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STUDIA MATHEMATICA, T. L. (1974)

On Fourier coefficients and transforms
of functions of two variables

by
A AYGMUND (Chicago, I1L)
To Mareeli Stark
Abstract. Let f(my, #,) bo a funetion of two variables, of period 1 in cach, and let
&y = &y, DG tho Fourier cocfficients of f. Then, if 1 <;p<§ and ¢ = %;p’ = ép/(_fp -1,

we have

P Y et dylifly (g = 519

lal=r .
for all v> 0. There ig a corresponding result for Fourier fransforms of functions
FeLP(R?), 1< p< %, but the previous Qm%ﬁ' has to be replaced by g:%p’.
Moreover, the result fails in the extreme case p =§ . The wesults are sirictly two-

dimensional.
L. Let £ = (im0, #,) denote poinds on the two-dimensional torus
(Q) 0@{;(31(1, 05;m2<17

and g == (my, my) —lattice points in R¥ (m, - integers). Given any inte-
grable function f(&) on @ congider its Fourier series

R
Zcﬂ@ o )7'

6 = [f(ee =g,
@

where

With o< & = sy mym,, df = doydo,.

The origin of this Note is the following gquestion which Charles
Tofferman proposed some time ago. Doey there oxisgt o positive number
o strictly Jess than 2 woch that

( 3 16 < Al

[g#] .
whera 4 is independent of ». The following theorem gives an angwor
to the problem.

TuroraEM 1. For any r >0, we have

(1) (X leut) < Alflas,

. ot megt
where A = 541,
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100 A Zygmund
Proof. Lot us consider the set § = 8, of lattice points u = (m,), My}

with: |u| = 7 (we assume that § is not empty, since otherwise there is
nothing to prove). We then have, for a suifable sequence {y,} with

2 Il =1,

neld

(Xet) = e = 3o [fgemogg
4

=fo(§) [;' Vu e‘2n:¢(n~5)] df:

so that, by Holder’s inequality with exponents 4/3 and 4,

the equation

i = 2T fer

(1.2) (3 1el) < iflhsll 3 ppe=teny,

lel=r wel
and it is enough to show that the last factor is < 4.

Write .
(1.8) J = ”2 yﬂawzm'(ﬂ-é) 4d£ — f’ 2 hiﬁanicu—u).ﬁ]zda
& Q2 pysd

We have

Z,yﬂ;ju eﬂni(v—-n)»é — Z Feezni(q-é)’
with -
(1.4) L= 3 9.

Hp=g

Here 4 and » are in § and ¢ takes afl admissible values. Thus o designates
lattice points that are differences of two lattice points on 8. By Parseval’s
formula,

J = P,
e
It is immediate thab

I‘Omzb";&z:l'
e

VI’E ¢ 7 0, the swn (1.4) consists of one or two terms (the former if 9 == — 1)
and In any case, in view of the inequality (a-4b) < 20° + 207,

<2 N i
Y flmmgg

(o #0).
Hence

2L 3 i

240 870 r—us=p
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A moment’s consideration ghows that the pavt of the right-hand side
that contains o given |p,|? (p— fixed) i3

9 B q 2 i
D2l 3 Il =4 3P = 40— B < L,
a0 P~ fo= ol ) e
go thab

S Y = 1.
N

070
This together with [ = 1 gives J <5 and so also (11) with 4 = 5%,
© 2. TanoreM 2. Suppose that
ety f~ Yodmiod,

where 1<<p < 4)3, so that p' = p[(p—1) >4. Then, for ¢ == 4p’ (thus
2 < g < o) we have :
@.1) (3 102 < 4, 71l ‘
{#4] war !
with A, = 5", ‘

Thig is & eorollary of Theorem 1 and M. Riegz' theovem on the in-
terpolation of linear operations (see, e.g. [2y], . 95). Tor the inequality
(2.1) holds for p =3, 9 =2, Ay =5, and also clearly it p =1,
q = oo, 4, = 1. Hence given p, 1 < p < 4/3, if first wo determine ¢ from
the eguation :

p = (1—10)-§+41
{thus ¢ = (4/p)~3, 1~ = 4[p') and f}len g from the equation
1jg = (1=t} §-+80
(50 that 'g = 2/(1—38) = p"), we obtain (2.1) with
Ay (Pl = g,
3. Remarks. ;(n) In Theomjns 1 and 2 w;s congidar la.tticé points
situated on & ecircle. But the only property we used of the cirele was that

it hos no more than two chords of identical length and direetion, and it
ig clear thati if 8 is any curve (or merely a point set in the plane) with
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the property that it has no more than & chords of identical length and

direcfion, then
(3 <
Hes

(3.1)

llge 5

where 4; depends only on & (as the proof of Theorem 1 shows we may
take 4, = (2k-+1)%). This is an extension of (1.1} and it leads to an
obvious extension of (2.1). In this form the theorem is valid for any
number of dimensions » = 1,2, 3, ... However, already for # =3 the
sphere does not have the vequired property and the problem of analognoes
of (1.1) and (2.1) in this ease remains open.

b) Perhaps a simple example pertaining to the ease # = 1 deserves
mention.

Let 8 be the set of non-negative integers whose ternary developments
contain only the digits 0 and L. Ii is easy to see that any integer » = ¢
©cam. be represented at most onee as a difference of two numbers from 8.
For such a difference is a number 3 #,3' where all the ¢ are 0, £1, and
if we had }e8' = 33 ie 33 =0, whete #; = g—¢), then all
the »n; must be equal to 0. For otherwise, assuming #, 5= 0 and =0
for j> %, we would have the inequality

1-83*—2(1+3+ ... +8%Y <0,

which is impossible. (The same property has the set of mon-megative
integers ey, & = +1, provided ny,/n; = 3.)

It follows by the argument that gave Theorem 1 that if f(x), 0 < @ < 1,
iy in I*™ and e, are the Fourier coefficients of f, then

(X 16 < Al

vel

A = 3", The same argument and conclugion hold if & is replaced by
the set & of non-negative integers whose tetnary development contains
only digits ¢ and 2. The set &' has some formal resemblance to Cantor’s

set of numbers # = 35377 (g = 0, 2),
1

¢) Since the right-hand side of (1.1) can be made arbitrarily small
by subtracting frem f & polynomial, it follows that if I eL“”’“, then

Theorem 2 admits of & similar eorollary.

icm
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() The proof of Theorem 1. was hased on the dual regult: If
2rei(n- 5)
g= 2 v,
then ljgll, < 5 g, Binee [glle < (vl interpolation. of operations shows
that it 1< p =2, then
gl < 52 [yl

A similar conclugion holds for funetions 3y, ¢ of o single variable,
whero » belongs to sets § or 8 comsidered in b) above.

= 29').

4. Wo shall now congider analogues of Theorems 1 and 2 Ior Fc}u}'i’er
transfolms. Though the arguments are modelled on those ior‘]i‘_n}mer
geries they are somewhatb less simple. It is algo curious that quahtitively
the regults are somewhat different.

Let zeR® and let

o) = [flppeenay

)

be the Fourier transform of f. We would like to estimato

{ [ 1f@eas)™,

|wf=p
do deno‘r:ing the element of length, in terms of
Wl = | [1fras,
nt
for su.itubie p and g. The main resulh here is a8 follows.
TurormM 3. If feI”(R2), where
1< p <43,

j J F iy 1 gverymwl n o) = nd for
then, Jor each g > 0,.f(w) enisis olmost everywhere on 2] = g, and f

PR S S
i R
we have
(41) ( [ ifte)leao)™ < 4,0 Wfls

[zi=o

where A, is o constant depending on P only.
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The result being obvious for p = 1, we may assume that 1. < P < 4/3.

This implies that
4/3 < g < oo.

timce, in any case, 1< p<2, the existence of f(m) almost everywhero
5 o classical result; the novelty here is that if p < 4/3 the transform
f exists almost everywhete on every civcle [z] = p.

Also observe that Theorem 3 is an analogne of Theorem, 2, The Iatter
wag obtained from the limiting case p = 2 (Theorem 1) by interpolating
fnperﬂ.fionS. We eannot follow this path here since Theorem 3 ix false
In the limiting case p = 4/3 and we must prove the general ease divectly
which complicates the proof (see Section T helow). v

We shall initially argue purely formally, and also assmne for the
sake of simpheity that ¢ = 1.

5. The left-hand side of (4.1) is then f j (@) do for o sulmblv

‘¢ with o
[ o) do =1,
[a]=1
and
(5.1) { [ i@ = f qa(m){y(u)e—z’“@“ﬂm}da

lej=1 [ =1

= f_f(’“’){ f ¢(w)6—“"i(“'”)da}d@¢

<Wfip{ [] [

—2m’i[u-m)dari' d’l!:}lm,
R? [ae] =1

Thus the problem redunces to estimating the last integral. We shall denoto
it by I**, and it is enough.to show that I < Ay

‘We can then write (the dot ¢~ denotlng, a8 before, sealar wnltipli-
eation of Veetors)

felu 'f

'M 27:1(&"’1 ) a
& f

“’ zm(a“’ g l "

21 2n

fd%‘f f(p ul (P m)(,—-zm(ﬂq,/l_ew) “dﬁ,}

or, with u = §-}in,

# = [faa|[ o

zz’

(5.2)

1” g~ 2mil(eonA— GDEH)H (ind—singn) d}ud

iﬁﬂ‘l©
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Tiet us introduce new variables
cosd—eosp =90, §ind—sing =w,
and congidler the Jacobian of the trangformation. We have

. v, w)
(8.8) A = \0( )

Hinee the complox nuwmbers ¢ e can take admissible values distinet
frot 0 ab mogb twice, we ean split the domain of integration ¢ < 4 < 27,
0 < p < 2o into two digjoint sets Dy and Dy in whose interiors the mapping
in one-one (bake, o.g. for D, the wt O h o Om, 0o p—A < 7 (Mmod2w)
and for Dy the set 0 = A < 27y, — 7 p— 2 < 0 (mpd2n)). Correspondingly,
the inner integral in (fi 2} i split fnto two integraly, and, by the triangle
inequality (observe that the hypothesis p < 2 implies 4p" > 1)

(5.4) I I+ T,
~where, for § =1, 2,

= [ atan| [ piemrmiens

ns

= |¢in.(A— p2)].

1, -
g 2ril{enst cosp) - (sinA—sinp)r] 73 dlulif" }2/]); )

Tet D, bo the image of D in the plane of the variables v; w. Then

- [ aeay \[[ete, w)a“"”‘“”*"*""”)dwdwléﬂ'}7
»? —.5]‘

o

where (see (5.2))

(") p(e™).

w(®,w) = P @

The inner mi'eg'rf\.l being the Fourier transform of the function equal

to w(w,w) in J; and to 0 clsewhere, wo may apply the Hausdorff-Young
111@qu<1,11“ry, provided $p' =2, e, p' =4, or

4

(5.5) l<p<gK—

and since the exponent conjugate to kp’ is /(2 —p), we have

I < {_” | (2, 0)}FIC~) g dv}(ﬂ‘““’””
7 _

ff\_

{}" }W lp (647 (e%) 7= Adhdul* "

Zm o & {21,‘(2 2’)

f f }(z—z-)m
= sim( 1 — ¢ zur—l)/( By ’
45 ISln l o l
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The exponent in the last denominator is positive. It is also strictly less

than 1 provided p < § (see (5.5)).
Let us set
' | i (W)
; v - p (s
) PHD) — gy ( z:jm—mlwmew‘
lp(e™)] w(4); x(4) : |sin(l_lu)‘2(p41)/(p—2) “
Then
om
(5.6) L[ vmzai] ",
0
By hypothesis,
(8.7) lelye-me =1,

and since y is, cffectively, a fractional (Riemann-Liowuville) integral of
% of order

6. 2l Asp

2—p 2—p

% belongs to I’ where r is defined by the equation

(5.9) =2 =

More precisely,

(5.10) 2l < Ap gll¥llemm = -Ap,q{

The exponent ¢ has so far been indetermined. If we select it in such
3 way that r is conjugate to ¢'(2—p)/p (see (5.6), (5.7), and (B.10)),
Holder’s inequality applied to the integral in (5.6) will show that

(5.11) L<4, (j=1,2).

Thus we must have '
1 P 1

5.12 [ A T,

(3.12) 7 2_p+¢ 1,

together with (5.9). Adding (5.9) and (5.12) we obtain successively

2 P 6—4p
T e T ¢
g

2—-p 2—p’

’ by P

B A (P T

Hence we have (5.11) and so also I<Ii+I, <4,

i

v

w|
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This completes the proof of Theorem 3, though we still have to
digpose of the assumplion g = 1 and justify the formal character of the
proot. ] N _ -

Begin with the latter. The proof i rigorous ik o= 1 and. if f is, say,
honnded and s bounded support, in which case f is conbinuous. I {Fur
is o sequenge of wneh functions Wiﬂi W —Fully== 0, then J|f,,—~ f,,\]z,~>ﬂ~and
go alwo  f |f=Sful"do—>0. Henco {£,} converges to o lmit, eall it f, on

W.Iml o s o . . . T
lw| =1, in the motric 2% and 7 satistien the reguired inequality.

Tt now ¢ bo any positive number. I we set glx) = f(w]o) then
J{a) = ot f (o), so that
" 5 4 g ] q e —2 ("(m)”q Ao 1y
([ ifwra) =( [ fenredo] =( [ (el

ol =1 fof==1

f

& J i

|51

iy

R

? dw 1
—Ez—

L \ 1, foa 2
<4,d ([lgirda)” = 4,6 &
2

L.z
¥
= -'-an » H.f”p:

which for ¢ = §p’ gives (4.1). o
6. Tt & denote pointy and » lattico points in B2 Tet a == {a,} e, ie.,

lally = [ ) 1) < oo

Wo shall now prove the following
TumonReM 4. If {a)l?, L<<p < 4/3 and

oy ~ Yo, é®

then for g = %p' and any 0 < gim we have
Flo)do)" < Ay 6™ ol
(6.1) ( [ (erda)" < 4y e olp-
I =0

This {3 an analogue of Theorem 3 though nejther ig deducible from
the other in a simple way. The proof in both cases follows the game ng‘-
texn, but the fact that now, for obvious reasons, we cannot ;:ed.uee t. [
genoral case to that of g = 1. makes the argument gomewhat more cumbez
some. I is again enough to argue purely formally and, as a matber o
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‘faet, it would be enough to consider only ithe case of {a,} finite. The restric-
tion ¢ < % could be relaxed but the point is without mmeh importance.
Of course the eirele @] = ¢ in (6.1) can be replaced by |w—my = o for
ANy .

Let C, denote the circle o] = ¢ and let us systematically denote
the left- ha,nd side of (6.1) by |Iflly,.- Then for a suitable ¢(z) W1th llellge o = L
we have

Wloe = [fode = [ 3 a6 Ipic = 3 a,y,
d d,
where )

— Jple)sas,
02

and it is enough to show- that

(X 1] <.,

s ' Z'E ’
We shall write 3 [y, 7 = 3 Iy, | * and represent ly,|? as the Fourier
coeffieient of a function to which wo can apply the ausdorti-Young
» mcqua.hty (sinee {p’ = 2). We have

(6.2)

2% 2m
Inl* ] f p(ot™) exp{or- (6" — ")} dAdpy = g2,
say. Thus
00 (I = S <o D FFF
We set

ofcosi—cosp) = v,  g(sini—sinu) = w,

(v, w)

3,y |~ @Bl = 4,

and split the domain of integration in the Inst integial into two subdo-
mains, D, and D,, in the interior of which the mapping (4, p)-=(v, w)

is 1 —1; thus 4 = A(v, w), p = p(v, w). The image of D; will be denoted
by D;. Correspondingly, J, =dJy, +J,, and, by (6.8),

(S < ofl S o S B .

Fix j. The projeetsicms of D; onto the coordinate axes have length

(6.4)

icm
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2p << 27 and so there I8 & squarve  with sides parallel to the coordinate
axes and length 2m which comprises Iy, We can. write, with v == (m, ),

¢ J(me+nun)

T = [ [ Pl o gy 4ot

‘l)i

1 " )

o el f { w (v, w)e" ™ dodw,
4n? ),

b

where o(e, %) equals
. #(06™)p(00™)

A sin (A= w)l

in J; and is 0 in @ — D;. The numbers Jy, are then the Fourier coeffi-
cients of (v, w), and since the exponent conjugate to 49 is p /(2—10)
the Hausdorff-Young inequality gives

S S

) g6’ )l) 20 g }(wmm

<{—4nz Jf( 07 [sin (A— )]

<o | f p ()7 (1

a

5 1P (ee™)

(=)l
)

where

p(A) = lp(ee”) "¢, f Y- ,u)i” ey e

The condition |plye-me = L imposed on ¢ can he written

-pl' @-p)

(6.6) l#lye-mm = €

On the other hand, ag in the proot of Theorem 3, g i in 7 with 7 Adefined.
by (5.9). Moreover, by the fixst inequality, (5.10),

e < ApalPlpmmn = dnee™ .

T we ehoose ¢ in such a way that ¢ is eonjugate o g 1 (2 —p)fp, which,
a8 we know, leads to g == §p', the right-hand side of (6.5) is majorized by

Ap A H'PHq(*—p){p”%”r)(umm/AQym’ (Q~z)a(°~1') A Q~p/a (zwi'))(”—zv)lzJ

= A_Q'— 4/1)’ U .

7 — Studia Mathematlea L.2
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In view of (6.4)
(2 [W“')”P’ K Agr o VU = Jota-tir — 4
sinee ¢ = }p’. This gives (6.2) and so also (6.1).

7. The following example (which I owe to Charles Tefferman) shows
that Theorem 3 ig false in the extreme case p =
Let f(x) be a radial function: f(#) = f(]2|). Then thoe Fourier transtorm
= [Hy)emiengy
n?
(assuming it exists) is also radial. We shall show that there is o radial
fi@)eZ**(R?) such that

(11)  f(1) = f f fl@)e=me"r gdgdy = 2m [ f(

[

o) o(2mg) odp

is <o, This, of course, precludes the possibility of (4.1) for p = 1. We
qha,ll show that

smzmm] . 1
™ log(2 -+ laf)

flo) =

hag the required properties. .
First of all, s

AT sin g 1 48
4/a=27rf[sm 3 ] do < oo
”f”d/S J Qa/g log (2 + Q) gap 3

since the integrand s O(1) for 0 < o <
e>1L
Next, (see (7.1))

1 and is O(o™log™%*(2 +¢)) for

-~

f stmQ Jy(2mg)
o™ Tog( (@+o).

'

*fl—f A+B,

say. Since Jy(g) = O(1), the integrand of A is bounded, and the clagsienl
formula

0

o 1
Jolo) = 2/m)? o M pog (9——4— 7:) +0(e™®) (ot o)
shows that
© g o
B = 0(1)+21/2f T[SlﬁZTﬁQ—I-GOEZW@]d@ —_ O +212f gin; Z'ﬂ?@
¢ 0

80 that B = 4 co, Henee f(l) =

icm

+oo and the assertion is established-
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8. Remarks. Problems analogous to those discussed here are also

congidered in Fefferman [1]. o ) _ /
Theorem 3 wag generalized by P. Sjolin (unpublished) to more

general curves.
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