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ON FOURIER MULTIPLIER TRANSFORMATIONS
OF BANACH-VALUED FUNCTIONS

BY
TERRY R. MCCONNELL1

ABSTRACT. We obtain analogues of the Mihlin multiplier theorem and Little-
wood-Paley inequalities for functions with values in a suitable Banach space
B. The requirement on B is that it have the unconditionality property for
martingale difference sequences.

1. Introduction. A number of authors have considered the extension of the
Calderón-Zygmund theory of singular integrals to vector-valued functions (see, e.g.,
[1, 2, and 6]). Recently Burkholder [5] has obtained definitive results on transforms
of Banach space-valued martingales, which are the analogues of singular integrals
in probability theory, and these results have been applied to the study of singu-
lar integrals by Burkholder and McConnell [6] and by Bourgain [2 and 3]. In
the present paper we use martingale methods to obtain extensions of the Mihlin-
Hörmander multiplier theorem and the Littlewood-Paley inequalities to the case of
Banach-valued functions.

For suitable real-valued test functions / defined on R" let / denote the Fourier
transform of /,

(1.1) /(A) = (2tt)-" /   e~iXxf(x)dx,

and / the inverse Fourier transform. To each bounded Borel function m on Rn we
may associate an operator Tm defined on the test functions / by

(1.2) Tmf(x) = (m/)v(x).
The Calderón-Zygmund singular integral transformations provide an interesting
class of examples (see, e.g., [22, p. 39]) and the fact that such operators are bounded
on the Lp spaces for 1 < p < co suggests the following question: under what condi-
tions on m does Tm defined in (1.2) extend to a bounded linear transformation of
the Lp spaces? A general though by no means complete answer is given by Theorem
A, an improvement due to Hörmander [11] of the Mihlin multiplier theorem [17].

THEOREM A. Let k be an integer greater than n/2 and m aCk function defined
on R". Assume that there is a constant c such that for all multi-indices a =
(ax,... ,an) satisfying \a\ = \ax\ + • • • + |a„| < k we have

(1.3) |A|lQl|dam(A)/dAa| < c.
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740 T. R. McCONNELL

Then for I < p < co the operator Tm admits an extension to Lp(Rn) satisfying

(1-4) ||Tm/||p<Cp||/||p,
where the cp are constants depending only on n,p and c.

There seem to be two distinct standard methods of proving Theorem A and
related results. In the first approach, inequality (1.4) is obtained for the wider
class of convolution operators whose kernel K satisfies Hörmander's condition

(1.5) / \K(x-y)-K(x)\dx<c.
J\x-y\>2\y\

Condition (1.5) implies the boundedness of the Fourier transform of K, and
(1.4) for p = 2 then follows by Plancherel's identity. The extension to other values
of p is accomplished with the aid of the Calderón-Zygmund decomposition. The
second approach relies on inequalities for the Littlewood-Paley g-functions and,
again, Plancherel's identity in the case p = 2 plays a pivotal role. For an exposition
of both of these methods of proof see [8].

Let B be a real or complex Banach space and let Lp(Rn; B) denote the space of
ß-valued Bochner integrable functions / defined on R" and satisfying

11/11? = /    |/(x)|pB(ix<co,
JRn

where ||B denotes the norm of B. For functions / in L1(Rn;ß)nL°°(Rn;ß) with
finite-dimensional range we may define the Fourier transform as in (1.1) and the
usual Fourier inversion formula holds. Given a bounded real-valued function m,
define Tmf as in (1.2). One of the goals of this paper is to show that for B-valued
functions / the conclusion (1.4) of Theorem A holds under a strengthened version
of (1.3) for a large class of Banach spaces B. The class of Banach spaces, to be
described fully below, includes all the Lp spaces for 1 < p < co. However, the
classical methods of proof described above break down unless B has an equivalent
norm under which it is a Hilbert space. The difficulty is that the Fourier transform
is not, in general, a bounded operator on L2(R"; B).

The allowable Banach spaces in our version of Theorem A are the f-convex spaces
introduced by Burkholder [5]. A real or complex Banach space B is f-convex if there
exists on B x B a real-valued function c; having the following properties:

(1.6) ç(x, •) is convex for each x G B,

(1.7) ç(x,y) = ç(y,x),

(1-8) ç{x,y)<\x + y\B    if Mb < 1 < Mb,
and

(1.9) s(0,0)>0.
For example, the spaces LP(R;R) and lp are ç-convex for 1 < p < oo, while
L'(R;R) and I1 are not (see [5] for these facts and much further information
concerning these spaces).

In the light of recent results, including those of the present paper, it appears likely
that ç-convexity is the correct condition to impose on a Banach space B in order
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FOURIER MULTIPLIER TRANSFORMATIONS 741

for the results of classical harmonic analysis to carry over to the B-valued case. For
example, the results of Burkholder and McConnell [6] and of Bourgain [3] taken
together show that the Hubert transform is a bounded operator on LP(R; B) if and
only if B is ç-convex. (We obtain here an independent proof that f-convexity implies
boundedness of the Hubert transform on LP(R; B). See Remark 3.1 below.) More
recently, Bourgain has obtained results which imply the full analogue of Theorem
A for f-convex Banach lattices [2].

Let us turn now to the precise statements of our results.

THEOREM 1.1. Let B be a ç-convex Banach space and m a Cn+1 function
defined on Rn. Assume there is a constant cm such that for all multi-indices a
satisfying \a\ < n + I we have

(1.10) |A|lal|dam(A)/dAQ|<cm.

Then for 1 < p < oo the operator Tm has an extension to LP(R"; B) which satisfies

(1.11) ||Tm/||p<cp||/||p,        Kp<co.

The constants cp depend only on cm,n and p.

Note that (1.10) is more restrictive than (1.3) in Theorem A. We have been able
to weaken (1.10) only at the expense of imposing the additional assumption that
m have support in some dyadic rectangle (a dyadic rectangle is a rectangle of the
form [ki2~ll,(ki + l)2_il] x • • • x [kn2~ln, (kn + l)2~in] for integers kx,...,kn and
*1, • • • , In)-

THEOREM 1.2. Let B be a ç-convex Banach space and k an integer greater
than n/2. Let m be a Ck function on Rn\{0} such that (1.10) holds for all multi-
indices a with \a\ < k. Assume, in addition, that m is supported in some dyadic
rectangle. Then, for 1 < p < co the operator Tm has an extension to Lp(Rn;B)
which satisfies (1.11).

We suspect that the conclusion of Theorem 1.2 remains true even without the
assumption on the support of m, but we have been unable to prove this. (How-
ever, see Remark 3.2 below where we obtain a new proof of Theorem A.) A more
general open question is whether the convolution operators with kernel satisfying
Hörmander's condition (1.5) are bounded operators on Lp(Rn;B) for 1 < p < oo
and B f-convex.

Our final result is an extension of the Littlewood-Paley inequalities to the .re-
valued case. To decribe the classical results fix an ordering of the dyadic rectangles
{h}k>i, and, for / in L^R™;^) H L°°(R";5) having finite-dimensional range,
define the Littlewood-Paley function S(f) by

(oo

X>(*)li
fc=i

where fk(x) — jj f(X)élXx dX. In the real case (B = R) Littlewood and Paley [14,
15 and 16] proved that there are constants cp depending only on n and p such that

(1-12) c^wfw^wsim^cjfw,

li '
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742 T. R. McCONNELL

for 1 < p < co. Let (Sk)k>i be any sequence of numbers from {±1} and define an
operator T/£<¡ by

oo

T(e)f(x) = y£tekfk(x).
k=l

An immediate consequence of (1.12) in the real case is that Tte) satisfies

(1.13) c-i/||p<||T(£)/||p<cp||/||p
for 1 < p < co. In fact, Khintchine's inequalities imply that (1.12) and (1.13) are
equivalent.

The situation in the ß-valued case is quite different: Inequalities (1.12) hold
if and only if B is isomorphic to a subspace of a Hubert space, while inequalities
(1.13) hold if and only if B is f-convex. The latter statement is Theorem 1.3 and
the first may be seen as follows: first, it is not difficult to show that (1.12) implies
that for all finite sequences of vectors xi,...,xn chosen from B we have

N k      2
^xke2
fc=i

It then follows from the central limit theorem for lacunary Fourier series [20] that
if £i, £2, • ■ ■, ôv are independent identically distributed standard Gaussian random
variables, then there is a constant c such that, for any sequence xk as above,

N

1 N r
-T\xk\2B<

fc=i       j-*

N

dx < c y"|xfe|B.
fc=l

1 N
(1-14) -Y\xk\2B<E

fc=i

N

< cX^IXfcls-
fc=lfc=l

Here E denotes mathematical expectation with respect to the £&. Finally, Kwapieñ
[13] has shown that inequalities (1.14) hold only if B is isomorphic to a Hubert
space. (For the fact that inequalities (1.12) do hold in case B is a Hilbert space see
MO

THEOREM 1.3. Let T(£) be defined as above for any sequence e — (ek)k>i of
numbers chosen from {±1}- The inequalities (1.13) hold for B-valued functions f
if and only if B is ç-convex.

The proofs of these theorems use a number of ideas and results from probability
and therefore we have devoted the second section of this paper to an exposition
of some background material. The third and final section contains the proofs of
Theorems 1.1—1.3.

Throughout the paper we will denote by Df(R"",B) and Sf(R™;.B) the spaces
of functions defined on R™, taking values in some fixed finite-dimensional subspace
of B, and with each component function belonging, respectively, to the space of
C°° functions of compact support and the space of Schwartz test functions. We
shall sometimes omit F and B when B equals R. The notation does not specify
in which finite-dimensional subspace of B the functions belonging to these spaces
take their values, but this should cause no confusion. We shall repeatedly use the
fact that the union of these spaces over all finite-dimensional subspaces of B forms
a dense subset of Lp(Rn; B) for each 0 < p < 00.

The letter c will stand for a constant, possibly different from one usage to the
next.  Often c will carry a subscript to emphasize its dependence on a particular

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FOURIER MULTIPLIER TRANSFORMATIONS 743

parameter. If the subscript is the number of a statement then the constant is the
same as the constant appearing in that numbered statement.

2. Some preliminary results from probability theory. The purpose of
this section is to present some background material from probability theory. Much
of this is known, though perhaps not in the form presented here. For basic notions
concerning Brownian motion and martingale theory see [12 and 18].

Let (Í7, 7, P) be a probability space, B a Banach space, and ( Jfc)/c>o an increasing
sequence of sub-<7-fields of J. A sequence (dk) of Bochner integrable, J^-measurable
random variables is a martingale difference sequence relative to Jk provided that
E(dk\7k-i) = 0, almost surely, for k > I. The Banach space B has the uncondi-
tionality property for martingale differences (UMD) if, for some 1 < p < oo, each
such martingale difference sequence forms an unconditional basis for the subspace
of LP(Q; B) which it spans. Burkholder [5] has shown that the class of UMD Ba-
nach spaces coincides with the class of ^-convex spaces and also with the class of
Banach spaces B for which the transform inequalities of [4] for real-valued mar-
tingales carry over to 5-valued martingales. This latter result is a key tool in the
present work and we therefore describe it in more detail. Given a sequence (ek)k>o
of bounded real-valued random variables, with ek being Tk-i-measurable for k > 1
and with erj = 1, and given a B-valued martingale difference sequence (dk), the
sequence (ekdk) is another martingale difference sequence called the transform of
dk by ek. Then [5], B is UMD if and only if there are constants cp(B), depending
only on B and 1 < p < co, such that for each N and all such sequences (ek) and
(dk) with the ek bounded by one we have

(2.1)
N

¿2e%di
i=0

< cp(B)
N

5>
Many martingales of interest in harmonic analysis arise in connection with Brown-

ian motion. We shall be concerned here with (n+ l)-dimensional Brownian motion
Zt in the half-space R™+1 = {(x, y): x G R™ and y > 0}, and we will use the com-
ponent notation Zt = (Xt,Yt), where Yt is one-dimensional Brownian motion and
Xt is an independent n-dimensional Brownian motion. As usual in the theory of
Markov processes the expression P'x,y) refers to the probability measure governing
Zt when the initial value is (x,t/), and Eix^ to the corresponding expectation.

Let X(y), y > 0, denote the value of Xt at the first time Yt takes a value less
than or equal to y. The random variable X(y) has probability density function
given in terms of the Poisson kernel by

(2.2)
(x',y') (X(y) e dx)

di Cr¡
(y'-y)

\x-x'\2 + (y'-y)2Yn+1)/2'

where y' > y and cn is the constant 7r~("+1)/2r((n + l)/2). In the rest of the
paper the right side of (2.2) will be denoted by hx(x', y' - y) and called the Cauchy
density centered at x with parameter y' - y.

The process X(y) has independent increments when considered as a stochas-
tic process with time parameter y. This fact together with the Poisson integral
representation of harmonic functions yields the following result.
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744 T. R. McCONNELL

LEMMA 2.1. Let u be a bounded harmonie function on R™+1 with values in a
finite-dimensional Banach space (i.e., each component ofu is harmonic in the usual
sense). Let y^ < t/jv-i < ■•• <yo be given. Then for any x G R" the sequence (d¿)
with di — u(X(yi),yi) — u(X(t/i_i),t/¿_i), i > I, and do — tt(x,t/o) îS o, martingale
difference sequence under the measure P(x,y0) relative to an appropriate sequence
of o-fields 7k. The o-field 7k may be chosen as the smallest a-field with respect to
which do, dx,..., dk are measurable.

Doob [7] has shown that there is a family of Markov processes corresponding to
the intuitive notion of Brownian motion conditioned to exit R™+1 at given points.
More precisely, for £ G Rn there are strong Markov processes Z( = (X't ,Y/ ),
defined on a common probability space (fi, 7, P) with Zt, having continuous paths
up to time ç — inf{í: Y¡ — 0}, and having the following additional properties
(P(xy) denotes as usual the measure corresponding to initial value (x, y)):

«<*)(*£ = £) = !•

(ii) The family PÍX \ gives a regular version of the conditional probabilities
P(X!y)(-\Xç- = £) as £ ranges over R", i.e., for any Borel subset D of Rn, and
bounded J-measurable random variable W we have

(2.3) E{x<y)(W;Xe. ££>)=/ £(/¿y)(iy)/ií(x,t/)^.

(iii) For any bounded Borel function F and 0 < t/i < y we have

(2-4) E(ly)F(X^(yi)) = j^~E{Xiy)F(X(yx))ht(X(yx),yx).

In the future we shall drop the superscripts on Z( ,X[ and Y"/ , referring to
the conditioning only through the measures P(xy)-

Our next result is similar to one that has been used by Gundy, Varopolous and
Silverstein in their study of the Riesz transforms [9 and 10]. A more abstract
version of the result is due to Rota [19].

LEMMA 2.2. Let u be bounded and harmonic on R!i+1 with values in a finite-
dimensional Banach space. Let 0 < t/i < y2 < A and x G Rn be given.  Then

(2.5) u(x, t/i +y2)= [   hx(x', A)E¿ A)u(X(Vl), y2) dx'.

Proof. By (2.4),

hx(x',A)E^,A)u(X(yx),y2) = E(x,%A)u(X(yx),y2)hx(X(yl),yx).

The right side of (2.5) then becomes

E(x',A)u(X(yi), y2)hx{X(yx), yi)dx'

= I      \    u(í,y2)hx(í,yx)hxl(Í,A-yx)dx'dí

=        u(tl,y2)hx(£,yi)dtl = u(x,yi+y2),
Jr."

and the proof is complete.

/JRn
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FOURIER MULTIPLIER TRANSFORMATIONS 745

Denote by PX,A the probability measure on the sample space of Zt defined by

(2.6) PX'A(D)= f   hx(x',A)P¿A)(D)dx'JR" k  ' '

for D G 7. By the argument in the proof of the previous lemma these measures in-
duce consistent probability distributions on X(y) as A > y varies. The Kolmogorov
extension theorem then implies that inverse limit measures Px exist as A tends to
infinity. In terms of these measures the result of Lemma 2.2 may be expressed more
concisely as

(2.7) u(x, yi+y2) = Exu{X(yx), y2)

for all positive t/i and y2, and for u harmonic as above.
An easy consequence of (2.7) is that the variables X(y) have under Px a Cauchy

distribution centered at x with parameter y. The final result of this section com-
pletes the description of X(y) as a process indexed by y.

LEMMA 2.3.   Under Px the process X(y) has independent increments.

PROOF. Without loss of generality we may take x = 0. Let Zt denote a process
defined on some probability space (Û, 7, P) for which Xt and Yt are independent,
Xt is an n-dimensional Brownian motion started from 0, and Yt is a Bessel (3)
diffusion started from its entrance boundary point 0 (see [12, 2.7] for a discussion
of the Bessel (3) diffusion. Such a process may be realized as the magnitude of a
3-dimensional Brownian motion). Let Zt be a Brownian motion conditioned to exit
from R™+1 at 0 (i.e., Z{ ) and ç denote the exit time. For A > 0 let La denote
the last exit time of Yt from the level y = A, La — sup{i: Yt < A}. We will show
that for any A > 0 the process Zc-t, 0 < t < ç, has the same finite-dimensional
distributions under P°'A as has the process Zt, 0 < t < La, under P.

The equivalence of Yt, 0 < t < La, and Ye-t, 0 < t < ç, follows easily from a
result of M. J. Sharpe [21]. In particular, La and ç have the same distributions
under P and P°'A, respectively. This fact and an elementary calculation of Gaus-
sian conditional probabilities gives the following string of equalities: For D a Borel
subset of R",

p°'A{X^t ED,t<ç)= [   ho(x',A)p'¿A)(Xi.t &D,t< ç)dx'

= f   hQ(x',A) H P?x,iA)(( G d8)Ptx,,A)(X&-t G D\XS = 0)dx'
JRn Jt

= /    h0(x', A) /     P(LA G ds)P(Xt G D\XS = x') dx'.
/r" Jt

Since the process Xs is independent of La and ho(x', A) is exactly the probability
density function of X¿ , the last expression reduces to P(Xt GO, t < La). Simi-
larly one obtains the equality of the higher order finite-dimensional distributions.

Since A is arbitrary the proof now reduces to checking the independence of the
increments of X¿ , considered as a process indexed by y, for 0 < y < A. But this

is immediate from the fact that the families (Xs) and (Ly), the later being defined
in terms of Yt only, are independent.
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746 T. R. McCONNELL

3. Proofs of the theorems. For the proof of Theorem 1.1 it is convenient first
to reduce to the case of sufficiently regular functions / and multipliers m. Therefore
let m be a function belonging to D(Rn), vanishing in a neighborhood of the origin,
and satisfying

(3.1) \X\Q\dam{X)/dXa\<cm,        |a|<n + l,

for some constant cm. We shall prove below that there are constants cp, depending
only on n, cm and p, such that

(3-2) ||Tm/|;p < Cpll/Hp,
for all / G Df{R"",B). Here let us show how Theorem 1.1 follows.

Suppose first that m satisfies (3.1), has compact support, and vanishes in a
neighborhood of the origin, but is not assumed to be C°°. It is then possible
to find a sequence of functions (mk) Ç D(Rn) converging uniformly to m, each
vanishing near the origin and satisfying (3.1) with cm replaced by 2cm. The mk
may be realized as convolutions of m with an appropriate sequence of approximate
identities. The Fourier inversion formula shows that Tmkf(x) converges to Tmf(x)
for each x in Rn. Since, by assumption, (3.2) applies to each mk, the theorem
follows for such special m.

For the general case choose smooth functions ip and 4> with rp supported in |A| < 1
and satisfying t/>(A) = 1 for |A| < ^, and with <j> such that <^>(A) = 1 for |A| > 1
and </>(A) = 0 for |A| < i. One shows with the aid of Leibniz's formula that the
multipliers ftk(X) = yj(X/k)<fi(kX)m(X) satisfy (3.1) with a constant independent of
k. The ftk converge boundedly to m on R™\{0} and the Fourier inversion formula
again shows that Tßkf converges pointwise to Tmf for / G /?f(R";ß). Since the
inequality (3.2) holds for the tik it holds as well for m. Finally, since the IV(R"; B)
are dense in Lp(Rn;B) for each 1 < p < co, it follows that Tm has a bounded
extension to Lp(Rn;B) which also satisfies (3.2).

For the remainder of this section, except where noted otherwise, we shall assume
that m satisfies (3.1) and the hypotheses preceding (3.1).

Let M denote the inverse Fourier transform of m. Then M G S(Rn) and we
have that Tmf(x) — M * f(x) for each / G £V(Rn; B). Since M * f then belongs
to Sf(R";.B), the Poisson integrals of /, M and Tmf, denoted respectively by u,
v and w, exist and are harmonic functions on R™+1.

Our starting point for the proof of (3.2) is the following representation of Tmf:
l—A\n+2    roo    r

(3.3) Tmf(x)={T±Trï /    y"+V"+1)(s,t/K(x-S,3t/)liS(iy.
(n + L)i Jo    Jr™

(Here and hereafter t;("+1) denotes the (n + l)-fold partial derivative of v with
respect to y.) To prove (3.3) we proceed as in [22]. The semigroup property of the
Poisson integral implies

(3.4) w(x,yx+y2)^        v(s,y1)u(x - s,y2)ds
Jr"

for each pair of nonnegative numbers t/i and y2. After n -I-1 integrations by parts
and a change of variables in the formula

/»oo

Tmf(x) = - /     wy(x,y)dy
Jo

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FOURIER MULTIPLIER TRANSFORMATIONS 747

we obtain
( — ■\\n+2    /-oo

Tmf(x) = V^— /    yn+1w^2\x,y)dy
[n -t- if. Jo
t — A\n+2     poo

= \    ' ,.,   /     yn+1w^n+2\x,4y)dy.(n + l)l Jo K      '
Differentiating (3.4) n + I times with respect to t/i, once with respect to y2, and
then setting yx equal to y and y2 equal to 3y yields (3.3).

For any A > 0 define TAf(x) by the following truncated version of (3.3):

T-/(x) = feri¥ T /  yn+1vin+1)(s,y)uy(x-s,3y)dsdy.
(n ~r !)■ Jo    JRn

It suffices to prove (3.2) with Tmf replaced by TAf and cp independent of A.
Therefore fix such a positive number A for the rest of the proof.

The next step is to replace the integral with respect to y in the definition of TAf
with a Riemann sum approximation. Let n^v denote a partition of [0, A] defined
by choosing points t/¿ satisfying 0 — yo < yi < ■ ■ ■ < yN — A. We suppose that this
is done in such a way that H/v+i refines Hjv and that the mesh size /¿jv is bounded
by a multiple of iV-1. Define

N-l   f
(3.5)   gN{x)=Y        y^+1v^+1\s,yi)[u{x-s,2yl+x+yi)-u(x-s,3yi)}dS.

In view of the smoothness assumptions made above it is not hard to show that for
each x in R™ we have

A sketch of the argument follows.  Set p{s,y) — yn+1v(n+1\s,y). By the second
mean value theorem for integrals there is for each fixed s and i < N — I a point y*
in [yi,yi+i] such that

rvi+i
p(s,y)uy(x-s,yi + 2y)dyf
-p(s,y*)u(x -s,yi + 2yl+x) - u(x - s,3y¿)].

Therefore
rvi+i

p(s,y)uy{x-s,3y)dy

= ~P(s,y*)Hx ~8,Vi + 2y»+i) - u(x - s, 3yi)\

f
rvi+i

/       P(s,y)[uy(x - s,3y) -uy(s-x,yi + 2y)}dy.
Jyx

Using the mean value theorem the last expression may be written as

\p(s,yi)\u(x- s,2yi+i + yi) - u(x - s,3t/t)] + e(s,x,N,i)

where the error satisfies
\e(s,x,N,i)\B < l¿2Nl(s)
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748 T. R. McCONNELL

and 7 is an integrable function of s depending on A,x,m and /, but not on i.
Therefore there is a constant C independent of N such that

(3.6)
.    N-l

/     y2\e(s,x,N,i)\Bds <CNii2N.

The convergence of <7at(x) follows since iV/Zjv is bounded, ¡x^ approaches zero, and
the left side of (3.6) dominates the difference

2(_4)-("+2)
»MM--l¿í)T-r'í-><I>

Thus it is sufficient to show that there are constants cp depending only on n, cr
and p such that

(3.7) IffAfllp < Cp IP-

The proof of (3.7) uses a probabilistic representation of y¡v(x) which is based on
Lemma 2.2. Taking yx = t/¿+i and y2 — t/¿ + t/¿+i in (2.7) we obtain

Similarly

Define e(s, y) by

(3.8)

u(x- s,yi + 2yi+1) = Exu(X(yi+1) - s,yi +y¿+i).

u(x - s,3y¿) = Exu(X(yi) - s,2y¿).

c(a,y) = yn+1v(B+1) (s, i/jÄrJ1 (*,»).

where ho(s,y) is the Cauchy density (Poisson kernel) centered at 0. Let Zt =
(Xt, Ft) be a Brownian motion, independent of Zt, with associated probability
measures P(x,y) and Px. Since ho(s,y) is the density function of X(y) under P°,
the division by ho in (3.8) allows us to express the s-integration in (3.5) as an expec-
tation with respect to P°. This leads to the following probabilistic representation
of gN:

N-l

(3.9)
gN(x) = É°EX Y, e(X(yi),yi)[u(X(yi+1) - X(Vi),yl+í +K)

i=0

u(X(yl)-X(yl),2yl)}.

It is convenient to abbreviate the expression in brackets as (Att)¿. For each fixed
point in the sample space of Zt an application of the Poisson integral formula to
the translate of u by X(yi) (see also Lemma 2.1) shows that the (Au)¿ form a
martingale difference sequence under P(x\a) f°r eacn x' G Rn.

By Jensen's inequality for 1 < p < co,

/
|0Jv(x)|Bdx< /   Ë0

jRn

Ex
N-l
Y e(X(yi),yi)(Au)i
i=0

dx.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FOURIER MULTIPLIER TRANSFORMATIONS 749

Using the definition of Px (which may be replaced by Px,A in the calculation) and
(2.3) in performing the x integration we obtain
(3.10)

f    \gN(x)\Bdx< [   Ë° [   hx(x',A)E¿A)
Jr™ Jr"      Jr"

N-l

Y e(X(yi),yl)(Au)l
i=0

dx dx

/    E EtxitA)
jRn

N-l
^e(*(y»),yi)(Au)i
i=0

dx'.

The next step is to apply Burkholder's inequality (2.1) to the P(x^a) expectation
with e¿ = e(X(yi),yi). The following lemma gives the required uniform bound on
the e¿.

LEMMA 3.1. There is a constant c depending only on n and cm such that
|e(s,y)| < c for all s G Rn and y > 0.

PROOF. The Fourier inversion formula gives the following expression for e(s, y):

e(s,y) = (\s\2 +y2)(n+1)/V /   elXsm(X)\X\n+1e-^ydX.
JR"

There are two cases to consider: |s| < y and |s| > y. In the first case we have

|e(s,y)\ < cny2n+1 j   \m(X)\ \\\n^e-^dX
jRn

/•oo
<cncmy2n^        r2ne-^dr

Jo
/*oo

= cncm /     r2ne~r dr,
Jo

which is a constant depending only on n and m.
For the second case let V denote the gradient operating on functions of A. Then

s(s,y)| < cn\s\n+1yn I f   eiXsm(X)\X\n+1e-MvdX

/r"   VIs!     /

n+l
„¿As m(X)\X\n+1e-^ydX

which, after integration by parts, becomes
n+l

cny I   elXs(ri-v)       m(A)|A|"+1e-lAlJ'dA
/r"       VM     /

Expansion of the operator (s/\s\ • V)n+1 produces many terms, each of which may
be estimated in a similar fashion. For example, one of the terms is

cny
n+l

\l   etXS(l¡rr)       m(A)|A|n+1e--A|»dA
\jRn \uXi

which may be estimated via Leibniz's formula in terms of expressions of the form

'LWMÜ^ffl'" dX
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with a + ß + i = n + I. (Recall that m vanishes in a neighborhood of the origin so
that there is no difficulty differentiating |A|.) Since |A|Q](<9/<9Ai)ara(A)| < cm, the
last expression is bounded by

cncmyn f    |Ap  (-^)   e"|A|y  dX<cncmyn+~< Tr^-h-rydr

which, as above, is a constant having the desired dependence.

Returning to the proof of Theorem 1.1, apply (2.1) in (3.10) to obtain

/    \gN{x)\l<cp(   Ë°E{X,,
Jr" Jr"

f   É0
JR™

N-Í

N-l

£(A^ dx'

Ex £(ah
i=0

dx.

This last written quantity contains no dependence on the multiplier m, but has yet
to be related to /, the boundary-value function of u. For that we use the following

LEMMA^ 3.2. The sequence X(y0) - X(y0), X(Vl) - X(y0), X(yx) -X{yx),.
X{vn) — X(y¡v) has the same distribution under the product measure P° <g> Px
has the sequence X(2yo),X(y0 + yi), X(2yx),... ,X(2y^) under Px.

(IS

PROOF. Put & = X(yá) - X(y3-i) and Çj_ = X(y3) - X^,-,.) for j =
1,2,..., N. Also put £o = x and £o = 0. Under P° ® Px the sequences (çj) and
(£j) are, for j > 1, independent sequences of independent random variables with
£j and £j each being distributed according to the symmetric Cauchy distribution
with parameter (y3 — y3~i). The sequence listed first in the lemma has (2j)th term
given by Yll=o & - Ya=o h and (2J ~ l)st term given by £¿=o& ~ E¿=o &• B/
the symmetry of the Cauchy distribution we may replace £¿=0 £¿ with ~~ X/¿=o £?'
without altering the distribution of these variables. Similarly, the second sequence
listed in the statement of the lemma has under Px the distribution of a sum of inde-
pendent Cauchy random variables plus the initial value x. The proof is completed
by comparing the parameter values of the two sequences, using the fact that if X
and Y are independent symmetric Cauchy variables with parameter values a and
ß respectively, then X + Y is a symmetric Cauchy variable with parameter a + ß.

Using the lemma we have

(3.11)
/

E°EX
JV-l

i=0
dx

L
£>«)

N-l

Y^\u{X(2yl),2yl) - u(X(yl + yí+i),y¿ +y¿+i)]E
i = 0

dx.
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Now set z2i = 2yi, z2¿+i = y¿ + y¿+i, ¿2i = 1 and e2¿+i = 0 for i = 0,..., N - I.
Using this notation we have

Ex
N-l

E1

j=0

f   Ë0/r"

-L
= f    f   hx(x\

JR"JR"

IJr"

dx£(A^
a
iV-2

Y,   £ÁU(X(Z})>Zj) -U(X(Z0 + l)>Zj+l)\ dx

mi/x(x',A)

2N-2

£ £ÁU(X(Zj),Zj) -«W^ + ií.^+i)]
3=0

dxdx'

E{x',A)
2N-2

£ ej[u(X(zj),Zj)-u(X(z3+i),zj+1)}
3=0

dx'.

By (2.1) the last expression is dominated by

tajV-2

/Jr"
E(t.'(x',A) £ lu(x(zi)>zi) -«W*f+i)i*i+i)]

j=0

' /      EtxitA)
jRn

A)\f(X(0))-u(X(z2N.1),z2N^x)\pBdx

dx'

<2pcpf   E(x,,A)\f(X(0))\Bdx'.
JRn

The last inequality follows from the fact that |tt(s,y)|B is subharmonic and hence

E{x,,A)\u(X(z2N-i),z2N-l)\B < E{x,tA)\f(X(0))\B.

Finally, since X(0) has hx(x', A)dx as its density function, we have

f   E(x,,A)\f(X(0))\Bdx'=  f    [   hx(x',A)\f(x)\pBdx'dx
JR" JR" JRn

= /    \f(x)\pBdx,
jRn

and the proof is complete.
PROOF OF THEOREM 1.2. We shall sketch the proof since it is similar in

many respects to the proof of Theorem 1.1; moreover, we limit ourselves to the
one-dimensional case.

Let m(X) satisfy (1.3). We may assume without loss of generality that m is
smooth and supported in [1,2]. Let /¿(A) be the multiplier defined by

ß(X) = \X\21 e-Wvydy.

This multiplier is a member of the class of multipliers of Laplace transform type
which has been extensively studied (see, e.g., [23 and 24]). If a(y) is a bounded Rie-
mann integrable function on [0,co), let ß(a,k)(X) - (-\X\)k ¡0°°e~^yyk~1a(y)dy.
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Let / G Sf(R',B) with Poisson integral tx(x,y) on R+. Then [23]
/•oo

W)/(a:) = /     yk-1u^(x,y)a(y)dy.
Jo

Specializing this formula to k — 2 and a(y) = l[i,2](y) we obtain

(3.12) Tßf(x) = j yuyy(x,y)dy

for all/G Sf(R\B).
Choose a smooth function <x(A) supported in [è,4] with rj(A) = 1 for 1 < A < 2.

It is then easily seen that the multiplier <r(A)//i(A) satisfies (3.1); hence by Theorem
1.1 we have that, for any g G LP(R; B),

\\Ta/ug\\P < cp\\g\\p,       1< p < co.

In particular, for / G Df(R; B) the choice of g — T^,Tmf yields

||-im/||P S Cp||-tfi-trnj Up-

Let u, w and v denote respectively the Poisson integrals of /, Tmf, and of the
inverse Fourier transform of m. By (3.12), a change of variable, and a use of (3.4)
as in the proof of Theorem 1.1 we obtain

/•1/2    /-oo

TtlTmf(x) = 16 /       /     yvy(s, y)uy(x - s, 3y) ds dy.
Jl/4    J-oo

Proceeding as above, introduce partitions of [|, \] by \ = yo < yi < • • • < yN —
I define <7at(x) by

AT-l    /-oo
(x) = £  /     yivy(s,yi)[u(x-s,yi + 2yi+i)-u(x-s,3yi)}ds.

._n  ^-OO

A= \ and define 3at(x) by
N-i   roo

9n( n

¿=o J-°°

Put e(s,y) = yvy(s,y)ho~l(s,y). It is noi true that e(s,y) is uniformly bounded
under the present hypotheses on m. Rather, we have the following result which
replaces Lemma 3.1.

LEMMA 3.3.   There is a constant c depending only on m such that

(3.13) É°( sup  e(X(yi),yi))   <C.
\0<¿<n /

(For the definition of E° and X see the proof of Theorem 1.1.)

Proof. Let

ru = \vy(X(yN-l),yN-l)\hö1(X(yN-i),yN-i).

For any x' G R and A > 0 the sequence (??,) forms a submartingale under PI, A,.
This follows from (2.4) and the strong Markov property of Brownian motion. There-
fore the sequence (rn) also forms a submartingale under P°. Since j < y¿ < ^ we
have, by Doob's maximal inequality,
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The proof is completed by showing that the right side of the last inequality is
bounded by a constant. In fact more is true: there is a constant c such that

sup   É°e(X{y),y)2 < c,
0<y<oo

and this holds even if the assumption that m is supported in [1,2] is dropped.
To see this use the fact that X(y) has density function ho(s,y) and Plancherel's
identity to obtain

/OO
(s2 + y2)v2y(s,y)ds

-OO

= yj°° (^|A|m(A)e-lAl^   + (t/|A|m(A)e-lA^)2dA.

The assumption (1.3) on m easily implies that the last expression is bounded by a
constant independent of y, which completes the proof of Lemma 3.3.

We devote the rest of the proof to obtaining the inequality

(3-14) llffjvllp < CpH/llp,
with cp independent of N, for p in the range [2, co). Passage to the limit as N tends
to infinity yields (1.11) for the same range of p, and a standard duality argument
shows that (1.11) holds as well for 1 < p < 2. (B* is f-convex whenever B is.)

As in the proof of Theorem 1.1 we have the following probabilistic representation
of yjv(x):

N    1

gN(x) = ExYl a°e(X(lK),0i)(A«)i>
¿=o

where

(Au)i = u(X(yi+1) - X(yt),yt + yi+i) - u(X(y¿) - X(yt),2yi).

Let e* = sup0<j<iV |e(X(y¿),y¿)| and define a sequence e¿ by e*£¿ = e(X(y¿),t/¿) so
that |êj| < 1. By Jensen's and Schwartz's inequalities,

ip
/oo r YN—1\9N(x)\pBdx<     Ex\^Ë°e'ei(Au)-°° J I i=0

< f Ex(Ë°e*2)p/2Ë°

dx

£ £t(Aw), dx

< cp/2
(3.13) /

EXE°
N-l
£ £¿(Atí),
i=0

dx.

The proof is now completed exactly as in the proof of Theorem 1.1 since |£¿| < 1
and (Au)¿ is, for fixed values of the X(yi), a martingale difference sequence relative
to P(x',A) f°r each x' G R.

REMARK 3.1. The Hubert transform in one dimension is obtained from
a multiplier transform with m(X) = i sign(A). The corresponding function
yvy(s,y)hQ1(s,y) then reduces to 2sy/(s2 + y2) which is bounded in absolute value
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by one. Thus a modification of the argument above leads to an independent proof
of the main result of [6].

REMARK 3.2. In the real case (B = R) a modification of the proof of Theorem
1.2 gives a new proof of the multiplier theorem of Hörmander (Theorem A).

If (fife) is a real-valued martingale difference sequence relative to some sequence
of cr-fields then the square function, defined by Sn = (Y^k=o^k)1^ ■> satisfies the
two-sided inequalities

(3.15) Cp || an llpS £4
fc=0

< c 11 <? 1— '-^pll'-'nl

for all n and 1 < p < 00 (see [4]).
Let m be a multiplier defined on R and satisfying (1.3). We do not assume

that m is supported in some dyadic interval. Fix p > 2 and define g^ as in the
proof of Theorem 1.1 but with y2vyy(s,y) replaced by yvy(s,y). Let e(s,y) =
yvy(s,y)hQ1(s,y). It is straightforward to check that both E°e(X(yi),yt)(Au)i
and E°(Au)i are martingale difference sequences under P(X',A) f°r each x' G R.
Also note that the proof of Lemma 3.3 gives the estimate

(3.16) Ë°e(X(y),y)2<c,        y > 0,

with c depending only on m. Using Jensen's inequality and an argument similar to
that in the proof of Theorem 1.1 we have

\9n ui: E,x',A)

N-Í

£¿°e(A>(t/í),yI)(Au)!
i=0

dx'.

By Schwartz's inequality, (3.15) and (3.16)

/OO /¡i—ii^) I £ £°(Au)
'N-l

\9n\
1=0

Since p > 2, Jensen's inequality and (3.15) yield

\9n\\pp<c 1:E'X',a)E
N-l

£
i=0

(Au), dx'.

The proof is completed by using Lemma 3.2 exactly as in the proof of Theorem 1.1.
PROOF OF THEOREM 1.3. For convenience we limit ourselves to the one-

dimensional case. Also, by the boundedness of the Hilbert transform on LP(R; B)
for B f-convex we may assume without loss of generality that /(A) = 0 for A < 0.

Choose a smooth function <f> supported in [1,2] with <j>(\) = 1. Let ip supported
in [|, |] be defined by vj{X) = 1 - <f>(X) for 1 < A < \ and t/>(A) = 1 - ¿(2A) for
I < A < 1. Define multipliers mi (A) and m2(X) by

mi(A)=   ¿   0(22J|A])    and    m2(A) =   ¿   <f>(22> + 1\X\).
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Define similarly m?, and vrn by replacing <j> with tp. Each of the functions m¿ satisfies
(3.1) and we have mi (A) + • • • + m/,(A) = 1 for all A / 0. It then follows that we
have

4

(3-17) IIsIIp^EH^IIp,
¿=1

for all 1 < p < co and g G LP(R; B). Let m(A) be a multiplier of the form
OO

lW =    ¿2   e¿l[2»,2>'+l)(*)im

where Sj G {±1}- Note that T(£) = Tm. Since m2 = 1 on R+ it is sufficient to
prove only the right-hand side of (1.13). We will show that there are constants cp
such that

(3-18) ||Tmirm/||p<cp||/||p

for 1 < p < co and for / G S(R;B). The same proof will show that (3.18) holds
with mi replaced by each m, and the proof is then finished in view of (3.17) with
9 = Tmf.

Let (£j)-oo<j<oo be a family of independent random variables defined on some
probability space (Q,7,P) and each assuming the values ±1 with equal probability.
Choose a smooth function p supported in [|,4] and satisfying p(A) = 1 for 1 < A <
2. For each w G fi define a multiplier M(u>, A) = E^l-oo G(wM22j'W)- Clearly
M(u>, X) satisfies (3.1) with a constant independent of ui. Also \M(u, A)| equals one
on the support of mi. Therefore we have, for any 1 < p < co and g G LP(R; B),

(3-19) ||Tmif7||P = £||TMTmiî?||P\

where E denotes expectation with respect to the probability distribution of the £r
For each a G R define Ha(x) in terms of the Fourier transform by Ha(X) =

sign(A - a). It follows at once from the boundedness of the Hubert transform on
Lp(R; B) that we have

(3.20) ||iio*y||p < CpllffHp
for g G LP(R; B). Also note that for each Ha we have Ha*g(x) = etaxH0*{eag)(x),
where ea(x) = e~tax.

Let $, denote the inverse Fourier transform of the function r/>(22j|A|). Now for
each j there is some a3 G R and e¿ G {±1} such that

$j * Tmf(x) = e3Haj * $j * f(x) = e3eia>xHo * (eaj*j * f)(x).

Thus from (3.19) with g = Tmf we obtain
p

dx.XlTmf\\pp = EJ £  ^e^tfo*^-*/)(*)
3-

The summands above form a martingale difference sequence on (fi, 7, P) and
lej-e"*3'1! < 1.   Therefore, after interchanging the order of integration we obtain
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from (2.1)

\\TmiTmf\\p<cpE JC

= cpE f

Using (3.20) and (2.1) again,

^2^H0*{eaj^j*f)(x)
— oo

dx

dx.

||TmiTm/|| < cpE r.X>*wtà dx = cpE\\TMTmif\\p.

Finally, we apply Theorem 1.1 twice to obtain (3.18).
The converse is an easy consequence of the result of Bourgain [3].
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