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Abstract

A fractional order model for nonlocal epidemics is given. Stability of fractional order equations is studied. The results

are expected to be relevant to foot-and-mouth disease, SARS and avian flu.
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1. Introduction

Recently three major epidemic diseases have occurred namely foot-and-mouth disease, severe acute
respiratory syndrome (SARS) and avian (bird’s) flu. Hopefully this will increase the awareness of modeling
infectious diseases spreading that is an important topic in mathematical biology [1]. There are different
approaches to this topic, e.g. ordinary differential equations, difference equations, partial differential
equations and coupled map lattice. Here we use fractional order differential equations (FOD). The reason
is that FOD are naturally related to systems with memory which exists in most biological systems. Also they
are closely related to fractals which are abundant in biological systems. Consider the following evolution
equation [2]:

df ðtÞ

dt
¼ �l2

Z t

0

kðt� t0Þf ðt0Þdt0.

If the system has no memory then k(t�t0) ¼ d(t�t0), and one gets f(t) ¼ f0 exp(�l
2t). If the system has an

ideal memory, then

kðt� t0Þ ¼
1 if tXt0

0 if tot0

(
,
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hence fEf0 cos lt. Using Laplace transform L½f � ¼
R1
0 f ðtÞ expð�stÞdt, one gets L[f] ¼ 1 if there is no memory

and L[f] ¼ 1/s if there is ideal memory hence the case of non-ideal memory is expected to be given by L[f] ¼
1/sa, 0oao1. In this case the above equation becomes

df ðtÞ

dt
¼

1

GðaÞ

Z t

0

ðt� t0Þa�1f ðt0Þdt0,

where G(a) is the Gamma function. This system has the following solution:

f ðtÞ ¼ f 0Eaþ1ð�l
2taþ1Þ,

where Ea(z) is the Mittag–Leffler function given by

EaðzÞ ¼
X1
k¼0

zk

Gðak þ 1Þ
.

It is direct to see that E1(z) ¼ exp(z), E2(z) ¼ cos z.
Following a similar procedure to study a random process with memory, one obtains the following fractional

evolution equation:

qaþ1Pðx; tÞ
qtaþ1

¼
X

n

ð�1Þn

n!

qn
½KnðxÞPðx; tÞ�

qxn
; 0oao1,

where P(x, t) is a measure of the probability to find a particle at time t at position x. We expect that the above
result will be relevant to many complex adaptive systems and to systems where fractal structures are relevant
since it is argued that there is a strong relevance between fractals and fractional differentiation [3].

For the case of fractional diffusion equation the results are

qaþ1Pðx; tÞ
qtaþ1

¼ D
q2Pðx; tÞ

qx2
; Pðx; 0Þ ¼ dðxÞ;

qPðx; 0Þ

qt
¼ 0,

then

P ¼
1

2
ffiffiffiffi
D
p

tb
M

jxjffiffiffiffi
D
p

tb

� �
; b

� �
; b ¼

aþ 1

2
,

Mðz; bÞ ¼
X1
n¼0

ð�1Þnzn

n!Gð�bnþ 1� bÞ
.

For the case of no memory a ¼ 0)M(z; 1/2) ¼ exp(�z2/4).
The paper is organized as follows: in Section 2, we study the stability of FOD. The stability conditions are

derived and several examples are given. The stability conditions for some fractional order differential coupled
map lattices are concluded in Section 3. Applications to nonlocal epidemics is introduced in Section 4. The
stability conditions for the disease-free state are discussed. Some conclusions are presented in Section 5.
2. Stability of fractional order differential equations [4–6]

Consider the following system:

DaxðtÞ ¼ f ðx; yÞ;DayðtÞ ¼ gðx; yÞ; a 2 ½0; 1Þ, (1)

where the fractional derivative in Eq. (1) is in the sense of Caputo. The equilibrium solutions are defined by
f(xeq, yeq) ¼ 0, g(xeq, yeq) ¼ 0 and it is locally asymptotically stable if all the eigenvalues l of the Jacobian
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matrix A ¼
qf =qx qf =qy

qg=qx qg=qy

" #
evaluated at the equilibrium point satisfies the following condition [4,5]:

argðlÞ
�� ��4 ap

2
. (2)

The condition in Eq. (2) poses an interesting question namely:
What are the conditions that all the roots of the polynomial equation

PðlÞ ¼ 0;PðlÞ ¼ ln
þ a1l

n�1
þ a2l

n�2
þ � � � þ an (3)

satisfy Eq. (2) where all the coefficients in Eq. (3) are real?
For a ¼ 1, the solution is the Routh–Hurwitz conditions [7]

a140;
a1 1

a3 a2

�����
�����40;

a1 1 0

a3 a2 a1

a5 a4 a3

�������
�������40; . . . . (4)

For aA[0, 1), these conditions are sufficient but not necessary. Since most biologically interesting systems
are 1,2 and 3-dimensions, we will study the problem (3) for n ¼ 1, 2, 3.

Definition 1. The discriminant D(f ) of a polynomial

f ðxÞ ¼ xn þ a1xn�1 þ a2x
n�2 þ � � � þ an

is defined by D( f ) ¼ (�1)n(n�1)/2R( f, f 0), where f 0 is the derivative of f, if g(x) ¼ xn+b1x
l�1+b2x

l�2+?+bl,
R(f, g) is the determinant of the corresponding Sylvester (n+l)�(n+l) matrix. The Sylvester matrix is formed
by filling the matrix beginning with the upper left corner with the coefficients of f (x), then shifting down one
row and one column to the right and filling in the coefficients starting there until they hit the right side. The
process is then repeated for the coefficients of g (x).

Using the results of Ref. [3], if D( f )40(o0) then there is an even (odd) number of pairs of complex roots
for the equation f(x) ¼ 0. For n ¼ 3, this implies that D (f)40, and all the roots are real while D (f)o0 implies
that there is only one real root and one complex root and its complex conjugate. For n ¼ 3, we have

Dðf Þ ¼ 18a1a2a3 þ ða1a2Þ
2
� 4a3a3

1 � 4a3
2 � 27a2

3.

Proposition 1.
(i)
 For n ¼ 1, the condition for (3) is a140.

(ii)
 For n ¼ 2, the conditions for (3) are either Routh–Hurwitz conditions or

a1o0; 4a24ða1Þ
2; tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � ða1Þ

2
q

a1

0
@

1
A

������
������4

ap
2
. (5)
(iii)
 For n ¼ 3, if the discriminant of P(l), D (P) is positive, then Routh–Hurwitz conditions are the necessary
and sufficient conditions for (3) i.e.

a140; a340; a1a24a3 if DðPÞ40. (6)
(iv)
 If D(P)o0, a1X0, a2X0, a340, ao2/3, then condition (3) is satisfied. Also if D(p)o0, a1o0, a2o0,
a42/3, then all roots of P(l) ¼ 0 satisfies |arg(l)|oap/2.
(v)
 If D(P)o0, a140, a240, a1a2 ¼ a3 then condition (3) is satisfied for all aA[0,1).

(vi)
 For general n, an40 is a necessary condition for condition (3) to be satisfied.

(vii)
 If 8l, P(l) ¼ P(�l) then define x ¼ l2 and Routh–Hurwitz conditions for the resulting polynomial in x

are necessary conditions for (3) for all aA[0,1).
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(viii)
 For n41, the necessary and sufficient condition for (3) is
R 0
�1

dz=PðzÞjC1 þ
R1
0 dz=PðzÞjC2 ¼ 0, where C1

is the curve z ¼ x(1�i tan ap/2) and C2 is the curve z ¼ x(1+i tan ap/2), i ¼
ffiffiffiffiffiffiffi
�1
p

.

Proof. Case (i) is obvious. For (ii), the two roots are l� ¼ �a1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

1 � 4a2Þ

qh i
=2. If both roots are real or

complex conjugates with negative real parts then condition (3) is equivalent to the Routh–Hurwitz case. If the
two roots are complex conjugate with positive real parts, then the two roots become l� ¼

�a1 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � ða1Þ

2
q� �

=2 and one gets Eq. (5).

To prove (iii) not that if n ¼ 3, D (p)40, then all the roots of p(l) ¼ 0 are real hence Routh–Hurwitz
conditions are both necessary and sufficient for (3).

To prove (iv) not that if n ¼ 3, D (P)40, then the roots of P(l) ¼ 0 are one real and a complex conjugate
pair thus

pðlÞ ¼ ðlþ bÞðl� b� igÞðl� bþ igÞ )

a1 ¼ b� 2b; a2 ¼ b2 þ g2 � 2bb; a3 ¼ bðb2 þ g2Þ; bX0 ð7Þ

and a140) b42b, a240)b2 sec2 y42bb44b2) y4p/3, where y ¼ |arg(l)|. The second part is proved
similarly.

To prove (v) if n ¼ 3, D(P)40, then Eq. (7) is valid. Now a1a2 ¼ a3) b2b+b(b2+g2) ¼ 2bb2) b ¼ 0 or
b2+g2+b2 ¼ 2bb

The last equality is not valid if both a140, a240.
To prove (vi) use the fact that for general n

PðlÞ ¼
Y

j

ðlþ bjÞ

" # Y
k

ðl� bk � igkÞðl� bk þ igkÞ

" #
)

an ¼
Y

j

bj

" # Y
k

ðb2k þ g2kÞ

" #
. ð8Þ

To prove (vii) use Eq. (8) and P(l) ¼ P(�l)8l)P(l) contains only even power of

l) bj ¼ 0 8j; bk ¼ 08k)

PðlÞ ¼
Y

k

ðl2 þ g2kÞ ¼
Y

k

ðxþ g2kÞ.

And all the roots x should be negative.
To prove (viii) not that if P(z) has no roots in the region |arg(l)|oap/2, hence the function 1/P(z) will be

analytic in this region. Using Cauchy theorem
H

C
f ðzÞdz ¼ 0 for all f(z) analytic within and on the curve C,

and that P(z) is polynomial of degree 41 this completes the proof. &

One can give explicit examples where the Routh–Hurwitz conditions are not valid yet Eq. (3) is satisfied for
explicit a, e.g. a ¼ 1

2
. The first example is

l3 �
l2

2
þ

l
2
þ

1

2
¼ 0,

l3 � 1�
1ffiffiffi
2
p

� �
l2 þ

1

2
�

1ffiffiffi
2
p

� �
lþ

1

2
ffiffiffi
2
p ¼ 0.

For n ¼ 3, one can solve the polynomial equation explicitly and apply Eq. (3) to the solutions. The solution
method is:

Define y ¼ l�a1/2, then the polynomial becomes

y3 þ pyþ q ¼ 0; p ¼ �a2
1=3þ a2; q ¼ 2a3

1=27� a1a2=3þ a3,
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y ¼ rþ s; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðq=2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq=2Þ2 þ ðp=3Þ3

q
3

r
; s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðq=2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq=2Þ2 þ ðp=3Þ3

q
3

r
,

choose the roots such that rs ¼ �p/3.

Conjecture 1. For all n43, if D1;D2; . . . ;Dn are Routh–Hurwitz determinants

D1 ¼ a1; D2 ¼
a1 1

a3 a2

�����
�����; D3 ¼

a1 1 0

a3 a2 a1

a5 a4 a3

�������
�������; . . . ,

then the conditions

Di40; i ¼ 1; 2; . . . ; n� 2; an40; Dn�1 ¼ 0, (9)

are sufficient conditions that Eq. (3) is valid for all aA[0, 1).

This conjecture can be proved for n ¼ 4. The case n ¼ 3 is proved in Proposition 1.
Now we apply Proposition 1 to derive the value of a at which chaos or instability disappears at some

models. Fractional order Lotka-Volterra (FLV) predator–rey model is given by

Dax ¼ bx� xy; Day ¼ �gyþ xy; a 2 ½0; 1�,

where b, g are positive constants. The equilibrium solutions of FLV are (0, 0) and (g, b). The eigenvalues
corresponding to (0, 0) are b, �g respectively hence (0, 0) is unstable for all aA[0, 1]. The eigenvalues
corresponding to (g, b) are �i

ffiffiffiffiffi
bg

p
hence |arg(l)| ¼ p/2, then it is locally asymptotically stable for all aA[0, 1).

This agrees with the numerical results of Ref. [5].
Fractional order Chen (FOC) model is given by [7]

Dax ¼ aðy� xÞ; Day ¼ ðc� aÞx� xzþ cy; Daz ¼ xy� bz,

where a ¼ 35, b ¼ 3, c ¼ 28. The equilibrium solutions for FOC are (0, 0, 0) and ðxn;xn; xn2=bÞ, where

xn ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð2c� aÞ

p
. The eigenvalues of (0, 0, 0) are l ¼ �b, l2+(a�c)l�a(2c�a) ¼ 0. Using Proposition 1

part (vi), then (0, 0, 0) is unstable for all aA[0, 1]. The eigenvalues of the internal equilibrium
solution is l3+(a�c+b)l2+bcl+2ab(2c�a) ¼ 0. Since all the coefficients of this polynomial are
positive and it is easy to check that D(P)o0, using Proposition 1 part (iv) then the internal solution

of FOC will be stable for ao2
3
which is in excellent agreement with the numerical result obtained by and

Chen [8].
A similar result is obtained for fractional order Lorenz system

Dax ¼ cðy� xÞ; Day ¼ rx� xz� y; Daz ¼ xy� bz,

where r, b, c are positive constants and r41.
The fractional order Rossler system (FOR) is defined by [9]

Dax ¼ �ðyþ zÞ; Day ¼ xþ ay; Daz ¼ 0:2þ xz� 10z; a ¼ 0:6

There are one equilibrium z ¼ �y, x ¼ �ay, y ¼ ½�10þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100� 0:8a
p

�=2a, and the characteristic
polynomial is

l3 þ ðay� aþ 10Þl2 þ ð1� ya2 � 10a� yÞlþ 10þ 2ay ¼ 0.

It is direct to see that a2o0, a140 hence by solving the characteristic equation directly one gets the
following roots:

l ¼ �9:986; l ¼ 0:3� 0:954i; l ¼ 0:3þ 0:954i.

This implies that the equilibrium solution is locally asymptotically stable if ao0.8 which is in excellent
agreement with the result obtained numerically in Ref. [9]: aA(0.7, 0.8).
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Considering the fractional order Chua model

Dax ¼ aðy� xÞ � gðxÞ; Day ¼ s½�aðy� xÞ þ z�,

Daz ¼ �cðyþ rzÞ,

gðxÞ ¼

�x if jxjo1;

½�1þ bðjxj � 1Þ�sgnðxÞ if 1ojxjo10;

½10ðjxj � 10Þ þ 9b� 1�sgnðxÞ if jxj410;

8><
>:

where a ¼ 0.923 or 1, b ¼ 0.636, r ¼ 0.071 or 0, s ¼ 0.066. The equilibrium solution is xE7(1�b)/(a�b),
yE0, zE�ax. Linearizing about the quilibrium solution one gets

�aþ b a 0

sa �sa s

0 �c �rc

2
64

3
75,

whose eigenvalues for a ¼ 1, b ¼ 0.636, c ¼ 0.779, s ¼ 0.066, r ¼ 0.071 are l ¼ �0.486, l ¼ 5� 10�470.184i

which implies that this equilibrium is locally asymptotically stable for aA[0,1). The eigenvalues for a ¼ 0.923,
b ¼ 0.636, c ¼ 0.779, s ¼ 0.066, r ¼ 0 are l ¼ �0.406, l ¼ 0.0297.188i which implies that this equilibrium is
locally asymptotically stable for ao0.9.
3. Stability conditions for some fractional order differential coupled map lattices

Spatial effects are important in many biological systems. Thus generalizing fractional order systems (FOS)
to include them is important. The standard approach is fractional order partial differential equations.
However since most biologically interesting systems are nonlinear [10], one gets fractional order nonlinear
partial differential equations whose existence and uniqueness has not been established yet. Therefore, we use
coupled map lattices (CML) [11] as an alternative approach to include spatial effects in FOS. Consider the
1-system CML

DauiðtÞ ¼ ð1�DÞf ðuiÞ þ
D

2
f ðuiþ1Þ þ f ðui�1Þ½ �,

i ¼ 1; 2; . . . ; n, ð10Þ

where D is a positive constant. The homogeneous equilibrium solution of Eq. (10) satisfies f(ueq) ¼ 0 and it is
stable if all the eigenvalues of the circulant matrix [12]

ð1�DÞf 0 ðD=2Þf 0 0 . . . 0 ðD=2Þf 0

ðD=2Þf ð1�DÞf 0 ðD=2Þf 0 . . . 0

0 ðD=2Þf 0 ð1�DÞf 0 ðD=2Þf 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0 ðD=2Þf 0 ð1�DÞf 0 ðD=2Þf 0

2
6666664

3
7777775

satisfies Eq. (2). Since the eigenvalues of the circulant matrices [12] are known, the local asymptotic stability
conditions become

arg ð1�DÞf 0ðueqÞ þDf 0ðueqÞ cos
2pk

n

� �����
����4 ap

2
,

k ¼ 0; 1; . . . ; n� 1 ð11Þ
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Generalizing to 2-system CML

Daxi ¼ ð1�DÞf ðxj ; yjÞ

þ
D

2
f ðxjþ1; yjþ1Þ þ f ðxj�1; yj�1Þ

h i
,

Dayi ¼ ð1�DÞgðxj ; yjÞ

þ
D

2
gðxjþ1; yjþ1Þ þ gðxj�1; yj�1Þ

h i
, ð12Þ

j ¼ 1, 2, y, n. The homogeneous equilibrium solutions are given by f(xeq, yeq) ¼ 0, g(xeq, yeq) ¼ 0 and is
locally asymptotically stable if all the eigenvalues of the following matrix B satisfies Eq. (2):

B ¼ ð1�DÞ þ
D

2
cos

2pk

n

� �� � qf =qx qf =qy

qg=qx qg=qy

" #
, (13)

where the Jacobian matrix is evaluated at the equilibrium point.
4. Application to a nonlocal epidemic model

Now we present a nonlocal interacting epidemic model. The nonlocal interactions in the epidemic spreading
is widely observed in many outbreaks, especially the recent ones of FMD, SARS and bird’s flu. The
Lajmanovich-Yorke model [13,14] is a special case of coupled map lattices. It is a globally interacting model
that emphasizes the diffusion of a disease from other infected farms beside its spread within the same farm. We
have generalized it to the inhomogeneous case [15] and introduced it as an approximation for the epidemic
spreading on small-world networks [15]. Consider n patches, where each one contains a certain number of
individuals (say animals). In general these patches are not identical. Infection spreads from infected animals
within the patch and due to those diffusing from other patches. The fractional order form of the model is given
by

Dayi ¼ liyið1� yiÞ þ mið1� yiÞ
X
jai

yj � giyi; i ¼ 1; 2; . . . ; n, (14)

where yi is the number of infected individuals in the ith patch. The first term represents the infection within the
patch with a rate li. The second term represents the effect of other patches both nearby and far away at a rate
mi. The recovery rate is represented by gi. Since the effect of other patches (second term in Eq. (14)) is
significantly smaller than the first one, we expect that mi5li. The disease is eradicated if yi ¼ 0, 8 i ¼ 1, 2, y,
n. So the stability of this solution is studied. Using the same procedures in the previous section, the stability of
the zero solution (disease free state) is that all the eigenvalues x of the matrix A satisfy |arg(x)|4ap/2 where

A ¼

l1 � g1 m1 m1 :: m1
m2 l2 � g2 m2 :: m2
m3 m3 l3 � g3 m3 m3
:: :: :: :: ::

:: :: :: :: ::

mn mn mn . . . ln � gn

2
6666666664

3
7777777775
.

For n ¼ 2, the solutions yi ¼ 0, i ¼ 1, 2 are locally asymptotically stable if

tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl1 � g1 þ l2 � g2Þ

2
� 4½ðl1 � g1Þðl1 � g1Þ � m1m2�

q
l1 � g1 þ l2 � g2

0
@

1
A

������
������

4
ap
2
.
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For n ¼ 3, the characteristic polynomial of A is

x3 þ a1x
2 þ a2xþ a3 ¼ 0,

where

a1 ¼ �½l1 � g1 þ l2 � g2 þ l3 � g3�,

a2 ¼ ðl1 � g1Þðl2 � g2Þ � m1m2 þ ðl1 � g1Þðl3 � g3Þ � m1m3 þ ðl3 � g3Þðl2 � g2Þ � m3m2
and

a3 ¼ �½ðl1 � g1Þðl2 � g2Þðl3 � g3Þ þ 2m1m2m3 � ðl1 � g1Þm2m3 � ðl3 � g3Þm2m1 � ðl2 � g2Þm1m3�.

Using part (vi) in Proposition 1, the disease free state is unstable if a3o0.
Finally vaccination may affect the parameters li but not mi. Also it is important to know whether the vaccine

works once administered or it takes time till it becomes effective.

5. Conclusions

A fractional order evolution equation describing a random process with memory is concluded. This will be
relevant to many complex adaptive systems. The stability conditions for both fractional order differential
equations and fractional order differential coupled map lattices are derived. A fractional order form of
Lajmanovich-Yorke model is introduced. This model emphasis the nonlocal interaction beside the local
interaction in the epidemic spreading. Both types of interaction are widely observed in the recent FMD, SARS
and bird’s flu outbreaks.
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