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On fractional metric dimension of comb product graphs
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Abstract A vertex z in a connected graph G resolves two vertices u and v in G if dG(u, z) ̸= dG(v, z). A set of vertices
RG{u, v} is a set of all resolving vertices of u and v in G. For every two distinct vertices u and v in G, a resolving function
f of G is a real function f : V (G) → [0, 1] such that f(RG{u, v}) ≥ 1. The minimum value of f(V (G)) from all resolving
functions f of G is called the fractional metric dimension of G. In this paper, we consider a graph which is obtained by the
comb product between two connected graphs G and H , denoted by G�o H. For any connected graphs G, we determine the
fractional metric dimension of G�o H where H is a connected graph having a stem or a major vertex.
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1. Introduction

Throughout this paper, all graphs are finite, simple, and undirected. The distance between two vertices
u, v ∈ V (G), denoted by dG(u, v), is the length of a shortest path from u to v in G. For u, v ∈ V (G), we
define RG{u, v} = {z ∈ V (G) | d(u, z) ̸= d(v, z)}. A vertex set W ⊆ V (G) is called a resolving set of G if
W ∩RG{u, v} ≠ ∅ for any two distinct vertices u, v ∈ V (G). The minimum cardinality of all resolving sets of G
is called the metric dimension of G.

The metric dimension problems were first studied by Harary and Melter [10], and independently by Slater [14].
Slater considered the minimum resolving set of a graph as the location of the placement of a minimum number
of sonar/loran detecting devices in a network. So, the position of every vertex in the network can be uniquely
described in terms of its distances to the devices in the set. Applications of metric dimension problem can also
be found in network and verification [4], robot navigation [11], combinatorial optimization [13], pharmaceutical
chemistry [5], and strategies for the mastermind game [6].

For a function f defined on V (G) and W ⊆ V (G), let f(W ) =
∑

w∈W f(w). For every two distinct vertices
u and v in G, a resolving function f of G is a real functions f : V (G) → [0, 1] such that f(RG{u, v}) ≥ 1. The
fractional metric dimension of G, denoted by dimf (G), is min{f(V (G)) | f is a resolving function of G}.

Currie and Oellermann [7] defined fractional metric dimension as the optimal solution of the linear relaxation of
the integer programming problem. A formulation of fractional metric dimension as a linear programming problem
can be seen in [8]. The fractional metric dimension in graphs was officially initiated by Arumugam and Mathew
[1] in 2012. They provided a sufficient condition for a connected graph G whose fractional metric dimension is
|V (G)|

2 . Furthermore, Arumugam et al. [2] also characterized all graphs G where dimf (G) = |V (G)|
2 . They also
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determined dimf (G) where G is Petersen graph, cycles, hypercubes, stars, wheels, friendship graph, and grids [1].
Meanwhile, the fractional metric dimension of trees and unicyclic graphs can be seen in [12].

Some authors applied this topic to some product graphs. Feng et al. [9] have determined the fractional metric
dimension of Cartesian product of two graphs. Eunjeong Yi [15] investigated the fractional metric dimension of
permutation graphs.

Here, we study the fractional metric dimension of comb product of connected graphs G and H . In chemistry [3],
some classes of chemical graphs can be considered as the comb product graphs. Let G and H be two connected
graphs. Let o be a vertex of H . The comb product between G and H , denoted by G�o H , is a graph obtained
by taking one copy of G and |V (G)| copies of H and identify the i-th copy of H at the vertex o with the i-th
vertex of G. By the definition of comb product, we can say that V (G�o H) = {(a, v)|a ∈ V (G), v ∈ V (H)}
and (a, v)(b, w) ∈ E(G�o H) whenever a = b and vw ∈ E(H), or ab ∈ E(G) and v = w = o. We consider two
vertices a ∈ V (G) and o ∈ V (H). We define H(a) = {(a, v)|v ∈ V (H)} and G(o) = {(v, o)|v ∈ V (G)}.

In this paper, we study the fractional metric dimension of G�o H where G is a connected graph and H is a
connected graph having a stem or a major vertex. Let v be a vertex of G. A branch of G at v is defined as a
maximal subgraph of G which is isomorphic to a tree and containing v as an end point. So, if degree of v is k,
then v has at most k different branches. We recall that the degree of a vertex v in G, denoted by degG(v), is the
number of adjacent vertices to v in G. A branch of v which is isomorphic to a path is called a path branch of v. If
v contains at least two path branches, then v is called a stem of G. If a stem v contains at least three path branches,
then v is called a major vertex of G.

2. Preliminary results

Let G be a connected graph having a stem vertex. Let the vertex v ∈ V (G) be a stem in G. Let A(v) be the vertex
set of all vertices in path branches of a stem v.

Lemma 1
Let G be a connected graph and v is a stem in G. Let f be a resolving function of G. If v has k ≥ 2 path branches,
then f(A(v)) ≥ k

2 .

Proof
Let B1(v), B2(v), . . . , Bk(v) be k distinct path branches of v. We distinguish two cases.

1. k = 2
Let x ∈ V (B1(v)) and y ∈ V (B2(v)) where dG(x, v) = dG(y, v). Note that RG{x, y} = V (B1(v)) ∪
V (B2(v)) ⊆ A(v). Since f is a resolving function of G, we obtain that f(A(v)) ≥ f(RG{x, y}) ≥ 1 = k

2 .
2. k ≥ 3

For distinct integers i, j ∈ {1, 2, . . . , k}, let xi ∈ V (Bi(v)) and xj ∈ V (Bj(v)) such that dG(xi, v) =
dG(xj , v). Note that RG{xi, xj} = V (Bi(v)) ∪ V (Bj(v)). Without loss of generality, let f(V (B1(v))) = p
and f(V (B2(v))) ≥ 1− p. So, for t ≥ 3 we have f(V (Bt(v))) ≥ max{p, 1− p}. We distinguish two cases.

• f(V (Bt(v))) ≥ p
So, we have p ≥ 1

2 . Then we obtain

f(V (B1(v))) + f(V (B2(v))) + f(V (B3(v))) + . . .+ f(V (Bk(v)))

≥ p+ (1− p) + p+ . . .+ p

≥ 1 + (k − 2)p

≥ k

2

• f(V (Bt(v))) ≥ 1− p
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So, we have 0 ≤ p ≤ 1
2 . Then we obtain

f(V (B1(v))) + f(V (B2(v))) + f(V (B3(v))) + . . .+ f(V (Bk(v)))

≥ p+ (1− p) + (1− p) + . . .+ (1− p)

≥ k − 1− (k − 2)p

≥ k

2

From two cases above, it follows that f(A(v)) ≥ f(V (B1(v))) + f(V (B2(v))) + . . .+ f(V (Bk(v))) ≥ k
2 .

By the proof of Lemma 1, if a stem v in G has k ≥ 2 path branches and f is a resolving function of G, then there
exists k − 1 path branches of a stem v such that every path branch Z of them satisfies f(V (Z)) ≥ 1

2 . In lemma
below, we give an existence of a resolving function f of G such that for every path branch Z of a stem v in G,
f(V (Z)) = 1

2 .

Lemma 2
Let G be a connected graph and v be a stem in G. Let B1(v), B2(v), . . . , Bk(v) be k different path branches of v.
Then there exists a resolving function f of G such that for 1 ≤ i ≤ k, f(V (Bi)) =

1
2 .

Proof
Suppose that g is a resolving function of G satisfying Lemma 1 where there exists i ∈ {1, 2, . . . , k} such that
g(V (Bi(v))) ̸= 1

2 . Note that there exists i ∈ {1, 2, . . . , k} such that g(V (Bi(v))) >
1
2 . Now, we define a function

f : V (G) → [0, 1] as follow. For w ∈ V (G),

f(w) =

 g(w), if w /∈ A(v),
1
2 , if the vertex w ∈ A(v) has degree 1,
0, otherwise.

We will show that f is a resolving function of G.
For 1 ≤ i ≤ k, let bi be a leaf in Bi(v). Let x and y be two distinct vertices in G. If v ∈ RG{x, y}, then for

1 ≤ i ≤ k, we have bi ∈ RG{x, y}, which implies f(RG{x, y}) ≥ k
2 ≥ 1. Otherwise, we distinguish two cases.

(i) For 1 ≤ i ≤ k, bi /∈ RG{x, y}
Then every vertex of A(v) is not an element of RG{x, y}. Since g is a resolving function, we obtain
f(RG{x, y}) = g(RG{x, y}) ≥ 1.

(ii) There exists i ∈ {1, 2, . . . , k} such that bi ∈ RG{x, y}
If there exists j ∈ {1, 2, . . . , k} \ {i} such that bj ∈ RG{x, y}, then we have f(RG{x, y}) ≥ f(bi) + f(bj) =
1. Otherwise, we have x ∈ V (Bi(v)) and y /∈ A(v). We define Rxy

1 as a subset of RG{x, y} and A(v). We
also define Rxy

2 = RG{x, y} \Rxy
1 . Let PG(v, y) be a shortest path with end points v and y in G. Then there

exist j ∈ {1, 2, . . . , k} \ {i}, z ∈ V (Bj(v)), and s ∈ V (PG(v, y)) such that the vertex bj is the only vertex
among b1, b2, . . . , bk which is the element of RG{z, s}. Note that Rzs

2 ⊆ Rxy
2 . Since g is a resolving function

of G, then g(Rxy
2 ) ≥ g(Rzs

2 ) ≥ 1
2 . Thus, we obtain that f(RG{x, y}) ≥ f(bi) + f(Rxy

2 ) = f(bi) + g(Rxy
2 ) ≥

1.

Theorem 1
Let G be a connected graph containing m distinct major vertices v1, v2, . . . , vm. For 1 ≤ i ≤ m, let ki be number
of path branches of the major vertex vi. Then

dimf (G) ≥
m∑
i=1

ki
2
.

Proof
This theorem is a direct consequence of Lemma 1.
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3. Fractional metric dimension of G �o H where H is a path

In this section, we consider graph H as a path. Note that, a path graph of order n ≥ 3 has n− 2 stems. We
determine the exact value of dimf (G�o H) where G is any connected graph and the vertex o ∈ V (H) is a stem.

Theorem 2
Let G be a connected graph. If the vertex o is a stem of a path graph Pm, then

dimf (G�o Pm) = |V (G)|.

Proof
By the definition of a comb product, every vertex v ∈ G(o) is a stem and H(v) ⊂ A(v). Thus, a graph G�o Pm has
|V (G)| stems and each stem has two path branches. According to Lemmas 1, we have dimf (G�o Pm) ≥ |V (G)|.

Now, let V (Pm) = {pi | 1 ≤ i ≤ m} where E(Pm) = {pipi+1 | 1 ≤ i ≤ m− 1}. Let the vertex o = pi where
i ∈ {2, 3, . . . ,m− 1}. We define a function f : V (G�o Pm) → [0, 1] as follow. For w ∈ V (G�o Pm),

f(w) =

{
1
2 , if degG�oPm

(w) = 1,
0, otherwise.

We will show that f is a resolving function of G�o Pm. Note that f(V (G�o Pm)) = |V (G)|.
Let x and y be two different vertices in G�o Pm. If there exists a vertex a ∈ V (G) such that

(a, o) ∈ RG�oPm{x, y}, then (a, p1), (a, pm) ∈ RG�oPm{x, y} which implies f(RG�oPm{x, y}) ≥ f((a, p1)) +
f((a, pm)) = 1. Otherwise, there exists a vertex a ∈ V (G) such that x = (a, pi−j) and y = (a, pi+j) where
j ∈ {1, 2, . . . ,min{i− 1,m− i}}. Note that RG�oPm{x, y} = A((a, o)). Then we have f(RG�oPm{x, y}) =
f((a, p1)) + f((a, pm)) + f(A((a, o)) \ {(a, p1), (a, pm)}) = 1

2 + 1
2 + 0 = 1. Therefore, f is a resolving function

of G�o Pm.

Let us consider G�o Pm where the vertex o is not a leaf of a path graph Pm above. Although the graph G does
not contain any stem vertex, but in G�o Pm, all corresponding vertices from G are stems. This property does not
automatically occur when the vertex o is a leaf of Pm.

Let G be a graph of order at least three containing a vertex of degree one. Let u, v ∈ V (G) where degG(u) = 1
and uv ∈ E(G). Thus it is clear that the vertex u is not a stem, but the vertex v maybe a stem. Note that if the vertex
o is a leaf of Pm, then a vertex in G�o Pm which is corresponding to u, is also not a stem. But the corresponding
vertex to v in G�o Pm is a stem of G�o Pm. Therefore, if the vertex o is a leaf of Pm, we will only consider a
connected graph G where every vertex of G has degree at least two, because in this case every vertex of G is not a
stem and its corresponding vertex in G�o Pm is also not a stem.

Now, let G be a connected graph of order n where every vertex of G has degree at least two. Let V (G) =
{v1, v2, . . . , vn}. Let us consider the comb product graph G�o Pm where the vertex o is a leaf of Pm. For two
distinct vertices vi, vj ∈ V (G), let xi ∈ Pm(vi) and xj ∈ Pm(vj). We define the following vertex sets.

• A{xi, xj} = {(z, o) | dG�oPm(xi, (z, o)) = dG�oPm(xj , (z, o)), z ∈ V (G) \ {vi, vj}}
• γ{xi, xj} = {z ∈ V (G) | (z, o) ∈ G(o) \A{xi, xj}}

Note that, by the definition above, if xi = (vi, o) and xj = (vj , o), then γ{xi, xj} = RG{vi, vj}. We also define
γ = min{|γ{xi, xj}| | xi ∈ Pm(vi), xj ∈ Pm(vj), vi, vj ∈ V (G)}. Thus, it is clear that γ ∈ {2, 3, . . . , |V (G)|}.

Theorem 3
Let G be a connected graph where every vertex of G has degree at least two. If the vertex o is a leaf of a path graph
Pm, then

dimf (G�o Pm) ≤ |V (G)|
γ

.

Proof
Let V (Pm) = {pi | 1 ≤ i ≤ m} and E(Pm) = {pipi+1 | 1 ≤ i ≤ m− 1}. Let the vertex o = p1. Now, we define
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a vertex labeling f : V (G) → [0, 1] such that for (a, b) ∈ V (G�o Pm),

f((a, b)) =

{
1
γ , if b = pm,

0, otherwise.

Note that f(V (G)) = |V (G)|
γ . Now, we will show that f is a resolving function of G�o Pm.

Let x and y be two distinct vertices in G�o Pm. If there exists v ∈ V (G) such that x, y ∈ Pm(v), then for every
v ∈ V (G), (v, pm) ∈ RG�oPm{x, y}. Therefore, we obtain

f(RG�oPm{x, y}) ≥
∑

v∈V (G)

f((v, pm)) =
|V (G)|

γ
≥ 1.

Now, we assume that x ∈ Pm(v) and y ∈ Pm(w) where v and w are two different vertices in G. Since
(v, pm), (w, pm) ∈ RG�oPm{x, y}, so we obtain

f(RG�oPm{x, y}) =
∑

v∈γ{x,y}

f((v, pm)) =
|γ{x, y}|

γ
≥ |γ{x, y}|

|γ{x, y}|
= 1.

In Theorem 4, we give an example of a graph G such that the fractional metric dimension of G�o Pm where the
vertex o is a leaf of Pm, is equal to the upper bound in Theorem 3 above.

Theorem 4
Let the vertex o be a leaf of a path graph Pm. There exists a connected graph G where every vertex of G has degree
at least two, such that

dimf (G�o Pm) =
|V (G)|

γ
.

Proof
Let G be a complete graph of order n ≥ 3 with V (G) = {v1, v2, . . . , vn}. Let V (Pm) = {p1, p2, . . . , pm}
and E(Pm) = {pipi+1 | 1 ≤ i ≤ m− 1}. Let the vertex o = p1. Note that, in G�o Pm, for 1 ≤ i < j ≤
n and k, l ∈ {1, 2, . . . ,m} with k ̸= l, we have |γ{(vi, pk), (vj , pk)}| ≤ |γ{(vi, pk), (vj , pl)}|. Therefore, γ =
|γ{(vi, pk), (vj , pk)}| = 2. Now, we will show that dimf (G�o Pm) = n

2 . According to Theorem 3, we only
need to show that dimf (G�o Pm) ≥ n

2 .
Let f be a resolving function of G�o Pm. For 1 ≤ i < j ≤ n and k ∈ {1, 2, . . . ,m}, let us consider two distinct

vertices (vi, pk) and (vj , pk). It is easy to see that RG�oPm{(vi, pk), (vj , pk)} = Pm(vi) ∪ Pm(vj). Therefore,
f(RG�oPm{(vi, pk), (vj , pk)}) = f(Pm(vi)) + f(Pm(vj)) ≥ 1. We define

α =
∑

i,j∈{1,2,...,n} and i ̸=j

f(RG�oPm{(vi, pk), (vj , pk)}).

Since i and j are two different integers from 1, 2, . . . , n, then we obtain that

α ≥
(
n
2

)
=

n(n− 1)

2
. (1)

In other hand, to obtain the value of α, every label of a vertex of G�o Pm is counted n− 1 times. Therefore, we
have a formula that

α = (n− 1) · f(V (G�o Pm)). (2)

Combining (1) and (2), we have f(V (G�o Pm)) ≥ n
2 .
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4. Fractional metric dimension of G �o H where H contains a major vertex

First, in this section we provide some properties for a resolving set between two different vertices in a comb product
graph G�o H .

Lemma 3
Let G and H be connected graphs. Let o be a vertex of H . For u, v ∈ V (H),

(i) if o ∈ RH{u, v}, then for every two distinct vertices a, b ∈ V (G), we have H(b) ⊂ RG�oH{(a, u), (a, v)}.
(ii) if o /∈ RH{u, v}, then for every vertex b ∈ V (G) \ {a}, all vertices in H(b) are not elements of

RG�oH{(a, u), (a, v)}.

Proof
Let o ∈ RH{u, v}. So, it is clear that dH(o, u) ̸= dH(o, v). It follows that for a ∈ V (G), dG�oH((a, o), (a, u)) ̸=
dG�oH((a, o), (a, v)). Let b ∈ V (G) \ {a} and z ∈ H(b). Then

dG�oH(z, (a, u)) = dG�oH(z, (b, o)) + dG�oH((b, o), (a, o)) + dG�oH((a, o), (a, u))

̸= dG�oH(z, (b, o)) + dG�oH((b, o), (a, o)) + dG�oH((a, o), (a, v))

= dG�oH(z, (a, v)).

Therefore, z ∈ RG�oH{(a, u), (a, v)}.
Let o /∈ RH{u, v}. So, it is clear that dH(o, u) = dH(o, v). It follows that for a ∈ V (G), dG�oH((a, o), (a, u)) =

dG�oH((a, o), (a, v)). Thus, (a, o) /∈ RG�oH{(a, u), (a, v)}. Let b ∈ V (G) \ {a} and z ∈ H(b). Then

dG�oH(z, (a, u)) = dG�oH(z, (b, o)) + dG�oH((b, o), (a, o)) + dG�oH((a, o), (a, u))

= dG�oH(z, (b, o)) + dG�oH((b, o), (a, o)) + dG�oH((a, o), (a, v))

= dG�oH(z, (a, v)).

Therefore, z /∈ RG�oH{(a, u), (a, v)}.

Lemma 4
Let G and H be connected graphs. Let a and b be two different vertices of G and o, u, v ∈ V (H). Then
(a, o) ∈ RG�oH{(a, u), (b, v)} or (b, o) ∈ RG�oH{(a, u), (b, v)}.

Proof
If (a, o) ∈ RG�oH{(a, u), (b, v)}, then the lemma is complete. Now, we assume that (a, o) /∈
RG�oH{(a, u), (b, v)}. Thus, we have dG�oH((a, o), (a, u)) = dG�oH((a, o), (b, v)) = dG�oH((a, o), (b, o)) +
dG�oH((b, o), (b, v)). It follows that dG�oH((b, o), (a, u)) > dG�oH((b, o), (b, v)), which implies (b, o) ∈
RG�oH{(a, u), (b, v)}.

By Lemma 4, without loss of generality, let (a, o) ∈ RG�oH{(a, u), (b, v)}. If dG�oH((a, o), (a, u)) >
dG�oH((a, o), (b, v)), then we also obtain dG�oH((b, o), (a, u)) = dG�oH((b, o), (a, o)) + dG�oH((a, o), (a, u)) >
dG�oH((b, o), (b, v)), which implies (b, o) ∈ RG�oH{(a, u), (b, v)}. Otherwise, we have dG�oH((a, o), (a, u)) <
dG�oH((a, o), (b, v)) = dG�oH((a, o), (b, o)) + dG�oH((b, o), (b, v)). From both cases above, we can say that there
exists a vertex (a, o) ∈ RG�oH{(a, u), (b, v)} such that dG�oH((a, o), (a, u)) < dG�oH((a, o), (b, v)).

Lemma 5
Let G and H be connected graphs. Let a and b be two different vertices of G and o, u, v ∈ V (H). Let (a, o) ∈
RG�oH{(a, u), (b, v)} and dG�oH((a, o), (a, u)) < dG�oH((a, o), (b, v)). Then H(a) ⊂ RG�oH{(a, u), (b, v)}.

Proof
Let z ∈ H(a) \ {(a, u)}. If dG�oH(z, (b, v)) = dG�oH(z, (a, u)) + dG�oH((a, u), (b, v)), then it is clear that
z ∈ RG�oH{(a, u), (b, v)}. Now, we assume that dG�oH(z, (b, v)) ̸= dG�oH(z, (a, u)) + dG�oH((a, u), (b, v)).
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Suppose that z /∈ RG�oH((a, u), (b, v)). Let P be a shortest path in G�o H with end points (a, u) and
(a, o). Let x ∈ V (P ) \ {(a, u)} such that dG�oH(z, (b, v)) = dG�oH(z, x) + dG�oH(x, (b, v)) = dG�oH(z, x) +
dG�oH(x, (a, o)) + dG�oH((a, o), (b, v)). Note that dG�oH(z, (a, u)) ≤ dG�oH(z, x) + dG�oH(x, (a, u)). So, we
obtain that dG�oH(x, (a, o)) + dG�oH((a, o), (b, v)) ≤ dG�oH(x, (a, u)) < dG�oH((a, o), (a, u)), a contradiction.
Therefore, we have z ∈ RG�oH((a, u), (b, v)).

Since (a, u) ∈ RG�oH((a, u), (b, v)), we obtain that all vertices in H(a) are resolving vertices of (a, u) and
(b, v).

From Lemmas 4 and 5, we obtain the corollary below.

Corollary 1
Let G and H be connected graphs. Let a and b be two different vertices of G and o, u, v ∈ V (H). Then
H(a) ⊂ RG�oH{(a, u), (b, v)} or H(b) ⊂ RG�oH{(a, u), (b, v)}.

Let v be a major vertex of G. We define B(v) as a vertex set of all path branches of G at the major vertex v,
including v.

Let o ∈ V (H). In the case if there exists a major vertex v of H such that the vertex o ∈ B(v) \ {v}, we define
Pv(o) as a path branch of v in H containing o. For a ∈ V (G), we also define a vertex set Pv(a, o) = {(a, e) | e ∈
V (Pv(o)) \ {v}} ⊂ V (G�o H).

Lemma 6
Let G and H be connected graphs. Let o ∈ V (H) such that there exists a major vertex v in H satisfying
o ∈ B(v) \ {v}. Then, there exists a resolving function f of G�o H such that for every a ∈ V (G) and b ∈
V (Pv(o)) \ {v}, we have f((a, b)) = 0. Moreover, f(H(a)) ≥ dimf (H)− 1

2 .

Proof
Let f be a resolving function of G�o H such that f((a, b)) > 0. We define a vertex set Z(a) = H(a) \ Pv(a, o).
Note that an induced subgraph of G�o H by Z(a), contains a stem v. According to Lemma 1, we obtain
f(Z(a)) ≥ 1. Now, we define a function g : V (G�o H) → [0, 1] where for every a ∈ V (G) and w ∈ V (H),

g((a,w)) =

{
0, if w ∈ V (Pv(o)) \ {v},
f((a,w)), otherwise.

We will show that the function g above is a resolving function of G�o H .
Let z1, z2 ∈ V (H) and a, b ∈ V (G). Let us consider RG�oH{(a, z1), (b, z2)}. We distinguish two cases.

1. Case a ̸= b
By Corollary 1, all vertices of H(a) or H(b) are elements of RG�oH{(a, z1), (b, z2)}. Since Z(a) ⊂ H(a)
for every a ∈ V (G), we have g(RG�oH{(a, z1), (b, z2)}) ≥ g(H(a)) ≥ g(Z(a)) = f(Z(a)) ≥ 1.

2. Case a = b
Let us consider Lemma 3. If o ∈ RH{z1, z2}, then H(a) ⊂ RG�oH{(a, z1), (b, z2)}, which implies
g(RG�oH{(a, z1), (b, z2)}) ≥ g(H(a)) ≥ g(Z(a)) = f(Z(a)) ≥ 1. Otherwise, all vertices of H(c) with
c ∈ V (G) \ {a} are not elements of RG�oH{(a, z1), (b, z2)}. Since o /∈ RH{z1, z2}, we also have that
v /∈ RH{z1, z2}. It follows that (a,w) /∈ RG�oH{(a, z1), (b, z2)} for w ∈ A(v). Since f is a resolving
function of G�o H , we obtain that g(RG�oH{(a, z1), (b, z2)}) = f(RG�oH{(a, z1), (b, z2)}) ≥ 1.

By two cases above, we can see that g is a resolving function of G�o H .
For a ∈ V (G), let H ′(a) = H(a) \ Pv(a, o). So, g(H(a)) = g(H ′(a)) + g(Pv(a, o)) = g(H ′(a)). Since an

induced subgraph of G�o H by H ′(a) is isomorphic to a graph H by deleting all vertices in a path branch Pv(o)
of v, except the vertex v, according to Lemma 1, we have that g(H ′(a)) ≥ dimf (H)− 1

2 . Therefore, we obtain
g(H(a)) ≥ dimf (H)− 1

2 .
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Theorem 5
Let G and H be connected graphs. If there exists a major vertex v in H such that o ∈ B(v), then

dimf (G�o H) =

{
|V (G)| · (dimf (H)− 1

2 ), if the vertex o ̸= v,
|V (G)| · dimf (H), if the vertex o = v.

Proof
We distinguish two cases.
Case 1. The vertex o ̸= v

By Lemma 6, we only need to show that dimf (G�o H) ≤ |V (G)| · (dimf (H)− 1
2 ). Let h be a resolving

function of H where h(V (H)) = dimf (H) and satisfying Lemma 2. Thus, we have h(V (Pv(o)) \ {v}) = 1
2 . We

define a function f : V (G�o H) → [0, 1] where for every a ∈ V (G) and w ∈ V (H),

f((a,w)) =

{
0, if w ∈ V (Pv(o)) \ {v},
h(w), otherwise.

Note that f(V (G�o H)) = |V (G)| · (dimf (H)− 1
2 ). By using the similar argument as in the proof of Lemma 6,

we obtain that f is a resolving function of G�o H .
Case 2. The vertex o = v

Let h be a resolving function of H where h(V (H)) = dimf (H). We define a function f : V (G�o H) → [0, 1]
where for every a ∈ V (G) and w ∈ V (H), f((a,w)) = h(w). Note that f(G�o H) = |V (G)| · dimf (H). We
will show that f is a resolving function of G�o H .

Let z1, z2 ∈ V (H) and a, b ∈ V (G). Let us consider RG�oH{(a, z1), (b, z2)}. We distinguish two cases.

1. Case a ̸= b
By Corollary 1, all vertices of H(a) or H(b) are elements of RG�oH{(a, z1), (b, z2)}. Thus,
f(RG�oH{(a, z1), (b, z2)}) ≥ f(H(a)) = dimf (H) ≥ 1.

2. Case a = b
Let us consider Lemma 3. If o ∈ RH{z1, z2}, then H(a) ⊂ RG�oH{(a, z1), (b, z2)}, which
implies f(RG�oH{(a, z1), (b, z2)}) ≥ f(H(a)) = dimf (H) ≥ 1. Otherwise, all vertices of H(c)
with c ∈ V (G) \ {a} are not elements of RG�oH{(a, z1), (b, z2)}. Since o /∈ RH{z1, z2}, we
have that RG�oH{(a, z1), (b, z2)} ⊆ H(a). Since h is a resolving function of H , we obtain that
f(RG�oH{(a, z1), (b, z2)}) = h(RH{z1, z2}) ≥ 1.

By two cases above, we obtain that f is a resolving function of G�o H .
Now, we will show that dimf (G�o H) ≥ |V (G)| · dimf (H). Suppose that dimf (G�o H) < |V (G)| ·

dimf (H). Let g be a resolving function of G�o H such that g(V (G�o H)) = dimf (G�o H). Then there
exists a vertex a ∈ V (G) such that g(H(a)) < dimf (H). By considering Lemmas 1 and 2, there exist two distinct
vertices z1 and z2 in H with v /∈ RH{z1, z2} such that g(RG�oH{(a, z1), (a, z2)}) < 1.
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