-
erty. Then R has a finite forward closure FC (R).

We have now equated the finite variant property to the finiteness of forward
closure. All the results in this section lead us to the following theorem.

Theorem 2. Let R be a convergent rewrite system. The following statements
are equivalent:

(i) R is bounded.
(ii) R is IR-bounded.

(iii) R has a finite forward closure
(iv) R has the finite variant property

7 Undecidability of Finiteness of Forward Closure

We will prove the undecidability of the finiteness of forward closure by reduc-
tion from the uniform mortality problem for deterministic Turing machines [11].
Given a deterministic Turing machine M , the machine is said to be uniformly
mortal if and only if there is a number k such that, for any instantaneous de-
scription I of M , the number of transitions that M can make starting from I is
at most k.

We represent a deterministic Turing machine M as a tuple (Γ, ␢, Q, δ, F),
where Γ is the tape alphabet, ␢ ∈ Γ is the blank symbol, Q is the set of states,
F ⊂ Q is the set of final states, and δ : (Q \ F) × Γ → Q × Γ × {L,R} is the
transition function. We assume that Γ ∩Q = ∅.

An instantaneous description (ID) of M is represented as a tuple (u, q, γ, v),
where u is a suffix of the string to the left of the tape head, q is the current state,

On Forward Closure and the Finite Variant Property 337

γ is the current symbol under the tape head, and v is a prefix of the string to
the right of the head. The strings to the left and right of the tape head may be
infinite, but only a finite suffix and prefix, respectively, will contain non-blank
symbols. Therefore, we let u be the longest suffix of the string to the left of the
tape head such that u �= ␢u′. Similarly, v is the longest prefix of the string to
the right of the head such that v �= v′␢.

For IDs I1 and I2 of M , I1 ⊢ I2 if and only if there is a transition in δ that
would move M from I1 to I2. Note that this usage of ⊢ is separate from the
usual meaning of “proves”. An ID I = (u, q, γ, v) is final if and only if q ∈ F .

The notion of an ID can be extended to that of a window. A window W of M
is a tuple (u, q, γ, v) such that u ∈ ␢∗u′ and v ∈ v′␢∗ for some u′ and v′ such that
I = (u′, q, γ, v′) is an ID of M . In this case, W extends I. The width of W is
|W | = |u|+ |v|+1. For windows W1 and W2, W1 ⊢ W2 if and only if |W1| = |W2|
and there are IDs I1 and I2 such that W1 and W2 extend I1 and I2, respectively,
and I1 ⊢ I2.

Proposition 3. Let M be a Turing machine, and let I1, I2, . . . , In be IDs of M
such that I1 ⊢ I2 ⊢ · · · ⊢ In. Then there is a width k and windows W1, W2, . . . ,
Wn, each with width k, such that each Wi extends Ii and W1 ⊢ W2 ⊢ · · · ⊢ Wn.

For any given Turing machine M , we construct a rewrite system RM and
show that M is uniformly mortal if and only if FC (RM) is finite. Our system is
over the signature Σ = Q∪Γ ∪ {ǫ, s}, where each q ∈ Q has arity 3, each γ ∈ Γ

has arity 1, ǫ is a constant, and s has arity 1. We assume an infinite set X of
variables.

We can encode a number n as a term sn(ǫ). Each ternary function sym-
bol q ∈ Q represents a window in state q, and each monadic function symbol
γ ∈ Γ represents concatenation on the left by that symbol. We encode a string
w = γ1 · · · γn over Γ as a term enc(w) = (γ1 ◦ · · · ◦ γn)(ǫ), where ◦ is function
composition (i.e., (f ◦g)(x) = f(g(x))). We can then encode a window (u, q, γ, v)
as a term q(enc(urev), γ(enc(v)), sn(ǫ)), where urev is the reverse of the string u,
and n is the number of transitions the machine is allowed to make.

We say two terms t1 and t2 are sequential if and only if t1 and t2 both have
root symbols from Q and t1|3 = s(t2|3). We say a term t is legal if and only if
there is a window W of M such that t encodes W . We say a term is illegal if
and only if it has a root symbol from Q but is not legal.

Definition 5. We define a function φ : T (Σ,X) → T (Σ) to transform illegal
terms into legal terms. For all q ∈ Q,

φ(q(t1, t2, t3)) = q(φ′
Γ (t1), φ

′
Γ (t2), φ

′
{s}(t3))

where φ′
S : T (Σ,X) → T (Σ) is a helper function parameterized by a signature

S ⊆ Σ,

φ′
S(t) =

{

f(φ′
S(t

′)) if t = f(t′) for some f (1) ∈ S

ǫ otherwise

338 C. Bouchard et al.

The function φ′
S finds the “highest” occurrence of a term whose root symbol

does not belong in a string over signature S and replaces it with ǫ. The function
φ uses this to ensure that subterms encode valid tape strings (over the signature
Γ) or numbers (over the signature {s}).

We can now construct our rewrite system RM from a machine M .

Definition 6. Let M = (Γ, ␢, Q, δ, F) be a deterministic Turing machine. First
set RM := ∅. For each left-moving transition (q, γ) �→ (q′, γ′, L) in δ, extend RM

by

RM := RM ∪ {q(γ0(x), γ(y), s(z)) → q′(x, γ0(γ
′(y)), z) | γ0 ∈ Γ}

where x, y, and z are variables. Then, for each right-moving transition (q, γ) �→
(q′, γ′, R) in δ, extend RM by

RM := RM ∪ {q(x, γ(γ0(y)), s(z)) → q′(γ′(x), γ0(y), z) | γ0 ∈ Γ}

where again, x, y, and z are variables.

We first prove some basic properties of the rewrite system RM .

Lemma 20. Let M be a deterministic Turing machine, let t1 be an innermost
redex, and let t2 and t3 be terms such that t1 →RM

t2 and t1 →RM
t3. Then

t2 = t3.

Lemma 21. Let M be a deterministic Turing machine. Then the rewrite system
RM is convergent.

Lemma 22. Let M be a deterministic Turing machine, let t1 be an innermost
redex, and let t2 be a term such that t1 →RM

t2. Then t2 is either an innermost
redex or in normal form.

Lemma 23. Let M be a deterministic Turing machine, let t1 be an innermost
redex, and let t2 be a term such that t1 →RM

t2. Then t1 and t2 are sequential.

Our goal in this section is to show that the rewrite system RM models com-
putation of the machine M . Unfortunately, there are terms over Σ that are
RM -reducible but do not encode any window of M . With the φ function, we
can map such illegal terms to a representative legal term. The following lemma
shows that φ preserves the RM -reducibility of the term, and thus we can focus
our attention on legal terms.

Lemma 24. Let M be a deterministic Turing machine, and let t1 be an inner-
most redex and t2 be a term such that t1 and t2 have root symbols from Q. Then
t1 →k

RM
t2 for some k > 0 if and only if φ(t1) →k

RM
φ(t2).

Proof (Sketch). The idea is that φ′
Γ and φ′

{s} can be pushed below the subterms

of instances of rules in RM . So if t1 →k
RM

t2, then for any step t → t′, there is a

On Forward Closure and the Finite Variant Property 339

rule l → r in RM such that t → t′ ⊑σ l → r. If we apply φ, the φ′
Γ and φ′

{s} will
be pushed down into σ(x) for each x ∈ Var(l), and thus φ(t) → φ(t′). Therefore
we have φ(t1) →k

RM
φ(t2).

Conversely, if t1 �→k
RM

t2, then applying φ cannot fix things, because it only

changes things below the rule. Therefore φ(t1) �→k
RM

φ(t2). ⊓⊔

Corollary 3. Let M be a deterministic Turing machine, and let t be a term
with a root symbol from Q such that no proper subterm of t is reducible. Then
φ(t) is in RM -normal form if and only if t is in RM -normal form.

Now we can relate transitions between windows of M to rewriting terms that
encode them in RM .

Lemma 25. Let M be a deterministic Turing machine, let W1 and W2 be win-
dows of M with equal width, and let t1 and t2 be sequential terms encoding W1

and W2, respectively. Then W1 ⊢ W2 if and only if t1 →RM
t2.

Proof (Sketch). Here the idea is that if t1 and t2 encode W1 and W2, respectively,
and if there is a transition from W1 to W2, then it corresponds to a unique rule
in RM that rewrites t1 to t2. Similarly, if there is a rule that rewrites t1 to t2, it
corresponds to a unique transition from W1 to W2. ⊓⊔

Lemma 26. Let M be a deterministic Turing machine, let W be a window of
M , and let t be a term encoding W. If W is final, then t is in normal form.

Lemma 27. Let M be a deterministic Turing machine. Then M is uniformly
mortal if and only if the rewrite system RM is IR-bounded.

Proof (Sketch). We first show a one-to-one correspondence between windows of
M and legal terms. Transitions between windows correspond to rewrites in RM .
If the machine is uniformly mortal, the bound corresponds to IR-boundedness.
Otherwise there exists some unbounded rewrite sequence starting from an in-
nermost redex. ⊓⊔

Theorem 3. It is undecidable to check, given a finite convergent term rewriting
system, whether it has a finite forward closure.

Proof. By Lemma 27, we have reduced the uniform mortality problem for deter-
ministic Turing machines to the IR-boundedness problem. Therefore, by The-
orem 2, the uniform mortality problem can be reduced to checking if R has a
finite forward closure. By Lemma 21, for any deterministic Turing machine M

we know that RM is convergent. Thus it is undecidable whether a finite conver-
gent term rewriting system has a finite forward closure. ⊓⊔

Corollary 4. It is undecidable to check, given a finite convergent term rewriting
system, whether it has the finite variant property.

340 C. Bouchard et al.

8 Modularity of Forward Closure

In this section we examine how forward closure behaves when rewrite systems are
combined. We first consider the modularity of the finiteness of forward closure,
i.e., whether the property is preserved when combining systems over disjoint
signatures.

Theorem 4. Let R1 and R2 be finite rewrite systems over signatures Σ1 and
Σ2 respectively. If Σ1 ∩Σ2 = ∅, then FC (R1 ∪R2) = FC (R1) ∪ FC (R2).

Proof. Suppose FC (R1∪R2) � FC (R1)∪FC (R2). Then there must be a k such
that either a rule from FC k(R1) was overlapped with a rule from R2, or a rule
from FC k(R2) with a rule from R1. We will assume the former without loss of
generality. Thus there is a rule l → r in FC (R1 ∪R2) such that

(l → r) = (l1 → r1) �p (l2 → r2)

where p ∈ FPos(r1), (l1 → r1) ∈ FC k(R1), and (l2 → r2) ∈ R2. So then

(l → r) = θ(l1) → θ(r1[r2]p)

where θ = mgu(r1|p =? l2). However, since Σ1 and Σ2 are disjoint, and since p

is a non-variable position in r1, the terms r1|p and l2 are not unifiable due to
function clash. This is a contradiction. Since FC (R1 ∪R2) ⊇ FC (R1)∪FC (R2),
we have that FC (R1 ∪R2) = FC (R1) ∪ FC (R2). ⊓⊔

However, if the systems are allowed to share constants, then even if the systems
have finite forward closures their union may not.

Example 2. Let R1 = {f(a, h(x)) → h(f(b, x))}, and let R2 = {b → a}, where
a and b are constants. These systems are clearly convergent and forward-closed.
However, consider their union,

R1 ∪R2 = {f(a, h(x)) → h(f(b, x)), b → a}

This system is convergent. However, it has an infinite forward closure, because
for all k > 0:

NR2k(R1 ∪R2) = {f(a, hk+1(x)) → hk+1(f(a, x))}

This is obtained by overlapping the rule from NR2k−2(R1 ∪ R2) first with the
rule from R2, then with the rule from R1 (this is why the rules occur in every
other step of forward closure). None of these rules are redundant, because they
are not instances of existing rules and the ground instances obtained by applying
the substitution {x �→ a} cannot be proven by smaller instances of rules. Since
NRk(R1 ∪R2) �= ∅ for any k, by Lemma 9, FC (R1 ∪R2) is not finite. ⊓⊔

On Forward Closure and the Finite Variant Property 341

9 Relationship to Runtime Complexity

Inspired by a comment from one of our reviewers, we examined the relationship to
the field of runtime complexity, as described in [12]. The notion of the runtime com-
plexity of a rewrite system is similar to the IR-boundedness property. However,
while runtime complexity gives a bound for all rewrite sequence from an inner-
most redex, IR-boundedness only guarantees that a rewrite sequence exists which
is shorter than the bound. For this reason, a rewrite system with O(1) runtime
complexity is IR-bounded, but it seems that the inverse is not necessarily true.

Several tools exist for automatically checking the runtime complexity of a
rewrite system, such as CaT3 and TCT4. These tools can now be used to recog-
nize a class of rewrite systems with the finite variant property.

10 Conclusion and Future Work

Inspired by Basic Syntactic Mutation [5, 14], we explored forward closure and
its relation to the finite variant property [6]. We found that, with suitable re-
dundancy constraints, the finiteness of forward closure is equivalent to the finite
variant property. We also showed that finiteness of forward closure is undecid-
able, even for convergent rewrite systems.

A great deal of research has gone into finding ways to decide if a rewrite sys-
tem has the finite variant property [8]. As we have shown the equivalence of the
finite variant property and finiteness of forward closure, we have a convenient
procedure for checking the finite variant property, much like Knuth-Bendix com-
pletion provides a procedure for deciding the word problem [13]. As the finiteness
of forward closure is undecidable, the procedure may not terminate, but if the
rewrite system has the finite variant property, the procedure will terminate in a
finite number of steps.

Our future work centers around extending forward closure to work modulo
equational theories. The most important is the theory of AC (associativity and
commutativity), which has many practical applications, but we hope to consider
a much more general class of theories. We will also examine in more detail
how forward closure behaves when rewrite systems are combined that are not
completely disjoint.

Acknowledgements. We wish to thank Serdar Erbatur, Ralf Sasse, and the
reviewers for their detailed comments, style suggestions, and proof corrections
which helped considerably to improve this paper.

References

[1] Anantharaman, S., Erbatur, S., Lynch, C., Narendran, P., Rusinowitch, M.: Uni-
fication Modulo Synchronous Distributivity. In: Gramlich, B., Miller, D., Sattler,
U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 14–29. Springer, Heidelberg (2012)

3 http://cl-informatik.uibk.ac.at/software/cat/
4 http://cl-informatik.uibk.ac.at/software/tct/

http://cl-informatik.uibk.ac.at/software/cat/
http://cl-informatik.uibk.ac.at/software/tct/

342 C. Bouchard et al.

[2] Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1999)

[3] Baader, F., Snyder, W.: Unification Theory. In: Robinson, J.A., Voronkov, A.
(eds.) Handbook of Automated Reasoning, pp. 440–526. Elsevier Science Publish-
ers BV (1999)

[4] Bouchard, C., Gero, K.A., Lynch, C., Narendran, P.: On Forward Closure and the
Finite Variant Property. Technical report, Dept. of Computer Science, University
at Albany—SUNY (July 2013)

[5] Bouchard, C., Gero, K.A., Narendran, P.: Some Notes on Basic Syntactic Muta-
tion. In: Escobar, S., Korovin, K., Rybakov, V. (eds.) Proceedings 26th Interna-
tional Workshop on Unification, pp. 9–14 (2012)

[6] Comon-Lundh, H., Delaune, S.: The finite variant property: How to get rid of some
algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307.
Springer, Heidelberg (2005)

[7] Erbatur, S., Escobar, S., Kapur, D., Liu, Z., Lynch, C., Meadows, C., Meseguer,
J., Narendran, P., Santiago, S., Sasse, R.: Effective Symbolic Protocol Analysis
via Equational Irreducibility Conditions. In: Foresti, S., Yung, M., Martinelli, F.
(eds.) ESORICS 2012. LNCS, vol. 7459, pp. 73–90. Springer, Heidelberg (2012)

[8] Escobar, S., Meseguer, J., Sasse, R.: Effectively checking the finite variant prop-
erty. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 79–93. Springer,
Heidelberg (2008)

[9] Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal vari-
ant termination. Journal of Logic and Algebraic Programming 81(7-8), 898–928
(2012); Rewriting Logic and its Applications

[10] Hermann, M.: Chain properties of rule closures. Formal Aspects of Comput-
ing 2(1), 207–225 (1990)

[11] Hillebrand, G.G., Kanellakis, P.C., Mairson, H.G., Vardi, M.Y.: Undecid-
able Boundedness Problems for Datalog Programs. Journal of Logic Program-
ming 25(2), 163–190 (1995)

[12] Hirokawa, N., Moser, G.: Automated Complexity Analysis Based on the Depen-
dency Pair Method. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 364–379. Springer, Heidelberg (2008)

[13] Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Leech, J.
(ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press
(1970)

[14] Lynch, C., Morawska, B.: Basic Syntactic Mutation. In: Voronkov, A. (ed.) CADE
2002. LNCS (LNAI), vol. 2392, pp. 471–485. Springer, Heidelberg (2002)

[15] Nieuwenhuis, R., Rubio, A.: Paramodulation-Based Theorem Proving. In: Robin-
son, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 371–443.
Elsevier, MIT Press (2001)

	On Forward Closure and the Finite Variant Property
	Introduction
	Notation and Preliminaries
	Strict Redundancy
	A (Slightly) Stronger Notion of Redundancy
	Forward Closure
	Equivalence of Finiteness of Forward Closure and the Finite Variant Property
	Undecidability of Finiteness of Forward Closure
	Modularity of Forward Closure
	Relationship to Runtime Complexity
	Conclusion and Future Work

