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On Fractional Fourier Transform Moments
Tatiana Alieva and Martin J. Bastiaans, Senior Member, IEEE

Abstract—Based on the relation between the ambiguity function
represented in a quasipolar coordinate system and the fractional
power spectra, the fractional Fourier transform (FT) moments are
introduced. Important equalities for the global second order frac-
tional FT moments are derived, and their applications for signal
analysis are discussed. The connection between the local moments
and the angle derivative of the fractional power spectra is estab-
lished. This permits us to solve the phase retrieval problem if only
two close fractional power spectra are known.

Index Terms—Ambiguity function, fractional Fourier trans-
form, phase retrieval.

I. INTRODUCTION

OFTEN the application of the different mixed time fre-
quency distributions depends on how informative their

moments are and how easily they can be measured or calculated.
In this paper, based on the connection between the ambiguity
function (AF) and the fractional Fourier transform (FT), we in-
troduce the fractional moments. These moments are related to
the fractional power spectra and therefore can be easily mea-
sured for example in optics. The application of the fractional
moments for signal analysis and the phase retrieval problem is
discussed.

II. A MBIGUITY FUNCTION IN QUASI-POLAR COORDINATES

AND FRACTIONAL POWER SPECTRA

Let us first recall the important connection between the AF
and the fractional FT. We define the AF of a signal

as, cf. [1]

(1)
The fractional FT of function can be written in the form
[2]

(2)

where the kernel is given by

(3)
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Note that in particular, , , and
that corresponds to a normal FT.

It is well known (see for example [2]–[4]) that the fractional
FT corresponds to a rotation of the AF as well as of the Wigner
distribution at the position-frequency plane ( ). The rotation
can be described by introducing the quasipolar coordinates

(4)

where and , in which coordinates we
denote the AF as . A simple
relationship between the AF in this coordinate system
and the fractional power spectra can be derived [5], [6]

(5)

from which relation we conclude that the fractional power spec-
trum is the FT of the AF. Note that this relationship is
very important for the experimental determination of the AF in
optics, where the fractional power spectra related to intensity
distributions can be measured by a simple optical setup [5], [6],
and [7]–[9].

III. GLOBAL FRACTIONAL FT MOMENTS

In this section, we elaborate on (5) and relate the derivatives
of the AF in the origin (i.e., for 0) to the
fractional FT moments.

For the zero order moment, we have

(6)
Note that the zero order momentrepresents the signal’s en-
ergy and that, in accordance with Parseval’s theorem for a uni-
tary transformation, it does not depend on.

For the (normalized) first order moments , we have

(7)

Note that the moments are related to the centers of gravity
of the fractional power spectra and that they are determined by
the first order derivative of the AF in the direction . We
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remark that (7) is a generalization of the two well known special
cases [1] for and

From the relationship

we have

(8)

We conclude that the sum of the squares of the centers of gravity
in the position domain and the Fourier domain is invariant under
fractional FT

(9)

The (normalized) second order moments, defined by

(10)

are related to the effective widths in the fractional FT domain
and are determined by the second order derivative of the AF in
the direction .

On the analogy of the relationship

we introduce themixedsecond order derivative of the AF, where
we have a first order derivative in the direction com-
bined with a first order derivative in the direction

(11)

is a local coordinate for a given angle coordinate orthogonal
to . The (normalized) mixed second order moments, asso-
ciated with the mixed second order derivative, are now defined
as

(12)

From the relationship

we have

(13)

which is periodic in with period . Equation (13) is in accor-
dance with the relationships between second order moments of
signals whose AF’s are related through a canonical transforma-
tion described by a real, symplectic 22 matrix, as
described in [1]. In the particular case of a fractional FT corre-
sponding to a rotation of the AF, we thus have [9], [10]

from which we also get, besides (13)

(14)

In general, all second order moments and can be ob-
tained from any three second order momentstaken for three
different angles from the region . We have, for instance,

. This implies that the corre-
sponding three fractional power spectra define all second order
moments.

From (13), it follows that the sum of the signal widths in
the position domain and the Fourier domain is invariant under
fractional Fourier transformation

(15)

Regarding , we conclude from (14) that

(16)

Moreover, from (13), we have that

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 20,2010 at 12:49:58 UTC from IEEE Xplore.  Restrictions apply. 



322 IEEE SIGNAL PROCESSING LETTERS, VOL. 7, NO. 11, NOVEMBER 2000

and with (14), we conclude that

(17)

In particular, the mixed second order momentis the differ-
ence of the signal width in the fractional domains rotated at the
angles and therefore can be calculated if the fractional
power spectra are known.

Let us now find those fractional domains where, for certain
criteria, the signal could be represented in a more compact form.
First, we will look for the domain with the smallest signal width.
From (13), it is easy to see that the first derivative of with
respect to the angle equals zero if

(18)

Due to the invariance relationship (15), the solution of this equa-
tion corresponds to the domains with the smallestand largest

or vice versa. Note also that the mixed second order
moment, equals zero in those fractional domains where the
signal width takes its extremal value.

Second, let us find the fractional domain for which the
product takes its extremal value. From (13), we
have

(19)

which expression is periodic in with period , and the
derivative of with respect to vanishes if

(20)

It is easy to see that the product has a maximum
and a minimum in each period , with a difference of

between them. Note that due to the uncertainty principle,
.

Let us now consider some particular cases.
Suppose that the widths of a signal in the position and in the

Fourier domain are the same, . In that case, we have

(21)

Then the angles correspond to the zeros
of the mixed second order moment and to the extrema of the
signal width [see (18)]. The extrema of the product
occur for the angles [see (20)]. In particular, the
self-Fourier functions, which are eigenfunctions of the FT, i.e.,

, belong to this class of sig-
nals. In that particular case, we have that
and 0 for any angle , which implies that for the self-
Fourier functions, the width and the product are
invariant under propagation through the fractional FT system.

Suppose now that 0, then

(22)

In this case, the width and the product take their
extremal values at angles and , respec-
tively.

IV. L OCAL FRACTIONAL FT MOMENTS

Instead of the global moments, we now consider local mo-
ments that are related to the local spatial frequency in the dif-
ferent fractional FT domains.

One can easily express the well known expression [11] for the
local spatial frequency at the position

(23)
in terms of the local moments of the fractional power spectra.
Indeed, using the relationship

we have, after substituting from (5)

and thus

(24)

Finally, with sgn
, we get

sgn (25)

a relationship that can easily be generalized to

sgn

(26)
We remark that, with , the local
spatial frequency is related to the phase of the frac-
tional FT through

(27)
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In general, the complex-valued fractional FT , and in
particular the signal , can be completely recon-
structed except for a constant phase shift and the possible oc-
curence of an additional phase shift from its intensity distri-
bution and its local spatial frequency . Since the
latter quantity is determined by the derivative of the fractional
power spectra, see (26), only two fractional power spectra for
close angles suffice to solve the phase retrieval problem.

We conclude that moments of phase-space distributions like
the ones for the Wigner distribution, for instance, which are fre-
quently used in signal processing, can be obtained from knowl-
edge of the fractional power spectra. Introducing fractional FT
moments might then be helpful, for example, in the search for
an appropriate fractional domain, i.e., a proper choice for, in
which filtering operations will be performed. In the special case
of noise that is equally distributed in the phase plane, for in-
stance, the fractional domain with the smallest signal width
is then evidently the most preferred choice.

V. CONCLUSION

Based on the relation between the AF represented in a
quasipolar coordinate system and the fractional power spectra,
we have introduced the fractional FT moments.

Some important equalities for the global second order frac-
tional FT moments have been derived. It was shown how to find
the optimal angles for certain criteria (minimal signal width

or minimal product ) from the analysis of the
global fractional FT moments. Some particular examples have
been considered.

The connection between the local fractional FT moments and
the angle derivative of the fractional power spectra has been
established. This opens a way for the signal phase reconstruc-
tion from the knowledge of only two nearest fractional power
spectra.
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