
Differential and Integral Equations, Volume 2, Number 1, January 1989, pp. 91-110. 

ON FOURTH ORDER BOUNDARY VALUE PROBLEMS 

ARISING IN BEAM ANALYSIS 

RAVI P. AGARWAL 

Department of Mathematics, National University of Singapore, Kent Ridge, Singapore 0511 

(Submitted by: C. Corduneanu) 

Abstract. We consider a general fourth order nonlinear ordinary differential equation 

together with two point boundary conditions which occur in the deflection of a beam rigidly 

fastened at left and simply fastened at right. For this general boundary value problem, we 

provide necessary and sufficient conditions for the existence and uniqueness of the solutions. 

We also obtain upper estimates on the length of interval so that Newton's method converges 

quadratically to the unique solutions. Some of our results are the best possible in their frame. 

1. Introduction. Imposing some ideal conditions, the deflection of a beam rigidly 

fastened at left and simply fastened at right leads to a fourth order differential equation (in 

simplest form) [4, 7-9, 11, 19, 22] 

(1.1) 

together with the two point boundary conditions 

x(a) =A, x'(a) = B, x(b) = C, x"(b) =D. (1.2) 

The problem (1.1), (1.2) has a unique solution if and only if 

cosh a ( b - a) sin a ( b - a) - cos a ( b - a) sinh a ( b - a) = p i= 0 (1.3) 

and can be expressed in terms of elementary functions 

B. 
x(t) = Acosha(t- a)+ a smha(t- a)+ ,6 (cos a(t- a)- cosha(t- a)) (1.4) 

+ 1 (sin a(t- a)- sinha(t- a)) 

where the constants ,6 and 1 appear as 

1 [( 2B . D ) ,6 =- 2Acosha(b- a)+ -smha(b- a)- 2 - C sina(b- a) 
2p a a 
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+ (~ - C)sinha(b- a)), 

An International Journal for Theory & Applications 



92 R.P. AGARWAL 

-1 [( 2B D ) 'J=- 2Acosha(b-a)+-sinha(b-a)- 2 -C cosa(b-a) 
~ a a 

+ (~ - C)cosha(b- a)]. 

If p = 0. and any one of the constants A, B, C or D is nonzero, then (1.1), (1.2) has no 

solution, whereas an infinite number of solutions if A = B = C = D = 0; these solutions 

can be written as 

x(t) = c [sinha(b- a) sina(b- t)- sina(b- a)sinha(b- t)] (1.5) 

where c is an arbitrary constant. 

Motivated with the above problem (1.1), (1.2) in this paper, we shall consider the following 

fourth-order nonlinear differential equation 

/Ill _ f(t I II Ill) 
X - ,X, X ,X ,X (1.6) 

together with the boundary conditions (1.2). The function f is assumed to be continuous 

in all of its arguments. We begin with a series of lemmas in Section 2, which are repeatedly 

needed later. One important contribution here is the inequalities (2.3) which are best 

possible. In Section 3. we shall provide necessary and sufficient conditions for the existence 

and uniqueness of the solutions of the boundary value problem (1.6), (1.2). These results 

are quite sharp and give at least rough lower as well as upper estimates on the solutions; 

i.e., the regions in which the solutions exist. In general, even if it is known that (1.6), (1.2) 

has a unique solution, it is not possible to find it explicitly. Faced with this difficulty, we 

resort to numerical methods, and for this, we note that shooting type methods proposed in 

our earlier work [2,4] can be used directly or after converting it into its equivalent first order 

system. Further, in Section 3, our results in Theorem 3.8 and Remark 3.4 provide upper 

estimates on the length of the interval (b- a) so that Picard's iterative method converges 

to the solution of (1.6), (1.2). For this, explicit error estimates are also obtained. Newton's 

method (also known as Quasilinearization [3]) is used in Section 4 to construct the solution 

of our problem (1.6), (1.2). The quadratic convergence of the method is proved, and once 

again we obtain explicit error estimates. Unfortunately, our results in Sections 3 and 4 are 

not the best possible for the general differential equation (1.6). In Section 5, we assume 

that the function f is independent of x', x" and x 111 , i.e., 

x"" = j(t, x) (1. 7) 

and obtain several results for the boundary value problem (1. 7), (1.2) which are best possible. 

An important contribution here is our Theorem 5.5, which besides proving the existence of a 

solution of (1.7), (1.2) also provides two sided monotonic convergence of the Picard method. 

Obviously, from the computational point of view, monotone convergence has superiority 

over ordinary convergence and several monotonic iterative schemes for different problems 

have been developed and analyzed in the recent monograph [15]. Finally, we remark that the 

existence, uniqueness and constructive methods for fourth order boundary value problems 

have attracted the attention of several workers [1, 4-6, 10, 12-14, 16-18, 20, 21], particularly 

because they occur in a wide variety of applications. 
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2. Preliminary results. 

Lemma 2.1. The Green's function g( t, s) of the boundary value problem 

x"" = 0 

x(a) = x'(a) = x(b) = x"(b) = 0 

can be written as 

93 

(2.1) 

(2.2) 

{ 

(s- a) 2(b- t) [(s- a)(b- t) 2 + 3(b- a) 2(b- s)- 3(b- a)(b- t) 2], 

1 a::;s::;t, 

g(t, s) = 12(b- a) 3 (t- a) 2(b- s) [(t- a)(b- s) 2 + 3(b- a) 2(b- t)- 3(b- a)(b- s) 2], 

t :::: s :::: b, 

and 

(1) g(t, s) 2: 0 for all (t, s) E [a, b] x [a, b] 

(2) 1blg(il(t,s)lds::;ci(b-a)4-i; i=0,1,2,3 

where 
39 + 55)33 1 1 5 

Co = 65536 ' cl = 48 ' c2 = 8 ' c3 = 8 . 

Proof: The proof involves computation which is tedious, though elementary. 

Corollary 2.2. Let x(t) E c<4l [a, b], satisfying (2.2). Then, the following inequalities hold 

lx(il(t)l ::; ci(b- a) 4-i max lx""(t)l; i = 0, 1, 2, 3. 
a:<:;t:<:;b 

Proof: Any such function can be written as 

x(t) = 1b g(t, s)x""(s) ds 

and hence 

lx(il(t)l:::: ( rb lg(il(t, s)l ds) max lx""(t)l. 
J a a:<:;t:<:;b 

(2.3) 

Remark 2.1. In (2.3), the constants ci; i = 0, 1, 2, 3 are the best possible as they are exact 

for the function 
1 

x(t) = 48 (t- a) 2 (b- t)[3(b- a)- 2(t- a)] 

and only for this function upto a constant factor. 

Lemma 2.3. The unique polynomial P3(t) of degree 3, satisfying (1.2) can be written as 

P3(t) = 2 ~: = 2)3 [3(b- a) 2 - (b- t) 2]A + (t ~ba~:Y t) [2(b- a)- (t- a)]B 

+ (t-a)2 [3(b-a)-(t-a)]C-(t-a)2(b-t)D 
2(b-a)3 4(b-a) 

(2.4) 



94 R.P. AGARWAL 

and 
1 1 

IP3(t)j :S !AI+ 3J3(b- a)jBj + !CI + 27 (b- a) 2 !DI 

1 1 3 3 11 
IP3(t)j :S (b _a) [21AI + (b- a)IBI + 2ICI + -g(b- a) 2 IDI) 

1 
IP~'(t)j :S (b _ a)2 [3IAI + 3(b- a)IBI + 3ICI + (b- a) 2 IDI] 

1 
!P~"(t)l :S (b -'a)3 [3IAI + 3(b- a)jBj + 3ICI + (b- a) 2 IDI]. 

Lemma 2.4. For the differential equation 

:r'"' = >.x 

together with the boundary conditions (2.2), the following hold: 

( 1) >. :S 0 is not an eigenvalue 

(2) >. = An > 0 is an eigenvalue provided 

tan>.:/ 4(b- a)= tanh>.~l 4 (b- a) 

(2.5) 

(3) the eigenfunction <h(t) corresponding to the first eigenvalue >. 1 is of fixed sign in 

(a, b) and can be expressed as · 

1b 1b 1 1 
(4) jg(t, 8)11<h(s)j ds = g(t, s)ch(s) ds = -j¢1(t)j = J:tP1(t), 

a a >.1 1 

>. 1 (b - a )4 = 237.721069 .... 

Proof: Let >.* < 0 be an eigenvalue and ¢*(t) be the corresponding eigenfunction, then 

¢*(t)¢""*(t) = >.*[¢*(t)] 2 , 

and integration by parts provides 

which is possible only if cp"*(t) = 0 almost everywhere. But then, ¢*(t) = 0 from the 

boundary conditions (2.2). 

The rest of the parts follow by direct computation (cf. see introduction). 

Remark 2.2. Since the function 

rb jg(t, s)l ds = jb g(t, s) ds = ~(t- a) 2 (b- t)[3(b- a)- 2(t- a)] 
}a a 48 

as well as ¢ 1 ( t) is nonnegative and have the same zeros, there exists a smallest possible 

constant m such that 

1b jg(t, s)j ds = ml<h(t)j. (2.6) 
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Lemma 2.5. [4] Let (E, ::;) be a partially ordered space and .7:0 ::; y0 be two elements of 

E. [x0 , y0 ] denotes the interval {x E E: Xo ::; :r: ::; yo}. LetT: [:ro, Yo] --+ E be an isotone 

operator (T(x)::; T(y), whenever x::; y) and let it possess the properties 

(i) xo ::; T(xo) 

(ii) the (nondecreasing) sequence {T"(xo)} where T 0 (xo) = xo, T"+ 1 (x 0 ) = T[T"(x0 )] 

for each n = 0, 1, ... is well defined, i.e., T"(xo)::; Yo for each natural n 

(iii) the sequence {T"(x0 )} has supx E E, i.e., T"(.To) T x 

(iv) T"+ 1 (xo) T T(:r) 

(i)' T(yo) :S: Yo 

(ii)' the (nonincreasing) sequence {T"(y0 )} is well defined, i.e., T"(y0 ) > x0 for each 

natural n 

(iii)' the sequence {Tn(y0 )} has infy E E, i.e., T"(yo) l y 

(iv)' T"+ 1 (Yo) l T(y). 

Then, x = T(x) and for any other fixed point z E [xo,Yo] ofT, x ::; z is true. (Then, 

y = T(y) and for any other fixed point z E [xo, Yo] ofT, z ::; y is valid). Moreover, if 

T possesses both properties (i) and (i)', then the sequences {T"(x 0 )}, {T"(y0 )} are well 

defined and if further, T has the properties (iii), (iii)' and (iv ), ( iv )', then 

and x = T(x), y = T(y), also any other fixed point z E [x0 , Yo] ofT satisfies x::; z::; y. 

Lemma 2.6. [4] Let M > 0 and {xn(t)} be a sequence of functions in C(4 l[a, b] such that 

lxn(t)i ::; M and lx~"(t)i ::; M for all n. Then, there exists a subsequence {xn(j)(t)} such 

that {x~ij)(t)} converges uniformly on [a, b] for each i, 0::; i::; 3. 

3. Existence and uniqueness. 

Theorem 3.1. Suppose that 

(i) Ki > 0, 0 ::; i ::; 3 are given real numbers and let Q be the maximum of 

if(t,xo,xl,x2,x3)1 on the compact set: [a,b] x D 0 , where 

Do= {(xo,x1,.r2,x3): lxil::; 2Ki, 0::; i::; 3} 

(ii) (b- a)::; (K;/Qci) 114 -i, 0::; i::; 3 

(iii) max /PJil(t)l SKi, 0 SiS 3. 
a-=:;t-=:;b 

Then, the boundary value problem (1.6), (1.2) has a solution in D0 . 

Proof: We begin with the observation that the boundary value problem (1.6), (1.2) is 

equivalent to the following Fredholm type of integral equation. 

b 

x(t) = P3(t) + 1 g(t, s )f(s, x(s ), x' (s ), x" (s ), x"' (s)) ds. 

Next, we define the set 

B[a,b] = {x(t) E C(3l[a,b]: llx(i)ll = max lx(il(t)i :S: 2Ki, 0 :S: i :S: 3}. 
a"':Ot"':Ob 

(3.1) 
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It is easy to verify that B[a, b] is a closed convex subset of the Banach space C( 3) [a, b]. 

Consider an operator T : C(3) [a, b] -+ C(4 ) [a, b] as follows: 

(Tx)(t) = P3(t) + 1b g(t,s)f(s,x(s),x'(s),x"(s),x111 (s))ds. 

Obviously, any fixed point of (3.2) is a solution of (1.6), (1.2). 

Let x(t) E B[a, b], then (Tx)(t)- P3(t) satisfies the conditions of Corollary 2.2 and 

(Tx)""(t)- P~"'(t) = (Tx)""(t) = j(t,x(t),x'(t),x"(t),x"'(t)) 

thus 

max I(Tx)'"'(t)l ~ Q. 
a~t~b 

Hence, from Corollary 2.2, it follows that 

which also implies that 

~ K; + K; = 2K;, 0 ~ i ~ 3. 

(3.2) 

(3.3) 

Thus, T maps B[a, b] into itself. Further, the inequalities (3.3) imply that the sets {(Tx)(il(t) 

: x(t) E B[a, b]}, 0 ~ i ~ 3 are uniformly bounded and equicontinuous on [a, b]. Hence, 

T B[a, b] is compact follows from the Ascoli-Arzela theorem. The Schauder fixed point 

theorem is applicable and a fixed point of T in Do exists. 

Corollary 3.2. Let the conditions of Theorem 3.1 be satisfied. Then, for arbitrarily given 

E > 0 there is a solution x(t) of (1.6), (1.2) such that lx(il(t)- PJil(t)l ~ E, 0 ~ i ~ 3 

provided ( b - a) is sufficiently small. 

Proof: Let x(t) be a solution of the problem (1.6), (1.2) and x(t) E B[a, b], then 

Thus, if 

(b- a)~ (~Q) 1 / 4 -i, 0 ~ i ~ 3 
C; 

the Corollary follows. 

Corollary 3.3. Let the conditions (i), (ii) of Theorem 3.1 be satisfied, and let ¢(t) E 

C( 3) [a, b] be a given function. Then, the differential equation (1.6), together with 

x(a) =¢(a), x'(a) =¢'(a), x(b) =¢(b), x"(b) =¢"(b) (3.4) 

has a solution, if 
3 

L Mj(b- a)j-i ~ K;, 0 ~ i ~ 3 (3.5) 

j=l 
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where 

M = max I¢Ul(t)l. 
J a::;t<::;b 

Proof: We need to verify that the condition (iii) of Theorem 3.1 is satisfied. For this, in 

P3 (t) we let A= ¢(a), B =¢'(a), C =¢(b) and D =¢"(b), and note that ¢(a)- P3(a) = 

¢'(a)- PHa) =¢(b)- P3(b) =¢"(b)- P~'(b) = 0. Hence, by Rolle's theorem, there exist 

points t1 E (a, b), t2 E (a, tl) and t3 E (t2, b) such that ¢'(h)- P~(tl) = ¢"(t2)- P~'(t 2 ) = 

¢"'(t3 )- p~'(t 3 ) = 0. Thus, we find that 

(3.6) 

Next, since 

-P~'(t) =-¢"(b)+ ib P~"(s) ds 

an application of (3.6) gives 

(3.7) 

Similarly, from 

P~(t) =¢'(a)+ 1t P~'(s) ds 

and (3. 7), it follows that 

(3.8) 

Finally, using (3.8) in 

we get 

(3.9) 

Corollary 3.4. Assume that the function f(t, x 0 , x 1 , x 2 , x 3) on [a, b] x R4 satisfies the 

following condition 
3 

lf(t,xa,xl,x2,x3)1:::; L + LLilxil"'i 

i=O 

(3.10) 

where L, Li, 0 :::; i :::; 3 are nonnegative constants, and 0 :::; ao, a 1 , a 2 , o:3 < 1. Then, for 

any function ¢(t) E C(3l[a, b] the boundary value problem (1.6), (3.4) has a solution. 

Proof: For x(t) E B[a, b] the condition (3.10) implies that 

3 

if(t,x(t),x'(t),x"(t),x"'(t)))i:::; L+ LLi(2Ki)"'i = Q1, say. 

i=O 

Now, Corollary 3.3 is applicable by choosing ki, 0:::; i:::; 3 sufficiently large so that 

ci(b- a)4-iQl:::; Ki, 0:::; i:::; 3 

and 
3 

L Mj(b- a)J-i :::; Ki, 0:::; i:::; 3. 

j=i 
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Corollary 3.5. Assume that there exists a positive real valued function '1/J(yo, y1 , Y2, y3) 

defined for Yi ~ 0, 0 ~ i ~ 3 which is nondecreasing in each variable and such that 

3 

LYi _.. oo, 

i=O 

(3.11) 

(3.12) 

then for any function 'ljJ(t) E C(3) [a, b] the boundary value problem (1.6), (3.4) has a solution. 

Proof: From (3.12), for sufficiently large y; it follows that 

and hence, from (3.11) we have 

c;(b- a) 4-i max lf(t,x(t),x'(t),x"(t),x"'(t))l 
a::;t::;b 

~ c;(b- a)4-i max '1/J (lx(t)l, lx'(t)l, lx"(t)l, lx'"(t)l) 
a:::t:::b 

~ lx(il(t)l, 0 ~ i ~ 3. 

The rest of the proof is similar to that of Corollary 3.4. In fact, condition (3.10) is a 

particular case of (3.11) for which (3.12) is readily satisfied. 

Remark 3.1. Theorem 3.1 is a local existence theorem, whereas Corollary 3.4, as well as 

Corollary 3.5 does not require any condition on the length of the interval or the boundary 

conditions. As one should expect from the problem (1.1), (1.2) in Section 1, if in (3.10) 

o:; = 1, 0 ~ i ~ 3 then the solution will exist only when the length of the interval and/or 

the boundary conditions are restricted. This is the content of our next result. 

Theorem 3.6. Suppose that the function f(t, x0 , x 1 , x2, x3) on [a, b] x D 1 satisfies the 

following condition 

where 

and 

3 

lf(t,xo,xl,x2,x3)1 ~ L+ LL;Ix;l 
i=O 

3 

e = L L;c;(b- a)4-i < 1 

i=O 

3 

£ = max ~ L;IP~i)(t)l. 
a<t<bL... 

- - i=O 

(3.13) 

(3.14) 

(3.15) 
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Then, the boundary value problem (1.6), (1.2) has a solution in D 1 . 

Proof: Let y(t) = x(t) - P3(t), so that the boundary value problem is equivalent to the 

following: 

y""(t) = f(t, y(t) + P3(t), y'(t) + P~(t), y"(t) + P~'(t), y"'(t) + P~"(t)) (3.16) 

y(a) = y'(a) = y(b) = y"(b) = 0. (:U7) 

Define S as the set of functions four times differentiable on [a, b] and satisfying (3.17). If 

we introduce inS the norm IIYII = rnaxa:;t:;b ly""(t)l (y""(t) = 0 implies y(t) = 0), then S 

becomes a Banach space. We define a mapping T : S --.. S as follows 

(Ty )(t) = 1b g(t, s )J (s, y(s) + P3(s ), y' (s) + P~(s ), y" (s) + P~' (s ), y"' (s) + P~" (s)) ds (3.18) 

and show that it maps the ball sl = {y(t) E s: IIYII ~ (L + £)/(1- B)} into itself. For this, 

let y(t) E S 1 then, from Corollary 2.2, it follows that 

( .) 4 .£ +£ 
IY' (t)l ~ Ci(b- a) _, 1- e' 0 ~ i ~ 3. 

Thus, we find that 

(.) L+£ (.) 
IY(il(t) + p3' (t)j ~ Ci(b- a) 4-i 1- e + a~r:Sb IP3' (t)l, 0 ~ i ~ 3 

and hence, (y( t) + P3( t), y' ( t) +PH t), y" ( t) + Pn t), y"' ( t) + P~" ( t)) E D1. 

Using (3.13) into (3.18) and the definition of norm, we get 

3 . L+£ 
~ L + £ + L Lici(b- a) 4-'IIYII ~ L + £ + e 1- e 

i=O 

L+£ 

1- e · 

Now, it follows from Schauder's fixed point theorem that T has a fixed point y(t) in S 1 . 

This fixed point y(t) is a solution of (3.16), (3.17) and hence the boundary valuf~ problem 

(1.6), (1.2) has a solution x(t) = y(t) + P3(t) in D1. 

Theorem 3.7. Assume that the boundary value problem (1.6), (2.2) has a nontrivial solu

tion x(t) and the condition (3.13) with L = 0 is satisfied for all (t, Xo, x1, x2, x3) E [a, b] x D 2, 

where 

D2 = {(xo,x1,x2,x3): lxil ~ J.LCi(b- a)4-i, 0 ~ i ~ 3} 

and J.t = maxa:;t:;b lx""(t)l. Then, it is necessary that e :2: 1. 

Proof: Since x(t) is a nontrivial solution of (1.6), (2.2), it is necessary that J.t =/= 0. Further, 

as a consequence of inequalities (2.3), we note that (x(t), x'(t), x"(t),x111 (t)) E D 2 . Thus, it 

follows that 
3 3 

lx""(t)l ~ L Lilx(il(t)l ~ L Lici(b- a) 4 -ij.t =eft. 

i=O i=O 



100 R.P. AGARWAL 

Hence, it is necessary that () ~ 1. 

Remark 3.2. In (3.13), with L = 0, at least one of the L;, 0 :::; i :::; 3 will not be zero; 

otherwise, x(t) will coincide with a polynomial of degree less than four and will not be a 

nontrivial solution of (1.6), (2.2). 

Remark 3.3. If (3.13) with L = 0 is satisfied, then obviously x(t) = 0 is a solution of (1.6), 

(2.2); if() < 1 then Theorem 3. 7 also guarantees its uniqueness in D 2 . 

Theorem 3.8. Suppose that the function f(t, x0 , x 1 , x2 , x3 ) on [a, b] x D~ satisfies the 

Lipschitz condition 

3 

lf(t,xa,xl,x2,x3)- f(t,xa,xl,x2,x3)1 :S LL;Ix;- x;l 
i=O 

(3.19) 

where D~ is the same as D 1 with L = maxa<t<b lf(t, 0, 0, 0, 0)1. Then, the boundary value 

problem (1.6), (1.2) has a unique solution in -D~. 

Proof: Since the condition (3.19) implies (3.13), the existence of a solution follows from 

Theorem 3.6. To prove the uniqueness, let x(t) and y(t) be two solutions in D~. Since the 

function z(t) = x(t)- y(t) satisfies the conditions of Corollary 2.2, it follows that 

3 

lz'"'(t)l :S L L;lx(il(t)- y(il(t)l 

i=O 

3 

:::; ""'L;c;(b- a) 4-i x max lz""(t)l 
~ a<t<b 
i=O --

= 8 max lz""(t)l. 
a~t::;b 

Since () < 1, the above inequality implies that z"" ( t) = 0, and from this we immediately 

have z(t) = 0, i.e., x(t) = y(t). 

Remark 3.4. The importance of Theorem 3.8 lies with the fact that the sequence {Yn(t)} 

generated by the iterative scheme 

Yn+l (t) = 1b g(t, s )f (s, Yn(s) + P3(s ), y~ (s) + P~(s ), y~ (s) + P~' (s ), y~' (s) + P~" (s)) ds 

y0 (t) = 0; n = 0, 1, · · · (3.20) 

remains in S1 and converges to the solution y(t) of the boundary value problem (3.16), 

(3.17). Also, an error estimate is easily available 

L+£ 
llYn - Yll :S ()n 1 _ () · 

4. Newton's method. Theorem 3.8, besides proving the existence and uniqueness of 

the solutions, also provides upper estimates on the length of the interval (b- a) in terms 

of the Lipschitz constants so that Picard's iterative scheme (3.20) converges to the unique 
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solution of (1.6), (1.2). Here, we shall provide upper estimates on (b-a) so that the sequence 

{ Xn ( t)} generated from the general Newton's iterative scheme ( quasilinearization) 

x~~l (t) = f (t, Xn (t), x~ (t), x~ (t), x~;' (t)) 

3 

+ a(t) L ( x~L (t)- x~l(t)) , (~ f(t, Xn(t), x~(t), x~(t), x~'(t)) 
i=O OXn (t) (4.1) 

Xn+l(a) =A, x~+ 1 (a) = B, Xn+l(b) = C, <;+1(b) = D, n = 0, 1, ... 

where x 0 (t) is an initial approximation and a(t) is a continuous function on [a, b], converges 

to the unique solution x*(t) of (1.6), (1.2). 

For this, we need the following: 

Definition 4.1. A function x( t) E C(4 ) [a, b] is called an approximate solution of (1.6), (1.2) 

if there exist b and E nonnegative constants such that 

and 

max lx""(t)- f(t,x(t),x'(t),x"(t),x"'(t))l:::; b 
a:<:;t:<:;b 

max IPJil(t)-PJil(t)l :::;Ec;(b-a)4-i, i=0,1,2,3 
a:<:;t:<:;b 

where P3 (t) is the third degree polynomial satisfying 

F3 (a) = x(a), P~(a) = B, P3 (b) = C, P~'(b) =D. 

This approximate solution x(t) can also be expressed as 

b 

x(t) = F3 (t) + 1 g(t,s) [f(s,x(s),x'(s),x"(s),x"'(s)) + ry(s)] ds (4.2) 

where 

ry(t) = x""(t)- f(t, x(t), x'(t), x"(t), x"'(t)) and max lry(t)l :::; b. 
a:<:;t:<:;b 

In what follows, we shall consider the Banach space B = C(3 l[a, b] and for all x(t) E B 

llxll = max {co (b- a)j max lx(jl(t)l} . 
a:SJ:'03 Cj a:<:;t:<:;b 

Theorem 4.1. With respect to the boundary value problem (1.6), (1.2), we assume that 

there exists an approximate solution x(t) and that 

(i) the function j( t, x 0 , x1 , x2, x3) is continuously differentiable with respect to all x;, 
0 :::; i :::; 3 on [a, b] x D3 , where 

D3 = { (xo,x1,x2,x3): lxJ- x(jl(t)l:::; N~~ (b- a)J, 0:::; j:::; 3} 
and N > 0, a real constant 

(ii) there exist nonnegative constants L;, 0:::; i:::; 3 such that for all (t,x0 ,x1 ,x2,x3) E 

[a,b] x D3 
{) 

lax;(t,xo,x1,x2,x3)1 :::;L; 

(iii) (h = (1 + 2a)8 < 1, where a= maxa::;t:<:;b ia(t)l 

(iv) N 1 = (1- 81 )- 1 (E + b)c0 (b- a) 4 :::; N. 
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Then, the following hold 

(1) the sequence {xn(t)} generated by (4.1) with x 0 (t) = x(t) remains in 

(2) the sequence {xn(t)} converges to the unique solution x*(t) of (1.6), (1.2) 

(3) a bound on the error is given by 

llx*- xnll::; ((1 + a~ 8 t(1- (1 + a)ef1llx1- xll (4.3) 
1- a 1- ae 

::; ((1 + a)et(1- (1 + a)Bf1(1- aB)-1(E + 8)c0 (b- a) 4 . (4.4) 
1- aB 1- aB 

Proof: Obviously, x(t) = x0 (t) E S(x, N 1 ). Thus, we need to show that if xn(t) E S(x, Nl), 

then Xn+l (t) E S(x, Nl). From the definition of norm, xn(t) E S(x, Nl) implies that 

and since N 1 ::; N, we find that 

i.e., (xn(t), x~(t), x~(t), x~'(t)) E D3. Thus, from (4.1) and (4.2), it follows that 

3 

+ a(s) L (x~L(s)- x~l(s)) (~ f(s, Xn(s), x~(s), x~(s), x"'(s)) 
i=O OXn (s) 

- f(s, x(s), x'(s), x"(s), x"'(s)) -ry(s)] ds 

and hence from Corollary 2.2, we find that 

Jx~l 1 (t)- xUl(t)J::; ECj(b- a) 4-j + cj(b- a) 4-i x 

max [I! ( t, Xn (t), x~ (t), x~ (t), x~' (t)) - f (t, x(t), x'(t), x"(t), x'"(t)) I 
a::;t::;b 

3 

+a L LiJx~iL (t)- x~l(t)J + 8] 
i=O 

3 

< (E + 8)c ·(b- a) 4-j + c ·(b- a) 4-j "'"'L· Ci . x 
- J J L...J ' (b )' 

i=O co -a 

{llxn- xll + allxn+l- xll + allxn- xll}' 0::; j::; 3. 
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Thus, it follows that 

Jlxn+l- xJJ ::; (t: + 8)co(b- a) 4 + B [aJJxn+l- xJJ + (1 + a)N1] . 

The above inequality gives 

Hence, Xn+l(t) E S(x,Nl). 

Next, from (4.1), we have 

Xn+l(t)- Xn(t) = 

lb g(t, s) [f(s, Xn(s), x~(s), x~(s), x~'(s))- f(s, Xn-l(s), x~_ 1 (s), x~_ 1 (s), x~'_ 1 (s)) 
3 

+ a(s) L { (x~L(s)- x~il(s)) (~ f(s,xn(s),x~(s),x~(s),x~'(s)) 
i=O OXn (s) 

- (x~l(s)- x~~ 1 (s)) (i~ f(s,Xn-l(s),x~_ 1 (s),x~_ 1 (s),x~'_ 1 (s)) }] ds. 
axn_l(s) 

(4.5) 

Thus, from Corollary 2.2 and the fact that {xn(t)} ~ S(x, Nl), we have 

lx~l 1 (t)- x~\t)l::; 

Cj(b- a) 4-j max [(1 +a)~ L;lx~l(t)- x~~ 1 (t)l +a~ L;lx~L(t)- x~l(t)l] 
a<t<b ~ ~ 

- - i=O i=O 

and hence, 

which is the same as 

Finally, an easy induction provides 

(1+a)e n 
llxn+l- Xnll ::; ( e ) llx1- xjj. 

1-a 
( 4.6) 

Since el = ( 1 + 2a )B < 1' ( 4.6) implies that { Xn ( t)} is a Cauchy sequence and hence 

converges to some x*(t) E S(x,Nl). This x*(t) is indeed the only solution of the boundary 

value problem (1.6), (1.2) can be verified easily. 

The error bound ( 4.3) follows from ( 4.6) and the triangle inequality 

p . p 

"'""' "'""'((1 + a)B)n+i-1 
llxn+p- Xnll ::; ~ llxn+i- Xn+i-lll ::; ~ 1 _ aB llx1- xjj 

i=l i=l 

and by now taking p -+ oo. 
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Next, from (4.1) and (4.2), we have 

b 3 

x1(t)- xa(t) = P3(t)- F3(t) + J g(t, s) [o:(s) L (xii\s)- x~i)(s)) x 

a i=O 

and as earlier. we find 

From the above inequality, we find 

(4.7) 

Using (4.7) in (4.3), inequality (4.4) follows. 

Remark 4.1. If o:(t) = 0, then the conclusions of Theorem 4.1 are more informative than 

Theorem 3.3 as well as Remark 3.4. However, in both the results, the convergence is only 

linear. In ( 4.1), the case o:( t) = 1 gives quadratic convergence, which we prove in our next 

result. 

Theorem 4.2. Let the conditions of Theorem 4.1 be satisfied and o:(t) = 1. Further, let 

j(t,xo,xl,x2,x3) be continuously twice differentiable with respect to all x;, 0 :=:; i :=:; 3 on 

[a, b] x D3, and for all (t, x 0 , x 1, x 2 , x3) E [a, b] x D3 

82 
f~f(t,xa,xl,x2,x3)f :=:; L;Ljk, 0 :=:; i, j :=:; 3. 
uX;UXj 

Then, the following holds: 

( 4.8) 

where (3 = k8 2 /2(1- 8)c0 (b- a) 4 . Thus, the convergence is quadratic if 

1 e )2 
-(E + o)k(-8 < 1. 
2 1-

Proof: In Theorem 4.1, we have proved that {xn(t)} ~ S(x,NI), thus, for all n, 

Furthermore, since f is twice continuously differentiable, we have 

f (t, Xn (t), X~ (t), x~ (t), x~' (t)) - f (t, Xn-l (t), X~-l (t), X~-l (t), x~'_l (t)) 

3 

- L (x~\t)- x~~ 1 (t)) (if f(t,Xn-l(t),x~_ 1 (t),x~_ 1 (t),x~'_ 1 (t)) 
i=O OXn-l(t) (4.9) 

3 

= ~ [ ~ (x~) (t) - x~~ 1 (t)) ap~(t)] 2 f(t, Po(t),pl (t),p2(t), P3(t)) 
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where Pi(t) lies between x~~ 1 (t) and x~)(t), 0:::; i:::; 3. 

Using (4.9) in (4.5) to obtain 

and now an application of Corollary 3.3 gives 

and hence, 

which is the same as 

The second part of the inequality (4.8) follows by an easy induction, whereas the last part 

is an application of ( 4. 7). 

5. Best possible results. 

Theorem 5.1. Suppose that the function f(t, x 0 ) on [a, b] x D4 satisfies the following 

condition 

if(t, xo)l :::; L + Lolxol ( 5.1) 

where L 0 < .\ 1 and 

Then, the boundary value problem (1. 7), (1.2) has a solution in D4 . 

Proof: Define U[a, b] as the space of continuous functions. If we introduce in U[a, b] the 

finite norm 

then it becomes a Banach space. As in Theorem 3.6, we shall show that T : U[a, b] ----> U[a, b] 
defined by 

(Ty)(t) = 1b g(t, s)f(s, y(s) + P3(s)) ds 
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maps 

into itself. For this, if y(t) E U1[a, b] then it is immediate that y(t) + P3(t) E D4 and hence 

from (5.1), (5.2), Lemma 2.4 and inequality (2.6), it follows that 

I(Ty)(t)i :S 1b lg(t, s)l [L + Loly(s) + P3(s)l] ds 

:s 1b lg(t, s)l [L + Lo a~r:fb IP3(t)1 

+ Lo(l - ~~ )-1m(L + Lo a~r:fb IP3(t) 1)1¢1 (s )I] ds 

( Lo Lo 1) 
:S m(L + Lo max IP3(t)l) 1 + ,(1- \ )- I<P1(t)l 

a~t~b Al A1 

Lo 1 
= (1- \ )- m(L + Lo max IP3(t)l)l¢1(t)l 

Al a~t~b 

which implies that 

Lo 1 
IITYII :S (1- \ )- m(L + Lo max IP3(t)l). 

A1 a~t~b 

Remark 5.1. In Theorem 5.1, the inequality L 0 < >.1 is the best possible. Indeed, in case 

of equality L0 = >.1 the boundary value problem x'"' = L0 x, x(a) = E (=I= 0), x'(a) = x(b) = 

x"(b) = 0 has no solution. 

Theorem 5.2. Suppose that the boundary value problem (1. 7), (2.2) has a nontrivial 

solution x(t) and the condition (5.1) with L = 0 is satisfied for all (t, x0 ) E [a, b] x D 5 , where 

Ds = { Xo : lxol :S :S (t- a) 2 (b- t)[3(b- a)- 2(t- a)]} 

and J.L = maxa$t~b lx""(t)l. Then, it is necessary that Lo ~ >.1. 

Proof: From the proof of Corollary 2.2, for any function x(t) E c<4 l [a, b] satisfying (2.2), 

it follows that x(t) E D 5 . Now, since x(t) is a nontrivial solution of (1.7), (2.2) we find that 

supa<t<b lx(t)l/l¢1(t)l exists and is different from zero. Thus, from the integral representa
tion- -

x(t) = 1b g(t, s)f(s, x(s)) ds 

and (5.1) and Lemma 2.4, we get 

and hence Lo ~ >.1. 

Remark 5.2. In Theorem 5.2, the inequality L 0 ~ >.1 is the best possible. Indeed, the 

boundary value problem x"" = >. 1x, (2.2) has nontrivial solutions x(t) = c¢1(t), where cis 

an arbitrary constant. 
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Theorem 5.3. Suppose that the function j(t, x 0 ) on [a, b] x D~ satisfies the Lipschitz 

condition 

lf(t, xo)- f(t, xo)l ~ Lolxo- xol (5.3) 

where D~ is the same as D4 with L = maxa<t<b lf(t, O)J. Then, the boundary value problem 

(1. 7), (1.2) has a unique solution in D~. 

Proof: The proof employs the ideas of Theorem 3.8 and Theorem 5.1. 

Remark 5.3. Once again, in Theorem 5.3, the inequality L 0 < .\1 is the best possible. 

Indeed, in case of equality, existence and/or uniqueness may fail, e.g., see Remarks 5.1 and 

5.2. 

Remark 5.4. As in Remark 3.4, the importance of Theorem 5.3 lies with the fact that the 

sequence {xn(t)} generated by the iterative scheme 

Xn+1(t) = P3(t) + 1b g(t,s)f(s,xn(s))ds 

xo(t) = P3(t); n = 0, 1, · · · 

(5.4) 

remains in U![a, b] and converges to the solution x(t) of the boundary value problem (1.7), 

(1.2). Also, and error estimate is easily available 

Lo Lo 1 
llxn- xll ~ (-t(1--)- m(L + Lo max IP3(t)l). 

.\1 .\1 a:St:Sb 
(5.5) 

Further, (5.5) implies that 

Lo Lo 1 
lxn(t)- x(t)l ~ ( \ )n(l- \ )- m(L + Lo max JP3(t)J)J¢1(t)J, (5.6) 

/\1 /\1 a:St:Sb 

which has the property that the right side satisfies the boundary conditions (2.2). 

In our next result, we need the existence of a lower and an upper solution of (1.7), (1.2) 

which are defined as follows: We call a function M(t) E Cl4l[a, b] a lower solution of (1.7), 

(1.2) provided 

/.11111 (t) ~ j(t, M(t)), t E [a, b] (5.7) 

M(a) ~A, M'(a) ~ B, M(b) ~ C, M"(b) 2 D. (5.8) 

Similarly, a function v(t) E Cl4 l[a, b] is called an upper solution of (1.7), (1.2) if 

v""(t) 2 j(t, v(t)), t E [a, b] (5.9) 

v(a) 2 A, v'(a) 2 B, v(b) 2 C, v"(b) ~D. (5.10) 

Lemma 5.4. Let M(t) and v(t) be lower and upper solutions of (1. 7), (1.2), and P3,Jl-(t) 
and P3,v(t) be the polynomials of degree 3, satisfying 

P3,~"(a) = M(a), P~~"(a) = M'(a), P3,~"(b) = M(b), P~~~"(b) = M"(b) (5.11) 

and 

P3v(a) = v(a), PL(a) = v'(a), P3,v(b) = v(b), P~~v(b) = v"(b) (5.12) 

respectively. Then, for all t E [a, b] 

P3,~"(t) ~ P3(t) ~ P3,v(t). (5.13) 

Proof: The proof is immediate from the explicit form of P3 (t) obtained in (2.4). 

In the space C[a, b], we shall consider the norm llxll = maxa<t<b Jx(t)J, and introduce a 

partial ordering as follows: For x, y E C[a, b] we say that x ~ y if and only if x(t) ~ y(t) for 

all t E [a, b]. 
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Theorem 5.5. With respect to the boundary value problem (1.7), (1.2), we assume that 

f(t, uo) is nondecreasing in ua. Further, let there exist lower and upper solutions x0 (t), y0 (t) 

such that Xo ~ Yo· Then, the sequences {xn}, {Yn} where Xn(t) and Yn(t) are defined by 

the iterative schemes 

Xn+l(t) = P3(t) + 1b g(t,s)f(s,xn(s))ds 

Yn+l(t) = P3(t) + 1b g(t, s)j(s, Yn(s)) ds 

(5.14) 

(5.15) 

n = 0.1. ... , are well defined and {xn} converges to an element x E C[a, b], {Yn} converges 

to an element y E C[a, b] (the convergence being in the norm of C[a, b]). Further, 

Xo ~ X1 ~ · · · ~ Xn · · · ~ X ~ Y ~ · · · ~ Yn ~ · · · ~ Y1 ~ Yo, 

x( t) and y( t) are solutions of (1. 7), (1.2) and each solution z( t) of this problem which is 

such that z E [x0 , y0 ] satisfies x ~ z ~ y. 

Proof: First, we shall show that the operator T : C[a, b] ----> C[a, b] defined by 

Tx(t) = P3(t) + 1b g(t, s)f(s, x(s)) ds (5.16) 

is isotone. For this, let x, y E C[a, b] and x ~ y, then from the partial ordering, it follows 

that x(s) ~ y(s) for all s E [a, b], and hence from the monotonic property of j, we have 

f(s. x(s)) ~ f(s, y(s)), s E [a, b]. Thus, from the sign property of the Green's function 

(Lemma 2.1), it follows that 

g(t, s)f(s, x(s)) ~ g(t, s)f(s, y(s)), s, t E [a, b]. 

From this. the inequality T(x) ~ T(y) is obvious, and this completes the proof ofT being 

isotone. 

Next, since x 0 (t) is a lower solution, Lemma 5.4 gives that 

xo(t) = P3,x 0 (t) + 1b g(t, s)x~"(s) ds 

~ P3(t) + 1b g(t, s)f(s, xo(s)) ds = Txa(t), 

i.e .. x 0 :<:: T(x 0 ). The inequality T(y0 ) :<::Yo can be proved analogously. Thus, the conditions 

(i) and (i)' of Lemma 2.5 hold and, in conclusion, the sequences {Tn(x 0 )}, {Tn(yo)} are 

well defined. 

Since rn(xo) = T[rn-l(xo)L we have rn(xo) = Xn and rn(Yo) = Yn· The sequence 

{ Xn ( t)} is nondecreasing and bounded from above by y0 ( t), t E [a, b]. Similarly, the sequence 

{Yn(t)} is nonincreasing and bounded from below by xo(t), t E [a,b]. Hence, in conclusion, 

the sequences {xn(t)}, {Yn(t)} are uniformly bounded on [a, b]. 
Now, on using the above monotonicity properties, it is easy to verify that 

x~"(t) :<:: f(t, xa(t)) :<:: j(t, Yn(t)) = y~~ 1 (t) :<:: j(t, Yo(t)) :<:: y~"(t), t E [a, b] 
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for all n. A similar argument holds for the sequence {x~"(t)}. Hence, the sequences {x~"(t)}, 

{y~"(t)} are also uniformly bounded on [a,b]. Thus, from Lemma 2.6, there exist subse

quences {xn(j)(t)}, {Yn(j)(t)} which converge uniformly on [a,b]. However, since these

quences {xn(t)}, {Yn(t)} are monotonic, we conclude that the whole sequences {xn(t)}, 

{yn(t)} converge uniformly to some x(t), y(t) such that x, y E C[a, b], i.e., Tn(x0 ) T x and 

Tn(yo) l y. 

Finally, since the operator T is continuous, it is obvious that 

Hence, the conditions of Lemma 2.5 are satisfied and the conclusions of Theorem 5.5 follow. 

Remark 5.5. In Theorem 5.5, lower and upper solutions xo(t) and y0 (t) serve as lower and 

upper bounds for solutions in the interval [xo, Yo] and these bounds can be improved by the 

iterative schemes (5.14) and (5.15). The most important characteristic of our result is that 

if offers effective tools in constructing multiple solutions of (1.7), (1.2). 

Remark 5.6. If j(t,u0 ) is nondecreasing in u0 , then uniqueness of the solutions of (1.7), 

(1.2) is not guaranteed, e.g., the boundary value problem (1.1), (1.2) has an infinite number 

of solutions if p = 0. However, if f(t, u0 ) is nonincreasing, then the problem (1.7), (1.2) has 

at most one solution. This is the content of our next result. 

Theorem 5.6. With respect to the boundary value problem (1. 7), (1.2), we assume that 

f(t, x 0 ) is nonincreasing in x 0 . Then, it has at most one solution. 

Proof: We assume that the boundary value problem (1.7), (1.2) has two solutions, say x(t) 

and y( t) so that 

x""(t)- y""(t) = f(t, x(t))- f(t, y(t)) 

and hence, 

(x(t)- y(t))(x'"'(t)- y""(t)) = (x(t)- y(t))(f(t, x(t))- f(t, y(t))):::.; 0 

where the inequality follows as a consequence of nonincreasing nature of j(t, x 0 ) in x 0 . Now, 

as in Lemma 2.4, an integration by parts provides that 

·b 

)a (x"(t)- y"(t)) 2 dt:::.; 0, 

which is possible only when x(t) = y(t). 

Corollary 5. 7. The linear differential equation 

x"" = f(t)x + g(t), 

together with the boundary conditions (1.2), has a unique solution if 

max j(t):::.; 0. 
a:St:Sb 

( 5.17) 

(5.18) 

Proof: For the linear boundary value problem (5.17), (1.2), obviously, the uniqueness im

plies the existence. Hence, if f(t) :::.; 0 for all t E [a, b], Theorem 5.6 ensures the uniqueness 

and as a consequence the existence. 
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Remark 5. 7. From Corollary 5. 7, the differential equation 

x"" = -)'lx + 2.\ 1<f>I(t), (5.19) 

together with the boundary conditions (2.2), has a unique solution x(t) = (h(t). However, 

the iterative procedure given by 

x~~ 1 (t) = -Alxn(t) + 2Al<ih(t) 

Xn+l(a) = 0, x~+l(a) = 0, Xn+l(b) = 0, x~+l(b) = 0 

with xo(t) = 0 oscillates (xzn+l(t) = 2¢1 (t), Xzn(t) = 0), and hence Theorem 5.6 does not 

imply the convergence of the iterative scheme (5.4). 
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