COLLOQUIUM MATHEMATICUM
 VOL. LXII $1991 \quad$ FASC. I

ON FOUR-DIMENSIONAL RIEMANNIAN WARPED PRODUCT MANIFOLDS SATISFYING CERTAIN PSEUDO-SYMMETRY CURVATURE CONDITIONS
 BY
 RYSZARD DESZCZ (WROCŁAW)

1. Introduction. Let (M, g) be a connected n-dimensional, $n \geq 3$, smooth Riemannian manifold with a not necessarily definite metric g. The manifold (M, g) is said to be pseudo-symmetric ([11]) if its curvature tensor R satisfies at every point of M the following condition:
(*) the tensors $R \cdot R$ and $Q(g, R)$ are linearly dependent.
It is easy to see that if $(*)$ holds at a point of M then the Weyl conformal curvature tensor C satisfies at this point the condition
(**) the tensors $R \cdot C$ and $Q(g, C)$ are linearly dependent.
A manifold (M, g) fulfilling $(* *)$ at each point of M is called Weyl-pseudosymmetric ([8]).

As was proved in $([12])$, if $n \geq 5$ then $(*)$ and $(* *)$ are equivalent at each point at which C is non-zero. In particular, from this result if follows (see also [16]) that for $n \geq 5$ the conditions $R \cdot C=0$ and $R \cdot R=0$ are equivalent at each point of (M, g) at which $C \neq 0$. On 4 -manifolds, this is not always the case. A suitable example was given in [5] (Lemme 1.1). That example, by a certain modification, also gives rise to an example of a non-pseudo-symmetric manifold satisfying ($* *$) with $R \cdot C$ non-zero (see [10]). Moreover, in [2] an example of a non-pseudo-symmetric conformally flat manifold of dimension $n \geq 4$ was described.

In the present paper we shall prove (Section 4) that $(*)$ and $(* *)$ are equivalent at every point of a 4 -dimensional warped product manifold at which C does not vanish. From this it follows immediately that the abovementioned Riemannian manifold obtained in [5] is a non-warped product manifold satisfying $R \cdot C=0$. It is known that $(*)$ and $(* *)$ are equivalent on manifolds isometrically immersed as hypersurfaces of a Euclidean space $\mathbb{E}^{n+1}, n \geq 4$ (see [3], Corollary).

If $(*)$ holds at a point of M then at this point the following condition is
fulfilled:
(***) the tensors $R \cdot S$ and $Q(g, S)$ are linearly dependent,
where S denotes the Ricci tensor. A manifold (M, g) satisfying $(* * *)$ at every point of M is said to be Ricci-pseudo-symmetric ([14]). So, any pseudosymmetric manifold is Ricci-pseudo-symmetric. However, the converse fails in general (see [14], [7]). We shall prove (Section 5) that ($*$) and ($* * *$) are equivalent at every point of a 4 -dimensional warped product manifold at which the tensor $S-(K / n) g$ does not vanish, where K is the scalar curvature.

Section 2 is concerned with some facts on pseudo-symmetric tensors. We recapitulate the basic formulas about warped products in Section 3. Finally, an analogue of Theorem 1 from [19] is mentioned at the end of that section.
2. Pseudo-symmetric tensors. Let (M, g) be an n-dimensional, $n \geq 3$, Riemannian manifold with a not necessarily definite metric g. We denote by ∇, R, S, C and K the Levi-Cività connection, the curvature tensor, the Ricci tensor, the Weyl conformal curvature tensor and the scalar curvature of (M, g) respectively. For a $(0, k)$-tensor field T on $M, k \geq 1$, we define the tensor fields $R \cdot T$ and $Q(g, T)$ by

$$
\begin{aligned}
& (R \cdot T)\left(X_{1}, \ldots, X_{k} ; X, Y\right)=(R(X, Y) \cdot T)\left(X_{1}, \ldots, X_{k}\right) \\
& \quad=-T\left(R(X, Y) X_{1}, X_{2}, \ldots, X_{k}\right)-\ldots-T\left(X_{1}, \ldots, X_{k-1}, R(X, Y) X_{k}\right) \\
& Q(g, T)\left(X_{1}, \ldots, X_{k} ; X, Y\right)=-((X \wedge Y) \cdot T)\left(X_{1}, \ldots, X_{k}\right) \\
& \quad=T\left((X \wedge Y) X_{1}, X_{2}, \ldots, X_{k}\right)+\ldots+T\left(X_{1}, \ldots, X_{k-1},(X \wedge Y) X_{k}\right)
\end{aligned}
$$

respectively, where $R(X, Y)$ and $X \wedge Y$ are derivations of the algebra of tensor fields on M and $X_{1}, \ldots, X_{k}, X, Y \in \mathfrak{X}(M), \mathfrak{X}(M)$ being the Lie algebra of vector fields on M. These derivations are extensions of the endomorphisms $R(X, Y)$ and $X \wedge Y$ of $\mathfrak{X}(M)$ defined by

$$
\begin{aligned}
R(X, Y) Z & =\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \\
(X \wedge Y) Z & =g(Z, Y) X-g(Z, X) Y
\end{aligned}
$$

respectively. A $(0, k)$-tensor field T is said to be pseudo-symmetric if the tensors $R \cdot T$ and $Q(g, T)$ are linearly dependent at every point of M. In the special case when $R \cdot T$ vanishes on M, the tensor T is called semi-symmetric. A (0,4)-tensor field T on M is said to be a generalized curvature tensor [18] if

$$
\begin{gathered}
T\left(X_{1}, X_{2}, X_{3}, X_{4}\right)+T\left(X_{1}, X_{3}, X_{4}, X_{2}\right)+T\left(X_{1}, X_{4}, X_{2}, X_{3}\right)=0, \\
T\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=-T\left(X_{2}, X_{1}, X_{3}, X_{4}\right), \\
T\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=T\left(X_{3}, X_{4}, X_{1}, X_{2}\right),
\end{gathered}
$$

for all $X_{i} \in \mathfrak{X}(M)$. For a generalized curvature tensor field T we define the concircular curvature tensor $Z(T)$ by

$$
Z(T)=T-\frac{K(T)}{n(n-1)} G,
$$

where $K(T)$ is the scalar curvature of T and G is the generalized curvature tensor defined by

$$
G\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(\left(X_{1} \wedge X_{2}\right) X_{3}, X_{4}\right)
$$

A generalized curvature tensor T is called trivial at $x \in M$ ([8]) if $Z(T)$ vanishes at x. Similarly, for a symmetric (0,2)-tensor field A we define the tensor $Z(A)$ by

$$
Z(A)=A-\frac{\operatorname{tr}(A)}{n} g
$$

A symmetric $(0,2)$-tensor field A is said to be trivial at $x \in M$ if $Z(A)$ vanishes at x.

Remark 1 ([2], Lemma 1.1(iii)). Let T be a generalized curvature tensor (resp. a $(0,2)$-symmetric tensor) at a point x of a manifold (M, g). Then the equalities $Z(T)=0$ and $Q(g, T)=0$ are equivalent at this point.

If a generalized curvature tensor T (resp. a (0,2)-symmetric tensor A) is pseudo-symmetric then $R \cdot T=L_{T} Q(g, T)$ (resp. $\left.R \cdot A=L_{A} Q(g, A)\right)$ on $U_{T}=\{x \in M: Z(T)(x) \neq 0\}$ (resp. on $\left.U_{A}=\{x \in M: Z(A)(x) \neq 0\}\right)$, where L_{T} is a function defined on U_{T} (resp. L_{A} is a function defined on U_{A}). The functions L_{T} and L_{A} are uniquely determined and called the associated functions of the pseudo-symmetric tensors T and A respectively ([8]).

A Riemannian manifold (M, g) is said to be pseudo-symmetric if its curvature tensor R is pseudo-symmetric [11]; then

$$
\begin{equation*}
R \cdot R=L_{R} Q(g, R) \tag{1}
\end{equation*}
$$

on U_{R}. Any semi-symmetric manifold ($R \cdot R=0,[20]$) is pseudo-symmetric. Examples of non-semi-symmetric pseudo-symmetric manifolds are given in [2], [3], [6] and [11].
(M, g) is said to be Weyl-pseudo-symmetric if its Weyl conformal curvature tensor C is pseudo-symmetric [8]; then

$$
\begin{equation*}
R \cdot C=L_{C} Q(g, C) \tag{2}
\end{equation*}
$$

on U_{C}. Any pseudo-symmetric manifold is Weyl-pseudo-symmetric. The converse fails in general (see Section 1). Note that $U_{C}=\{x \in M: C(x) \neq 0\}$.
(M, g) is said to be Ricci-pseudo-symmetric if its Ricci tensor S is pseudosymmetric ([14], [7]); then

$$
\begin{equation*}
R \cdot S=L_{S} Q(g, S) \tag{3}
\end{equation*}
$$

on U_{S}. Of course, any pseudo-symmetric manifold is Ricci-pseudo-symmetric. The converse fails in general (see [14], [7]). The conditions (1) and (3) are equivalent on manifolds with vanishing Weyl conformal curvature tensor C. Namely, we have

Lemma 1 ([2], Lemma 1.2, [13], Lemma 2). If C vanishes at $x \in M$ and $n \geq 3$, then at x the following three identities are equivalent to each other:

$$
\begin{gathered}
\left((n-2) \alpha+\frac{K}{n-1}\right)\left(S-\frac{k}{n} g\right)=S^{2}-\frac{\operatorname{tr}\left(S^{2}\right)}{n} g \\
R \cdot S=\alpha Q(g, S), \quad R \cdot R=\alpha Q(g, R)
\end{gathered}
$$

where $\alpha \in \mathbb{R}, S^{2}(X, Y)=S(\widetilde{S}(X), Y), S(X, Y)=g(\widetilde{S}(X), Y)$ and $x, y \in$ $\mathfrak{X}(M)$.

Lemma 2. (i) If (M, g) is 3 -dimensional then C vanishes identically.
(ii) (cf. [15], p. 48) Any generalized curvature tensor T at a point x of a 3-dimensional Riemannian manifold (M, g) satisfies

$$
\begin{aligned}
T\left(X_{1}, X_{2}, X_{3}, X_{4}\right)= & g\left(X_{1}, X_{4}\right) A\left(X_{2}, X_{3}\right)+g\left(X_{2}, X_{3}\right) A\left(X_{1}, X_{4}\right) \\
& -g\left(X_{1}, X_{3}\right) A\left(X_{2}, X_{4}\right)-g\left(X_{2}, X_{4}\right) A\left(X_{1}, X_{3}\right)
\end{aligned}
$$

for all $X_{i} \in \mathfrak{X}(M)$, where A is the $(0,2)$-tensor defined by

$$
A\left(X_{1}, X_{2}\right)=\operatorname{Ricc}(T)\left(X_{1}, X_{2}\right)-\frac{K(T)}{4} g\left(X_{1}, X_{2}\right)
$$

Ricc (T) and $K(T)$ being the Ricci tensor and the scalar curvature of T respectively.
(iii) Let A be a symmetric (0,2)-tensor on a 2-dimensional Riemannian manifold (M, g). Then

$$
\begin{aligned}
g\left(X_{1}, X_{4}\right) A\left(X_{2}, X_{3}\right) & +g\left(X_{2}, X_{3}\right) A\left(X_{1}, X_{4}\right)-g\left(X_{2}, X_{4}\right) A\left(X_{1}, X_{3}\right) \\
& -g\left(X_{1}, X_{3}\right) A\left(X_{2}, X_{4}\right)=\operatorname{tr}(A) G\left(X_{1}, X_{2}, X_{3}, X_{4}\right)
\end{aligned}
$$

on M.
Lemma 3. Let A and B be non-zero symmetric (0,2)-tensors at a point x of a manifold (M, g). If $Q(A, B)=0$ at x then $A=\lambda B, \lambda \in \mathbb{R}-\{0\}$, at x.

The proof of this lemma was given in [9] (see the proof of Lemma 3.4).
3. Warped products. Let (M, \bar{g}) and $(N, \widetilde{g}), \operatorname{dim} M=p, \operatorname{dim} N=$ $n-p, 1 \leq p<n$, be Riemannian manifolds covered by systems of charts $\left\{\bar{V} ; x^{a}\right\}$ and $\left\{\widetilde{V} ; y^{\alpha}\right\}$ respectively. Let F be a positive smooth function on M. The warped product $M \times_{F} N$ of (M, \bar{g}) and (N, \widetilde{g}) (see [17], [1]) is the Cartesian product $M \times N$ with the metric $g=\bar{g} \oplus F \widetilde{g}$ (more precisely, $\bar{g} \oplus F \widetilde{g}=\Pi_{1}^{*} \bar{g}+\left(F \circ \Pi_{1}\right) \Pi_{2}^{*} \tilde{g}, \Pi_{1}: M \times N \rightarrow M$ and $\Pi_{2}: M \times N \rightarrow N$
being the natural projections). Let $\left\{\bar{V} \times \widetilde{V} ; u^{1}=x^{1}, \ldots, u^{p}=x^{p}, u^{p+1}=\right.$ $\left.y^{1}, \ldots, u^{n}=y^{n-p}\right\}$ be a product chart for $M \times N$. The local components of the metric $\bar{g} \oplus F \widetilde{g}$ with respect to this chart are

$$
g_{r s}= \begin{cases}\bar{g}_{a b} & \text { if } r=a, s=b \tag{4}\\ F \widetilde{g}_{\alpha \beta} & \text { if } r=\alpha, s=\beta, \\ 0 & \text { otherwise }\end{cases}
$$

Here and below, $a, b, c, d, e, f \in\{1, \ldots, p\}, \alpha, \beta, \gamma, \delta, \lambda, \mu \in\{p+1, \ldots, n\}$ and $r, s, t, u, v, w \in\{1, \ldots, n\}$. The local components of the tensors R and S of the metric $\bar{g} \oplus F \widetilde{g}$ which may not vanish identically are

$$
\begin{align*}
& R_{a b c d}=\bar{R}_{a b c d}, \tag{5}\\
& R_{\alpha a b \beta}=-\frac{1}{2} T_{a b} \widetilde{g}_{\alpha \beta} \tag{6}\\
& R_{\alpha \beta \gamma \delta}=F \widetilde{R}_{\alpha \beta \gamma \delta}-\frac{\Delta F}{4} \widetilde{G}_{\alpha \beta \gamma \delta}, \tag{7}
\end{align*}
$$

$$
\begin{equation*}
S_{a b}=\bar{S}_{a b}-\frac{n-p}{2 F} T_{a b} \tag{8}
\end{equation*}
$$

$$
\begin{align*}
S_{\alpha \beta} & =\widetilde{S}_{\alpha \beta}-\frac{1}{2}\left(\operatorname{tr}(T)+\frac{(n-p-1) \Delta F}{2 F}\right) \widetilde{g}_{\alpha \beta} \tag{9}\\
T_{a b} & =\nabla_{b} F_{a}-\frac{1}{2 F} F_{a} F_{b}, \quad \operatorname{tr}(T)=\bar{g}^{a b} T_{a b} \\
\Delta F & =\bar{g}^{a b} F_{a} F_{b}, \quad F_{a}=\frac{\partial}{\partial x^{a}}(F) \tag{10}
\end{align*}
$$

The scalar curvature K of $\bar{g} \oplus F \widetilde{g}$ satisfies

$$
\begin{equation*}
K=\bar{K}+\frac{1}{F} \widetilde{K}-\frac{n-p}{F}\left(\operatorname{tr}(T)+\frac{(n-p-1) \Delta F}{4 F}\right) . \tag{11}
\end{equation*}
$$

Using (5)-(9) and (11), we obtain the following relations for the local components $C_{r s t u}$ of the tensor C of $\bar{g} \oplus F \widetilde{g}$:

$$
\begin{align*}
C_{a b c d}= & \bar{R}_{a b c d}-\frac{1}{n-2}\left(\bar{g}_{a d} \bar{S}_{b c}-\bar{g}_{a c} \bar{S}_{b d}+\bar{g}_{b c} \bar{S}_{a d}-\bar{g}_{b d} \bar{S}_{a c}\right) \tag{12}\\
& +\frac{n-p}{2(n-2) F}\left(\bar{g}_{a d} T_{b c}-\bar{g}_{a c} T_{b d}+\bar{g}_{b c} T_{a d}-\bar{g}_{b d} T_{a c}\right) \\
& +\frac{K}{(n-1)(n-2)} \bar{G}_{a b c d}, \\
C_{\alpha a b \beta}= & -\frac{1}{n-2}\left(\frac{p-2}{2} T_{a b}+F \bar{S}_{a b}\right) \widetilde{g}_{\alpha \beta}-\frac{1}{n-2} \bar{g}_{a b} \widetilde{S}_{\alpha \beta} \tag{13}\\
& +\frac{1}{(n-1)(n-2)} \\
\times(F \bar{K}+\widetilde{K} & \left.-\frac{(n-2 p+1) \operatorname{tr}(T)}{2}+\frac{(p-1)(n-p-1) \Delta F}{4 F}\right) \bar{g}_{a b} \widetilde{g}_{\alpha \beta}
\end{align*}
$$

$$
\begin{align*}
C_{\alpha \beta \gamma \delta}= & F \widetilde{R}_{\alpha \beta \gamma \delta}-\frac{F}{n-2}\left(\widetilde{g}_{\alpha \delta} \widetilde{S}_{\beta \gamma}-\widetilde{g}_{\alpha \gamma} \widetilde{S}_{\beta \delta}+\widetilde{g}_{\beta \gamma} \widetilde{S}_{\alpha \delta}-\widetilde{g}_{\beta \delta} \widetilde{S}_{\alpha \gamma}\right) \tag{14}\\
& +F P \widetilde{G}_{\alpha \beta \gamma \delta} \\
C_{a b c \alpha}= & C_{a b \alpha \beta}=C_{a \alpha \beta \gamma}=0, \\
P= & \frac{1}{n-2}\left(\frac{F K}{n-1}+\operatorname{tr}(T)+\frac{(n-2 p) \Delta F}{4 F}\right) .
\end{align*}
$$

Lemma 4 ([6], Theorem 1). The curvature tensor R of a warped product $M \times{ }_{F} N$ satisfies $R \cdot R=L Q(g, R)$ if and only if

$$
\begin{gather*}
(\bar{R} \cdot \bar{R})_{a b c d e f}=L Q(\bar{g}, \bar{R})_{a b c d e f}, \tag{17}\\
H^{f}{ }_{d} \bar{R}_{f a b c}=\frac{1}{2 F}\left(T_{a c} H_{b d}-T_{a b} H_{c d}\right), \tag{18}\\
H_{a d}\left(\widetilde{R}_{\delta \alpha \beta \gamma}-\frac{\Delta F}{4 F} \widetilde{G}_{\delta \alpha \beta \gamma}\right)=-\frac{1}{2} T_{f d} H^{f}{ }_{a} \widetilde{G}_{\delta \alpha \beta \gamma}, \tag{19}\\
(\widetilde{R} \cdot \widetilde{R})_{\alpha \beta \gamma \delta \lambda \mu}=\left(L F+\frac{\Delta F}{4 F}\right) Q(\widetilde{g}, \widetilde{R})_{\alpha \beta \gamma \delta \lambda \mu}, \tag{20}
\end{gather*}
$$

where

$$
\begin{equation*}
H_{a d}=\frac{1}{2} T_{a d}+F L \bar{g}_{a d} . \tag{21}
\end{equation*}
$$

Lemma 5 ([6], Corollary 1). Let $(M, \bar{g}), \operatorname{dim} M \geq 2$ and $(N, \widetilde{g}), \operatorname{dim} N \geq$ 2 , be manifolds of constant curvature. The curvature tensor R of the warped product $M \times{ }_{F} N$ satisfies $R \cdot R=L Q(g, R)$ if and only if

$$
\begin{gather*}
\frac{2 \bar{K}}{p(p-1)}\left(\bar{g}_{a b} H_{c d}-\bar{g}_{a c} H_{b d}\right)=\frac{1}{F}\left(T_{a c} H_{b d}-T_{a b} H_{c d}\right), \tag{22}\\
H_{a d}\left(\frac{\widetilde{K}}{(n-p)(n-p-1)}-\frac{\Delta F}{4 F}\right)=-\frac{1}{2} T_{f d} H_{a}^{f}
\end{gather*}
$$

Using (4)-(16), (21) and Lemma 2(iii), we obtain
Lemma 6. The only local components of the Weyl conformal curvature tensor C of a 4-dimensional warped product $M \times_{F} N$ which are not identically zero are

$$
\begin{align*}
C_{\alpha 11 \beta} & =-\frac{1}{2} \bar{g}_{11}\left(\widetilde{S}_{\alpha \beta}-\frac{\widetilde{K}}{3} \widetilde{g}_{\alpha \beta}\right) \tag{24}\\
C_{\alpha \beta \gamma \delta} & =\frac{F}{2}\left(\widetilde{g}_{\alpha \delta} \widetilde{S}_{\beta \gamma}-\widetilde{g}_{\alpha \gamma} \widetilde{S}_{\beta \delta}+\widetilde{g}_{\beta \gamma} \widetilde{S}_{\alpha \delta}-\widetilde{g}_{\beta \delta} \widetilde{S}_{\alpha \gamma}\right)-\frac{F \widetilde{K}}{3} \widetilde{G}_{\alpha \beta \gamma \delta} \tag{25}
\end{align*}
$$

provided that $\operatorname{dim} M=1$;

$$
\begin{equation*}
C_{a b c d}=\frac{P}{F} G_{a b c d}, \quad P=\frac{1}{6}\left(F \bar{K}+\widetilde{K}+\operatorname{tr}(T)-\frac{\Delta F}{2 F}\right), \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
C_{\alpha \beta \gamma \delta}=\frac{P}{F} G_{\alpha \beta \gamma \delta}, \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
C_{\alpha a b \beta}=-\frac{P}{2 F} G_{\alpha a b \beta} \tag{28}
\end{equation*}
$$

provided that $\operatorname{dim} M=2$;
(29) $C_{4 a b 4}=-\frac{1}{2} \widetilde{g}_{44} W_{a b}, \quad W_{a b}=V_{a b}-\frac{\operatorname{tr}(V)}{3} \bar{g}_{a b}, \quad V_{a b}=F \bar{S}_{a b}+\frac{1}{2} T_{a b}$,
(30) $C_{a b c d}=\frac{1}{2 F}\left(\bar{g}_{a d} W_{b c}+\bar{g}_{b c} W_{a d}-\bar{g}_{a c} W_{b d}-\bar{g}_{b d} W_{a c}\right)$,
provided that $\operatorname{dim} M=3$.
From the above lemma the following theorem follows immediately:
Theorem 1. Suppose $\operatorname{dim} M \times_{F} N=4$.
(i) If $\operatorname{dim} M=1$, then $M \times{ }_{F} N$ is conformally flat if and only if

$$
\widetilde{S}=\frac{\widetilde{K}}{3} \widetilde{g}
$$

(ii) If $\operatorname{dim} M=2$, then $M \times_{F} N$ is conformally flat if and only if

$$
\operatorname{tr}(T)=-\frac{F K}{3}
$$

(iii) If $\operatorname{dim} M=3$, then $M \times_{F} N$ is conformally flat if and only if

$$
F \bar{S}+\frac{T}{2}=\frac{1}{3}\left(F \bar{K}+\frac{\operatorname{tr}(T)}{2}\right) \bar{g} .
$$

Remark 2. (i) Necessary and sufficient conditions for $M \times{ }_{F} N$, $\operatorname{dim} M \times_{F} N \geq 4$ and $\operatorname{dim} N \geq 2$, to be conformally flat are given in [19] (Theorem 1).
(ii) An example of a 4-dimensional conformally flat warped product $M \times{ }_{F} N, \operatorname{dim} N=1$, is described in [2] (Lemma 4.3). The manifold (M, \bar{g}) considered in that example is non-semi-symmetric, conformally flat and pseudo-symmetric, but $M \times_{F} N$ is not pseudo-symmetric.
(iii) The assertion (iii) of Theorem 1 can be easily generalized (by making use of (12)-(16)) as follows: The manifold $M \times_{F} N, \operatorname{dim} M=n-1, n \geq 4$, is conformally flat if and only if

$$
\bar{C}=0 \quad \text { and } \quad F \bar{S}+\frac{(n-3) T}{2}=\frac{1}{n-1}\left(F \bar{K}+\frac{(n-3) \operatorname{tr}(T)}{2}\right) \bar{g}
$$

on M.
Another consequence of Lemma 6 is
Theorem 2. Suppose $\operatorname{dim} M \times_{F} N=4$ and $\operatorname{dim} M=2$. Then $C \cdot C=$ $-\frac{P}{2 F} Q(g, C)$ on $M \times{ }_{F} N$.

The tensor $C \cdot C$ is defined analogously to the tensor $R \cdot T$ in Section 2. Riemannian manifolds satisfying the condition $C \cdot C=0$ were considered in [4] (see also [13], Corollary 1).

Lemma 7 ([7], Theorem 1). The Ricci tensor S of $M \times_{F} N$ satisfies $R \cdot S=L Q(g, S)$ if and only if
(31) $\quad(\bar{R} \cdot \bar{S})_{a b c d}-L Q(\bar{g}, \bar{S})_{a b c d}=\frac{n-p}{F}\left((\bar{R} \cdot H)_{a b c d}-L Q(\bar{g}, H)_{a b c d}\right)$,
(32)

$$
=H_{c b}\left(\bar{S}^{c}{ }_{a}-\frac{n-p}{2 F} T^{c}{ }_{a}\right) g_{\alpha \beta}
$$

$$
H_{a b}\left(\widetilde{S}_{\alpha \beta}-\frac{1}{2 F}\left(\operatorname{tr}(T)+\frac{(n-p-1) \Delta F}{2 F}\right) g_{\alpha \beta}\right)
$$

$$
\begin{equation*}
(\widetilde{R} \cdot \widetilde{S})_{\alpha \beta \gamma \delta}=\left(L F+\frac{\Delta F}{4 F}\right) Q(\widetilde{g}, \widetilde{S})_{\alpha \beta \gamma \delta} \tag{33}
\end{equation*}
$$

Lemma 8 ([7], Corollary 1). Let $(M, \bar{g}), \operatorname{dim} M \geq 2$ and $(N, \widetilde{g}), \operatorname{dim} N \geq$ 2, be Einstein manifolds. Then the Ricci tensor S of $M \times{ }_{F} N$ satisfies $R \cdot S=L Q(g, S)$ if and only if

$$
\begin{gather*}
\frac{(\bar{R} \cdot H)_{a b c d}=L Q(\bar{g}, H)_{a b c d}}{\frac{F}{n-p}\left(\frac{\bar{K}}{p}-\frac{\widetilde{K}}{(n-p) F}+(n-p) L\right.} \tag{34}\\
\left.\quad+\frac{1}{2 F}\left(\operatorname{tr}(T)+\frac{(n-p-1) \Delta F}{2 F}\right)\right) H_{a b}=H_{a c} H_{b}^{c}
\end{gather*}
$$

4. Not conformally flat 4-dimensional warped products satisfying $R \cdot C=L Q(g, C)$

Proposition 1. Suppose $R \cdot C=L Q(g, C)$ on $M \times{ }_{F} N$, where $\operatorname{dim} M=1$ and $\operatorname{dim} N=3$. If C is non-zero at $x \in M \times{ }_{F} N$ then $R \cdot R=L Q(g, R)$ at x.

Proof. From (2) we have

$$
(R \cdot C)_{\alpha \beta \gamma \delta \lambda \mu}=L Q(g, C)_{\alpha \beta \gamma \delta \lambda \mu},
$$

whence, by (7), it follows that

$$
(\widetilde{R} \cdot C)_{\alpha \beta \gamma \delta \lambda \mu}=\left(L F+\frac{\Delta F}{4 F}\right) Q(\widetilde{g}, C)_{\alpha \beta \gamma \delta \lambda \mu}
$$

This, by an application of (25) and contraction with $\widetilde{g}^{\beta \gamma}$, yields

$$
(\widetilde{R} \cdot \widetilde{S})_{\alpha \delta \lambda \mu}=\left(L F+\frac{\Delta F}{4 F}\right) Q(\widetilde{g}, \widetilde{S})_{\alpha \delta \lambda \mu}
$$

which, in view of Lemma 2(i) and Lemma 1, implies (20). Further, the relation $(R \cdot C)_{1 \alpha \beta \gamma 1 \delta}=L Q(g, C)_{1 \alpha \beta \gamma 1 \delta}$, in virtue of (6), (15), (24) and (21), turns into

$$
H_{11}\left(\frac{1}{F} C_{\delta \alpha \beta \gamma}-\frac{\widetilde{K}}{6} \widetilde{G}_{\delta \alpha \beta \gamma}+\frac{1}{2}\left(\widetilde{g}_{\gamma \delta} \widetilde{S}_{\alpha \beta}-\widetilde{g}_{\beta \delta} \widetilde{S}_{\alpha \gamma}\right)\right)=0 .
$$

Applying (25) and contracting the resulting equality with $\widetilde{g}^{\gamma \delta}$, we get $H_{11}\left(\widetilde{S}_{\alpha \beta}-\frac{\widetilde{K}}{3} \widetilde{g}_{\alpha \beta}\right)=0$, which, by $(24),(25)$ and the assumption $C(x) \neq 0$, gives $H_{11}(x)=0$. Now Lemma 4 completes the proof.

Proposition 2. Suppose $R \cdot C=L Q(g, C)$ on $M \times_{F} N$, where $\operatorname{dim} M=$ $\operatorname{dim} N=2$. If C is non-zero at $x \in M \times_{F} N$ then $R \cdot R=L Q(g, R)$ and $H=0$ at x.

Proof. The relation $(R \cdot C)_{a \alpha \beta \gamma d \delta}=L Q(g, C)_{a \alpha \beta \gamma d \delta}$, by making use of (15), (27), (28), (6) and (21), gives $P H=0$. Since $C(x) \neq 0$, it follows that $H(x)=0$. But this, in view of Lemma 5, completes the proof.

Proposition 3. Suppose $R \cdot C=L Q(g, C)$ on $M \times{ }_{F} N$, where $\operatorname{dim} M=3$ and $\operatorname{dim} N=1$. If C is non-zero at $x \in M \times{ }_{F} N$ then $R \cdot R=L Q(g, R)$ at x.

Proof. From the equality $(R \cdot C)_{4 a b 4 c d}=L Q(g, C)_{4 a b 4 c d}$, by making use of (15) and (29), it follows that

$$
\begin{equation*}
(\bar{R} \cdot W)_{a b c d}=L Q(\bar{g}, W)_{a b c d} \tag{36}
\end{equation*}
$$

Furthermore, the equality $(R \cdot C)_{4 a b c d 4}=L Q(g, C)_{4 a b c d 4}$, by an application of (6), (15), (29) and (21), yields

$$
\begin{equation*}
H_{d}^{e} C_{e a b c}=\frac{1}{2 F}\left(H_{b d} W_{a c}-H_{c d} W_{a b}\right) \tag{37}
\end{equation*}
$$

whence, by (30), we get

$$
\begin{equation*}
\bar{g}_{a b} H_{d}^{e} W_{e c}-\bar{g}_{a c} H_{d}^{e} W_{e b}+2\left(W_{a b} H_{c d}-W_{a c} H_{b d}\right)=0 . \tag{38}
\end{equation*}
$$

Contracting this with $\bar{g}^{a d}$ and $\bar{g}^{c d}$ respectively, we obtain

$$
\begin{equation*}
H_{a}^{e} W_{e b}=H_{b}^{e} W_{e a}, \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
H^{e}{ }_{b} W_{e a}=\frac{2}{3} \tau W_{a b}+\frac{1}{3} \rho \bar{g}_{a b}, \quad \rho=H^{e f} W_{e f}, \quad \tau=\operatorname{tr}(H) \tag{40}
\end{equation*}
$$

respectively. Now (38) takes the form

$$
\begin{equation*}
\left(W_{a b} H_{c d}-W_{a c} H_{b d}\right)+\frac{1}{3} \tau\left(\bar{g}_{a b} W_{c d}-\bar{g}_{a c} W_{b d}\right)+\frac{1}{6} \rho \bar{G}_{d a b c}=0 \tag{41}
\end{equation*}
$$

Transvecting the above equality with $H^{a b}$ and using (39) and (40) we find

$$
\begin{equation*}
H_{c d}=\frac{2}{3} \tau^{2} W_{c d}+\frac{1}{3} \tau \rho \bar{g}_{c d} \tag{42}
\end{equation*}
$$

From this we have $\rho \bar{R} \cdot H=\frac{2}{3} \tau^{2} \bar{R} \cdot W$ and, by (36),

$$
\bar{R} \cdot H=\frac{2}{3} \tau^{2} L Q(\bar{g}, W)
$$

Applying (42) in the last equality, we get

$$
\begin{equation*}
\rho(\bar{R} \cdot H-L Q(\bar{g}, H))=0 \tag{43}
\end{equation*}
$$

which, by (21), implies

$$
\begin{equation*}
\rho(\bar{R} \cdot T-L Q(\bar{g}, T))=0 \tag{44}
\end{equation*}
$$

Thus (36), in virtue of (29) and (44), turns into

$$
\begin{equation*}
\rho(\bar{R} \cdot \bar{S}-L Q(\bar{g}, \bar{S}))=0 \tag{45}
\end{equation*}
$$

We have now the two possibilities: (a) $\rho(x) \neq 0$ and (b) $\rho(x)=0$.
(a) In this case $\bar{R} \cdot \bar{S}=L Q(\bar{g}, \bar{S})$. Thus, in view of Lemma 1 , (17) holds at x. Now, we prove that (18) also holds at x. (42) shows that this is trivial if $\tau(x)=0$. Suppose that $\tau(x) \neq 0$. First of all, we note that from (41), by transvection with $H^{a}{ }_{f}$ and an application of (40) and (42) the following relation can be obtained at x :

$$
\begin{equation*}
H_{b f} H_{c d}-H_{c f} H_{b d}=0 \tag{46}
\end{equation*}
$$

whence

$$
\begin{equation*}
H_{b f} H^{f}{ }_{d}=\tau H_{b d} \tag{47}
\end{equation*}
$$

Next, transvecting the equality $\bar{C}_{e a b c}=0$ with $H^{e}{ }_{d}$ we obtain

$$
\begin{align*}
H_{d}^{e} \bar{R}_{e a b c}=H_{c d} \bar{S}_{a b}-H_{b d} \bar{S}_{a c} & +\bar{g}_{a b} \bar{S}_{e c} H_{d}^{e}-\bar{g}_{a c} \bar{S}_{e b} H_{d}^{e} \tag{48}\\
& -\frac{\bar{K}}{2}\left(\bar{g}_{a b} H_{c d}-\bar{g}_{a c} H_{b d}\right) .
\end{align*}
$$

The formula (42), by making use of (29), can be rewritten in the form

$$
\begin{equation*}
F \bar{S}_{a b}=\left(\frac{3}{2} \frac{1}{\tau^{2}} \rho-1\right) H_{a b}+\left(F L-\frac{1}{2 \tau} \rho\right) \bar{g}_{a b} \tag{49}
\end{equation*}
$$

which, by transvection with $H^{b}{ }_{d}$ and the use of (47), yields

$$
F \bar{S}_{e a} H_{d}^{e}=\left(\frac{1}{\tau} \rho-\tau+F L\right) H_{a d}
$$

Applying the last two equalities in (48) we get

$$
\begin{aligned}
H_{d}^{e} \bar{R}_{e a b c}= & \frac{1}{F}\left(\frac{3}{2 \tau^{2}} \rho-1\right)\left(H_{c d} H_{a b}-H_{b d} H_{a c}\right) \\
& +\frac{1}{F}\left(\frac{1}{2 \tau} \rho-\tau+2 F L-\frac{\bar{K} F}{2}\right)\left(\bar{g}_{a b} H_{c d}-\bar{g}_{a c} H_{b d}\right)
\end{aligned}
$$

which, by (46), reduces to

$$
\begin{equation*}
H_{d}^{e} \bar{R}_{e a b c}=\frac{1}{F}\left(\frac{1}{2 \tau} \rho-\tau+2 F L-\frac{\bar{K} F}{2}\right)\left(\bar{g}_{a b} H_{c d}-\bar{g}_{a c} H_{b d}\right) \tag{50}
\end{equation*}
$$

This, by the Ricci identity, yields

$$
\begin{equation*}
\bar{R} \cdot H=\frac{1}{F}\left(\frac{1}{2 \tau} \rho-\tau+2 F L-\frac{\bar{K} F}{2}\right) Q(\bar{g}, H) . \tag{51}
\end{equation*}
$$

Comparing (51) with (43) we obtain

$$
\left(\frac{1}{F}\left(\frac{1}{2 \tau} \rho-\tau+2 F L-\frac{\bar{K} F}{2}\right)-L\right) Q(\bar{g}, H)=0
$$

whence

$$
\begin{equation*}
\left(\frac{1}{F}\left(\frac{1}{2 \tau} \rho-\tau+2 F L-\frac{\bar{K} F}{2}\right)-L\right)\left(H-\frac{\tau}{3} \bar{g}\right)=0 \tag{52}
\end{equation*}
$$

If $(H-(\tau / 3) \bar{g})(x)=0$, then (49) gives $\bar{S}=(\bar{K} / 3) \bar{g}$. But this, by (29), gives $W=0$ and, consequently, $C(x)=0$, which is a contradiction. So $(H-(\tau / 3) \bar{g})(x) \neq 0$. Applying now (52) in (50) we get

$$
\begin{equation*}
H_{d}^{e} \bar{R}_{e a b c}=L\left(\bar{g}_{a b} H_{c d}-\bar{g}_{a c} H_{b d}\right) \tag{53}
\end{equation*}
$$

Note that (46) can be expressed in the following form:

$$
L\left(\bar{g}_{a b} H_{c d}-\bar{g}_{a c} H_{b d}\right)=\frac{1}{2 F}\left(T_{a c} H_{b d}-T_{a b} H_{c d}\right) .
$$

Thus (53) turns into (18).
(b) Since ρ vanishes at x, the formula (42) takes the form $\tau W=0$, whence, by (29), (30) and the assumption $C(x) \neq 0$, we obtain the equality

$$
\begin{equation*}
\tau=\frac{\operatorname{tr}(T)}{2}+3 F L=0 \tag{54}
\end{equation*}
$$

at this point. The tensor W now takes the form

$$
\begin{equation*}
W_{a b}=F \bar{S}_{a b}-\frac{F \bar{K}}{3} \bar{g}_{a b}+H_{a b} \tag{55}
\end{equation*}
$$

The formula (40), by (54), gives

$$
\begin{equation*}
H^{e}{ }_{a} W_{e b}=0 \tag{56}
\end{equation*}
$$

Thus (38) turns into

$$
\begin{equation*}
W_{a b} H_{c d}-W_{a c} H_{b d}=0 \tag{57}
\end{equation*}
$$

which can be rewritten in the form
(58) $F\left(\bar{S}_{a b} H_{c d}-\bar{S}_{a c} H_{b d}\right)=H_{a c} H_{b d}-H_{a b} H_{c d}+\frac{F \bar{K}}{3}\left(\bar{g}_{a b} H_{c d}-\bar{g}_{a c} H_{b d}\right)$.

From (57), by transvection with $H^{c}{ }_{e}$ and making use of (56), we find

$$
\begin{equation*}
H_{c d} H_{e}^{c}=0 \tag{59}
\end{equation*}
$$

Further, transvecting (55) with $H^{a}{ }_{d}$ and applying (56) and (59) we get

$$
\begin{equation*}
H^{c}{ }_{a} \bar{S}_{c d}=\frac{\bar{K}}{3} H_{a d} \tag{60}
\end{equation*}
$$

Next, transvecting (58) with $\bar{S}_{e}{ }^{b}$ and using (60) we obtain

$$
\begin{aligned}
& F\left(\bar{S}_{e}{ }^{b} \bar{S}_{a b}-\frac{\bar{K}}{3} \bar{S}_{e a}\right) H_{c d} \\
& \quad=\frac{\bar{K}}{3}\left(H_{a c} H_{e d}-H_{e a} H_{c d}\right)+\frac{F \bar{K}}{3}\left(\bar{S}_{a c}-\frac{\bar{K}}{3} \bar{g}_{a c}\right) H_{e d}
\end{aligned}
$$

which, by (58), turns into

$$
\begin{gathered}
\left(\bar{S}^{2}-\frac{2 \bar{K} \bar{S}}{3}+\frac{\bar{K}^{2}}{9} \bar{g}\right) H=0, \quad \text { or } \\
\left(\left(\bar{S}^{2}-\frac{\operatorname{tr}\left(\bar{S}^{2}\right)}{3} \bar{g}\right)-\left(\frac{\bar{K}}{6}+\frac{\bar{K}}{2}\right)\left(\bar{S}-\frac{\bar{K}}{3} \bar{g}\right)+\frac{1}{3}\left(\operatorname{tr}\left(\bar{S}^{2}\right)-\frac{\bar{K}^{2}}{3}\right) \bar{g}\right) H=0
\end{gathered}
$$

and

$$
\begin{equation*}
\left(\left(\bar{S}^{2}-\frac{\operatorname{tr}\left(\bar{S}^{2}\right)}{3} \bar{g}\right)-\left(\frac{\bar{K}}{6}+\frac{\bar{K}}{2}\right)\left(\bar{S}-\frac{\bar{K}}{3} \bar{g}\right)\right) H=0 . \tag{61}
\end{equation*}
$$

Suppose that $H(x)=0$. Then, of course, (18) holds at x. The formula (36) turns into $\bar{R} \cdot \bar{S}=L Q(\bar{g}, \bar{S})$. But this, in view of Lemma 2(i) and Lemma 1, implies (17). Consider now the case $H(x) \neq 0$. Then (61) gives

$$
\bar{S}^{2}-\frac{\operatorname{tr}\left(\bar{S}^{2}\right)}{3} \bar{g}=\left(\frac{\bar{K}}{6}+\frac{\bar{K}}{2}\right)\left(\bar{S}-\frac{\bar{K}}{3} \bar{g}\right)
$$

But this, in view of Lemma 2(i) and Lemma 1, yields $\bar{R} \cdot \bar{R}=L Q(\bar{g}, \bar{R})$ and (62)

$$
L=\bar{K} / 6
$$

Thus the condition (17) is fulfilled. Finally, the identity (48), in virtue of (60), gives

$$
H^{e}{ }_{d} \bar{R}_{e a b c}=H_{c d} \bar{S}_{a b}-H_{b d} \bar{S}_{a c}-\frac{\bar{K}}{6}\left(\bar{g}_{a b} H_{c d}-\bar{g}_{a c} H_{b d}\right)
$$

which, by (58), turns into

$$
F H^{e}{ }_{d} \bar{R}_{e a b c}=H_{a c} H_{b d}-H_{a b} H_{c d}+\frac{F \bar{K}}{6}\left(\bar{g}_{a b} H_{a c}-\bar{g}_{a c} H_{b d}\right)
$$

This, by making use of (61) and (21), leads to (18). Our proposition is thus proved.

Combining Propositions 1-3 we obtain

Theorem 3. Suppose $\operatorname{dim} M \times_{F} N=4$. If at a point of $M \times_{F} N$ the tensor C is non-zero, then the relations $R \cdot C=L Q(g, C)$ and $R \cdot R=$ $L Q(g, R)$ are equivalent at this point.

The following corollary is a consequence of Theorem 2.
Corollary 1. Let $M \times_{F} N$ be an analytic not conformally flat 4dimensional warped product. Then the relations $R \cdot C=L Q(g, C)$ and $R \cdot R=L Q(g, R)$ are equivalent on $M \times_{F} N$.
5. Non-Einstein 4-dimensional warped product satisfying $R \cdot S=$ $L Q(g, S)$

Proposition 4. Suppose $R \cdot S=L Q(g, S)$ on $M \times{ }_{F} N$, where $\operatorname{dim} M=1$ and $\operatorname{dim} N=3$. If $S-(K / 4) g$ is non-zero at $x \in M \times_{F} N$, then $R \cdot R=$ $L Q(g, R)$ at x.

Proof. The equality (33), in view of Lemma 2(i) and Lemma 1, turns into (20). Further, (32) yields

$$
H_{11}\left(\widetilde{S}_{\alpha \beta}-\left(\frac{1}{2 F} \Delta F-\operatorname{tr}(T)\right) \widetilde{g}_{\alpha \beta}\right)=0
$$

whence $H(\widetilde{S}-(\widetilde{K} / 3) \widetilde{g})=0$. If $H=0$, then (18) and (19) are satisfied and Lemma 4 completes the proof. If $\widetilde{S}-(\widetilde{K} / 3) \widetilde{g}=0$, then $C=0$, and our assertion, by Lemma 1, is also true.

Proposition 5. Suppose $R \cdot S=L Q(g, S)$ on $M \times_{F} N$, where $\operatorname{dim} M=$ $\operatorname{dim} N=2$. If $S-(K / 4) g$ is non-zero at $x \in M \times{ }_{F} N$ then $R \cdot R=L Q(g, R)$ at x.

Proof. The relations (34) and (35) take the forms

$$
\begin{gather*}
\left(L-\frac{\bar{K}}{2}\right)\left(H-\frac{\operatorname{tr}(H)}{2} \bar{g}\right)=0, \tag{63}\\
H_{c a} H^{c}{ }_{b}=\rho H_{a b} \tag{64}
\end{gather*}
$$

respectively, where

$$
\begin{equation*}
\rho=\frac{F}{2}\left(\frac{\bar{K}}{2}-\frac{\widetilde{K}}{2 F}+2 L+\frac{\operatorname{tr}(T)}{2 F}+\frac{1}{4 F^{2}} \Delta F\right) . \tag{65}
\end{equation*}
$$

In view of Lemma 2(iii), H satisfies the following identity at x :

$$
\begin{equation*}
\bar{g}_{b c} H_{a d}+\bar{g}_{a d} H_{b c}-\bar{g}_{a c} H_{b d}-\bar{g}_{b d} H_{a c}=\operatorname{tr}(H)\left(\bar{g}_{a d} \bar{g}_{b c}-\bar{g}_{a c} \bar{g}_{b d}\right) . \tag{66}
\end{equation*}
$$

Transvecting this with $H^{b}{ }_{f}$ and using (64) we get

$$
\begin{equation*}
H_{c f} H_{a d}-H_{d f} H_{a c}=(\operatorname{tr}(H)-\rho)\left(\bar{g}_{a d} H_{c f}-\bar{g}_{a c} H_{d f}\right), \tag{67}
\end{equation*}
$$

whence, by transvection with $H^{c f}$ and making use of (64) we obtain

$$
\begin{equation*}
\rho(\operatorname{tr}(H)-\rho)\left(H-\frac{\operatorname{tr}(H)}{2} \bar{g}\right)=0 . \tag{68}
\end{equation*}
$$

Consider two possibilities:
(a) $\left(H-\frac{\operatorname{tr}(H)}{2} \bar{g}\right)(x) \neq 0$,
(b) $\left(H-\frac{\operatorname{tr}(H)}{2} \bar{g}\right)(x)=0$.
(a) In this case we have

$$
\begin{gather*}
L=\bar{K} / 2 \tag{69}\\
\rho(\operatorname{tr}(H)-\rho)=0 . \tag{70}
\end{gather*}
$$

(a1) Suppose additionally that $\rho(x)=0$. Then from (64) and (67) it follows that $\operatorname{tr}(H) H_{a e}=0$ and, in consequence,

$$
\begin{equation*}
\operatorname{tr}(H)=0 \tag{71}
\end{equation*}
$$

Now (67), by (21), (69) and (71), turns into (22). Further, (71) gives $L=$ $-\operatorname{tr}(T) /(4 F)$. Thus, from (65) we obtain $F L=\widetilde{K} / 2-\Delta F /(4 F)$. But this, together with (64) and (21), yields (23). Now Lemma 5 completes the proof.
(a2) Let $\rho(x) \neq 0$. Then, in virtue of (70), we get

$$
\begin{equation*}
\operatorname{tr}(H)=\rho \tag{72}
\end{equation*}
$$

Applying this, (21) and (69) in (67) we obtain (22). Further, (72) yields

$$
\frac{\operatorname{tr}(T)}{4}+F L=\frac{F L}{2}-\frac{\widetilde{K}}{4}+\frac{\Delta F}{8 F}
$$

whence

$$
\operatorname{tr}(H)=F L-\frac{\widetilde{K}}{2}+\frac{\Delta F}{4 F} .
$$

But this, together with (72) and (64), yields (23). Now Lemma 5 completes the proof in this case.
(b) Now (64) takes the form

$$
\begin{equation*}
\operatorname{tr}(H)\left(\frac{\operatorname{tr}(H)}{2}-\rho\right)=0 \tag{73}
\end{equation*}
$$

If $\operatorname{tr}(H)=0$, then also $H=0$ and Lemma 5 completes the proof. If $\operatorname{tr}(H) \neq$ 0 , then (73) gives $\operatorname{tr}(H)=2 \rho$, whence we get $F \bar{K} / 2=\widetilde{K} / 2-\Delta F /(4 F)$. Moreover, the equality $H=\frac{1}{2} \operatorname{tr}(H) \bar{g}$ yields $T=\frac{1}{2} \operatorname{tr}(T) \bar{g}$. Now (8) and (9) lead to $S=(K / 4) g$, a contradiction. This completes the proof.

Proposition 6. Suppose $R \cdot S=L Q(g, S)$ on $M \times_{F} N$, where $\operatorname{dim} M=3$ and $\operatorname{dim} N=1$. If $S-(K / 4) g$ and C are non-zero at $x \in M \times{ }_{F} N$, then $R \cdot R=L Q(g, R)$ at x.

Proof. We consider two cases:
(a) $(\bar{S}-(\bar{K} / 3) \bar{g})(x)=0$,
(b) $(\bar{S}-(\bar{K} / 3) \bar{g})(x) \neq 0$.
(a) The relation (31) turns into $(L-\bar{K} / 6) Q(\bar{g}, H)=0$, which, by Remark 1, yields

$$
\begin{equation*}
\left(L-\frac{\bar{K}}{6}\right)\left(H-\frac{\operatorname{tr}(H)}{3} \bar{g}\right)=0 . \tag{74}
\end{equation*}
$$

If $H-(\operatorname{tr}(H) / 3) \bar{g}=0$, then (29) and (30) yield $C=0$, a contradiction. If $H-(\operatorname{tr}(H) / 3) \bar{g} \neq 0$, then from (74) we obtain $L=\bar{K} / 6$. Further, (32) takes the form $H_{c a} H^{c}{ }_{b}=\frac{1}{2}(F \bar{K}+\operatorname{tr}(T)) H_{a b}$. Let B be a (0,4)-tensor with local components $B_{a b c d}=H_{a d} H_{b c}-H_{a c} H_{b d}$. We note that $\operatorname{Ricc}(B)=0$ and $K(B)=0$. Thus Lemma 2(ii) implies $B_{a b c d}=0$, whence

$$
\frac{\bar{K}}{3}\left(\bar{g}_{a b} H_{c d}-\bar{g}_{a c} H_{b d}\right)=\frac{1}{F}\left(T_{a c} H_{b d}-T_{a b} H_{c d}\right)
$$

But this turns into (18). Now Lemma 4 completes the proof.
(b) We rewrite (32) in the form

$$
\begin{align*}
& H_{a b}^{2}=\left(F L+\frac{\operatorname{tr}(T)}{2}\right) H_{a b}+F A_{a b}, \tag{75}\\
& H_{a b}^{2}=H_{c a} H_{b}^{c}, \quad A_{a b}=\bar{S}_{c a} H^{c}{ }_{b} .
\end{align*}
$$

Now, transvecting the identity $\bar{C}_{e b c d}=0$ with $H_{a}{ }^{e}$ and $\bar{S}_{a}{ }^{e}$ respectively, we obtain

$$
\begin{align*}
H_{a}^{e} \bar{R}_{e b c d}=H_{a d} \bar{S}_{b c}-H_{a c} \bar{S}_{b d} & +\bar{g}_{b c} A_{a d} \tag{76}\\
& \quad-\bar{g}_{b d} A_{a c}-\frac{\bar{K}}{2}\left(\bar{g}_{b c} H_{a d}-\bar{g}_{b d} H_{a c}\right), \\
\bar{S}_{a}{ }^{e} \bar{R}_{e b c d}=\bar{S}_{a d} \bar{S}_{b c}-\bar{S}_{a c} \bar{S}_{b d} & +\bar{g}_{b c} \bar{S}^{2}{ }_{a d} \\
& \quad-\bar{g}_{b d} \bar{S}^{2}{ }_{a c}-\frac{\bar{K}}{2}\left(\bar{g}_{b c} \bar{S}_{a d}-\bar{g}_{b d} \bar{S}_{a c}\right)
\end{align*}
$$

respectively, where $\bar{S}^{2}{ }_{a d}=\bar{S}_{e a} \bar{S}^{e}{ }_{d}$. From the last two relations, by symmetrization in a, b and making use of the Ricci identity and (31), it follows that

$$
\begin{equation*}
Q\left(\bar{g}, F \bar{S}^{2}-F\left(\frac{\bar{K}}{2}+L\right) \bar{S}-A+\left(\frac{\bar{K}}{2}+L\right) H\right)_{a b c d}=-Q(H, \bar{S})_{a b c d} \tag{77}
\end{equation*}
$$

Contracting (77) with $\bar{g}^{a d}$ we get

$$
\begin{align*}
F \bar{S}^{2}= & \frac{F \operatorname{tr}\left(\bar{S}^{2}\right)}{3} \bar{g}+F\left(\frac{\bar{K}}{2}+L\right)\left(\bar{S}-\frac{\bar{K}}{3} \bar{g}\right)-\frac{\operatorname{tr}(H)}{3} \bar{S}+\frac{\bar{K}}{3} H \tag{78}\\
& +\left(A-\frac{\operatorname{tr}(A)}{3} \bar{g}\right)-\left(\frac{\bar{K}}{2}+L\right)\left(H-\frac{\operatorname{tr}(H)}{3} \bar{g}\right)
\end{align*}
$$

Substituting this in (77) we find

$$
\begin{equation*}
Q\left(\bar{S}-\frac{\bar{K}}{3} \bar{g}, H-\frac{\operatorname{tr}(H)}{3} \bar{g}\right)=0 . \tag{79}
\end{equation*}
$$

We may assume that $H-(\operatorname{tr}(H) / 3) \bar{g} \neq 0$. Of course, if $H=0$, then $R \cdot R=L Q(g, R)$ at x. If $H \neq 0$ and $H-(\operatorname{tr}(H) / 3) \bar{g}=0$, then (75) yields $\bar{S}=(\bar{K} / 3) \bar{g}$, a contradiction. Now (79), in view of Lemma 3, implies

$$
\begin{equation*}
\bar{S}-\frac{\bar{K}}{3} \bar{g}=\lambda\left(H-\frac{\operatorname{tr}(H)}{3} \bar{g}\right), \quad \lambda \in \mathbb{R}-\{0\} \tag{80}
\end{equation*}
$$

Thus (31) yields $(\lambda F-1)(\bar{R} \cdot \bar{S}-L Q(\bar{g}, \bar{S}))=0$. Assume that

$$
\begin{equation*}
\lambda F=1 \tag{81}
\end{equation*}
$$

then (80) gives $A=\frac{1}{3}(\bar{K}-\operatorname{tr}(H) / F) H+H^{2} / F$. Substituting this into (75) we obtain $(\bar{K}+\operatorname{tr}(T) / F) H=0$, whence $K+\operatorname{tr}(T) / F=0$. But the last relation, together with (80), (81), (8), (9) and (11), leads to $S=(K / 4) g$, a contradiction. Thus $\lambda F-1 \neq 0$ and

$$
\begin{equation*}
\bar{R} \cdot \bar{S}=L Q(\bar{g}, \bar{S}) \tag{82}
\end{equation*}
$$

Now, in view of Lemma 1, we obtain (17). Furthermore, the equality (31), in virtue of (82), (76)-(78), turns into

$$
Q\left(\bar{g},\left(L+\frac{\bar{K}}{6}\right) H+\frac{\operatorname{tr}(H)}{3} \bar{S}-A\right)=0
$$

whence, by (80), it follows that

$$
A=\frac{\operatorname{tr}(A)}{3} \bar{g}+\left(\frac{\lambda \operatorname{tr}(H)}{3}+L+\frac{\bar{K}}{6}\right)\left(H-\frac{\operatorname{tr}(H)}{3} \bar{g}\right)
$$

On the other hand, combining (75) and (80), we find

$$
\begin{equation*}
\left(\frac{1}{\lambda}-F\right) A=\frac{1}{3}\left(\operatorname{tr}(T)+\frac{\bar{K}}{\lambda}\right) H \tag{83}
\end{equation*}
$$

But the last two relations yield

$$
(\lambda \operatorname{tr}(T)-6 L(1-\lambda F)+\bar{K})(1+\lambda F)\left(H-\frac{\operatorname{tr}(H)}{3} \bar{g}\right)=0
$$

whence

$$
(\lambda \operatorname{tr}(T)-6 L(1-\lambda F)+\bar{K})(1+\lambda F)=0 .
$$

Suppose that $1+\lambda F=0$. Then (80), (29) and (30) give $C=0$, a contradiction. Thus we have $\lambda \operatorname{tr}(T)-6 L(1-\lambda F)+\bar{K}=0$, or, equivalently,

$$
\begin{equation*}
\frac{1}{\lambda}\left(L-\frac{\bar{K}}{6}\right)=\frac{\operatorname{tr}(H)}{3} . \tag{84}
\end{equation*}
$$

Thus (83) takes the form

$$
\begin{equation*}
A=2 L H \tag{85}
\end{equation*}
$$

Substituting this into (75) we obtain $H^{2}=\operatorname{tr}(H) H$. Let B be a $(0,4)$-tensor with local components $B_{a b c d}=H_{a d} H_{b c}-H_{a c} H_{b d}$. Evidently, $\operatorname{Ricc}(B)=0$ and $K(B)=0$. Thus, Lemma 2(ii) implies

$$
\begin{equation*}
B_{a b c d}=0 . \tag{86}
\end{equation*}
$$

From (80), by (86), we obtain

$$
H_{a d} \bar{S}_{b c}-H_{a c} \bar{S}_{b d}=\frac{1}{3}(\bar{K}-\lambda \operatorname{tr}(H))\left(\bar{g}_{b c} H_{a d}-\bar{g}_{b d} H_{a c}\right) .
$$

Substituting this and (85) into (76) we find

$$
H_{a}{ }^{e} \bar{R}_{e b c d}=\left(2 L-\frac{\bar{K}}{6}-\frac{\lambda \operatorname{tr}(H)}{3}\right)\left(\bar{g}_{b c} H_{a d}-\bar{g}_{b d} H_{a c}\right),
$$

whence, by (84), we get $H_{a}{ }^{e} \bar{R}_{e b c d}=L\left(\bar{g}_{b c} H_{a d}-\bar{g}_{d b} H_{a c}\right)$. But this, by (86), turns into (18). Now Lemma 4 completes the proof.

Combining Propositions 4-6 and Lemma 1 we obtain
Theorem 4. Suppose $\operatorname{dim} M \times_{F} N=4$. If $S-(K / 4) g$ is non-zero at a point of $M \times_{F} N$, then the relations $R \cdot S=L Q(g, S)$ and $R \cdot R=L Q(g, R)$ are equivalent at this point.

This theorem yields
Corollary 2. Let $M \times_{F} N$ be an analytic non-Einstein 4-dimensional warped product. Then the relations $R \cdot S=L Q(g, S)$ and $R \cdot R=L Q(g, R)$ are equivalent on $M \times{ }_{F} N$.

REFERENCES

[1] R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.
[2] J. Deprez, R. Deszcz and L. Verstraelen, Examples of pseudo-symmetric conformally flat warped products, Chinese J. Math. 17 (1989), 51-65.
[3] —, 一, 一, Pseudo-symmetry curvature conditions on hypersurfaces of Euclidean spaces and on Kählerian manifolds, Ann. Fac. Sci. Univ. Paul Sabatier Toulouse 9 (1988), 183-192.
[4] J. Deprez, P. Verheyen and L. Verstraelen, Characterization of conformally flat hypersurfaces, Czechoslovak Math. J. 35 (110) (1985), 140-145.
[5] A. Derdziński, Exemples de métriques de Kaehler et d'Einstein autoduales sur le plan complexe, in: Géométrie riemannienne en dimension 4 (Séminaire Arthur Besse 1978/79), Cedic/Fernand Nathan, Paris 1981, 334-346.
[6] R. Deszcz, On pseudo-symmetric warped product manifolds, to appear.
[7] -, On Ricci-pseudo-symmetric warped products, Demonstratio Math. 22 (1989), 1053-1065.
[8] -, On pseudo-symmetric totally umbilical submanifolds of Riemannian manifolds admitting some types of generalized curvature tensors, Zeszyty Naukowe Politech. Śla̧sk., in print.
[9] -, On conformally flat Riemannian manifolds satisfying certain curvature conditions, Tensor (N.S.), in print.
[10] -, Examples of four-dimensional Riemannian manifolds satisfying some pseudosymmetry curvature conditions, in: Geometry and Topology of Submanifolds, II, Avignon, May 1988, World Sci. Publ., Singapore 1990, 134-143.
[11] R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica 15 (1987), 311-322.
[12] —, —, On manifolds satisfying some curvature conditions, Colloq. Math. 57 (1989), 89-92.
[13] -, 一, On certain curvature conditions on Riemannian manifolds, ibid. 58 (1990), 259-268.
[14] R. Deszcz and M. Hotloś, Remarks on Riemannian manifolds satisfying certain curvature condition imposed on the Ricci tensor, Prace Nauk. Politech. Szczec. 11 (1989), 23-34.
[15] L. P. Eisenhart, Riemannian Geometry, Princeton Univ. Press, Princeton 1966.
[16] W. Grycak, Riemannian manifolds with a symmetry condition imposed on the 2-nd derivative of the conformal curvature tensor, Tensor (N.S.) 46 (1987), 287-290.
[17] G. I. Kruchkovich, On semi-reducible Riemannian spaces, Dokl. Akad. Nauk SSSR 115 (1957), 862-865 (in Russian).
[18] K. Nomizu, On the decomposition of generalized curvature tensor fields, in: Differential Geometry in honor of K. Yano, Kinokuniya, Tokyo 1972, 335-345.
[19] Y. Ogawa, On conformally flat spaces with warped product Riemannian metric, Nat. Sci. Rep. Ochanomizu Univ. 29 (1978), 117-127.
[20] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0$, J. Differential Geom. 17 (1982), 531-582.

DEPARTMENT OF MATHEMATICS
AGRICULTURAL ACADEMY
C. NORWIDA 25

50-375 WROCEAW, POLAND

