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Abstract
In this article, we extend the notion of double Laplace transformation to triple and
fourth order. We first develop theory for the extended Laplace transformations and
then exploit it for analytical solution of fractional order partial differential equations
(FOPDEs) in three dimensions. The fractional derivatives have been taken in the
Caputo sense. As a particular example, we consider a fractional order three
dimensional homogeneous heat equation and apply the extended notion for its
analytical solution. We then perform numerical simulations to support and verify our
analytical calculations. We use Fox-function theory to present the derived solution in
compact form.
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1 Introduction
Most of the real world problems in engineering, physics, biology, and other applied sci-
ences involve differential equations. This emphasizes the importance of understanding
and investigation of differential equations. Unfortunately, very few types of differential
equations can be solved analytically. One of the effective techniques for analytical solu-
tion of differential equations is the Laplace transform method, which has been used by
a number of researchers, see for instance [1, 2]. The idea of Laplace transformation was
extended to double Laplace transform and Sumudu by Kiliçman et al. for solution of wave
and Poisson equations [3]. The Sumudu transform technique was used to solve differential
equations in control engineering problems [4, 5].

Because of variety of applications in applied sciences, fractional calculus has attracted
the attention of numerous researchers in the past decades, see, e.g., [6–9]. Fractional order
models are more general compared with integer order [9] and are helpful in understand-
ing the dynamics of real world problems in a better way. Plenty of open problems can be
found in the field of fractional calculus that need investigation both from theoretical and
experimental sides [10, 11]. Yang et al. [12] introduced an updated fractional operator with
variable order to describe spontaneous behavior of the process of diffusion.
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Integral transform procedure due to Laplace was used to investigate solution of FOPDEs
[13]. Oldham and Spanier exploited Laplace transform approach to compute solution of
homogeneous FOPDEs [14]. Using nonsingular kernel operator of derivative, Yang et al.
[15] proposed solutions of problems involving steady heat flow. Recently, fixed and vari-
able order derivatives have been applied to investigate the anomalous relaxation models
in heat-transfer problems [16]. The Laplace transform technique has been used by various
authors to analytically solve FOPDEs. A third order Laplace transform method was used
by Tahir et al. to solve a fractional order heat equation in two dimensions [17]. Sarwar et
al. computed series type solution to fractional heat equation in three dimensions [18]. To
the best of our knowledge, the homogeneous three dimensional heat equation with non-
integer order has not been investigated through Laplace transform yet. In this paper, we
extend the notion of triple Laplace transform to fourth order Laplace transform and use
the developed theory to solve a fractional order heat equation in three dimensions.

One of the important applications of the heat equation is the measurement of thermal
diffusivity in polymers [19]. Heat equation can be utilized to describe the diffusion of pres-
sure in a porous medium. The generalization of heat equation into a fractional order is very
important in the nonlocal phenomenon.

As mentioned earlier, fractional calculus generalizes the concept of integrals and deriva-
tives from integer to any positive real order. It means that fractional derivatives, which are
in fact definite integrals, provide geometric accumulation of functions. The corresponding
accumulation contains the integer order counterpart as a special case. This feature of frac-
tional calculus leads to global dynamics of real world problems, whereas classical calculus
describes the local dynamics of the corresponding problem. Further, in many real world
phenomena, due to hereditary axioms as well as description of memory, the fractional
order models are more beneficial than the classical ones. These interesting and useful fea-
tures of fractional calculus motivated us to study heat equations under fractional order
concept for its global and comprehensive structure analysis. For some recent and useful
studies, the reader is advised to see work presented in [20–31].

We consider our problem as

c
0Dα

t u(x, y, z, t) =
1
π2 ∇2u(x, y, z, t), x > 0, y > 0, z > 0, t > 0, (1)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . We solve (1) subject to the following initial/ boundary condi-
tions:

u(x, y, z, 0) = (sinπx)(sinπy)(sinπz),

u(0, 0, 0, t) = u(0, y, z, t) = u(x, 0, z, t) = ut(x, y, 0, t) = 0,

ux(0, y, z, t) = uy(x, 0, z, t) = uz(x, y, 0, t) = πEα

(
–tα

)
,

(2)

where subscripts denote partial derivatives and 0 < α ≤ 1. Here we remark that the con-
sidered heat equation is formulated in the Caputo sense.

The fractional order heat equation in three dimensions is obtained by replacing the first
order time derivatives of integer order with fractional order time derivative such that 0 <
α ≤ 1. In many, situations we need first order time–space derivatives, e.g., in heat transfer
etc. In many scientific problems, during their modeling, we need their exact solution which
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is quite difficult for most of the nonlinear problems. Therefore, some sophisticated tools
are required to deal with such problems. Researchers have used numerical and analytical
techniques to handle the problems for corresponding numerical and analytical solutions.
Here we use updated tools of a multiple integral transform method based on the Laplace
transform to handle the considered problem for exact analytical solution. The result is
presented in compact form using the concept of fox function.

The report is structured as follows. In Sect. 2 we give basic definitions regarding frac-
tional derivatives and Laplace transform. Section 3 is devoted to the derivation of Laplace
transform of partial derivatives and integrals. We then consider in Sect. 4 the fractional
heat equation in three dimensions and apply the fourth order Laplace transform for its
solution. Finally, we conclude our work in Sect. 5. References are given at the end of the
manuscript.

2 Preliminaries
In the following we summarize basic definitions regarding the terms involved in the prob-
lem under consideration. These include the definition of fractional derivatives, the Laplace
transforms of first, second, third, and fourth orders.

Definition 2.1 Let f (t) be a function defined on the interval (0,∞). For α > 0, the
Riemann–Liouville fractional integral of f (t) of order α is defined as (see, for instance,
[7, 8, 32])

0Iα
t f (t) =

1
�(α)

∫ t

0
(t – τ )α–1f (τ ) dτ , (3)

provided the integral on the right converges.

Definition 2.2 Let f (t) be a function defined on the interval (0,∞). For α > 0, the
Riemann–Liouville fractional derivative of order α of the function f (t) is defined by

0Dα
t f (t) =

1
�(n – α)

(
d
dt

)n ∫ t

0
(t – τ )n–α–1f (τ ) dτ , α ∈ (n – 1, n], (4)

where the right-hand integral is pointwise defined on (0,∞) [7, 8].

Definition 2.3 For the function f (t) defined in the interval (0,∞), the Caputo fractional
derivative of order α > 0 is defined as

0
cDα

t f (t) =
1

�(n – α)

∫ t

0
(t – τ )n–α–1

(
d

dτ

)n

f (τ ) dτ , α ∈ (n – 1, n], (5)

where the right-hand integral is pointwise defined on R+, see [8].

Definition 2.4 Let f (t) be a function defined for all t ≥ 0, where t ∈ R . The Laplace trans-
form of the function f (t), denoted by F(s), is the function defined by the integral [2]

F(s) =
∫ ∞

0
f (t)e–st dt, (6)

where s > 0.
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Definition 2.4 can be extended into the double Laplace transform, the triple Laplace
transform, and the Laplace transform of fourth order as follows.

Definition 2.5 Let f (x, t) be a function of two variables x and t defined for all x, t ≥ 0,
where x, t ∈ R . “The double Laplace transform” of the function f (x, t) is defined as follows
[2, 7]:

LtLx
{

f (x, t)(s1, s2)
}

= F(s1, s2) =
∫ ∞

0
e–s2t

∫ ∞

0
e–s1t f (x, t) dx dt, (7)

where s1, s2 > 0.

Definition 2.6 Let f (x, y, t) be a function of three variables x, y, and t defined for all
x, y, t ≥ 0, and x, y, t ∈ R . For s1, s2, s3 > 0, the triple “Laplace transform” of the func-
tion f (x, y, t) is given by

LtLxLy
{

f (x, y, t)(s1, s2, s3)
}

= F(s1, s2, s3)

=
∫ ∞

0
e–s3t

∫ ∞

0
e–s2t

∫ ∞

0
e–s1t f (x, y, t) dx dy dt. (8)

Definition 2.7 Let f (x, y, z, t) be a function of four variables x, y, z, and t defined for
all x, y, t ≥ 0, x, y, z, t ∈ R . The Laplace transform of the fourth order for the function
f (x, y, z, t) is given by

LtLxLyLz
{

f (x, y, z, t)(s1, s2, s3, s4)
}

= F(s1, s2, s3, s4)

=
∫ ∞

0
e–s4t

∫ ∞

0
e–s3t

∫ ∞

0
e–s2t

∫ ∞

0
e–s1t f (x, y, z, t) dx dy dz dt, (9)

such that s1, s2, s3, s4 > 0.

Definition 2.8 Let α,β , t ∈ C such that R(α) > 0. The “Mittag-Leffler” function is defined
as [11]

Eα,β (t) =
∞∑

k=0

tk

�(kα + β)
.

Definition 2.9 The Laplace transforms of the functions tβ–1Eα,β (λtα) and tβ–1Eα,β (–λtα)
can be respectively defined as follows [33]:

L
[
tβ–1Eα,β

(
λtα

)]
=

sα–β

sα – λ
for |λ| <

∣
∣sα

∣
∣, (10)

L
[
tβ–1Eα,β

(
–λtα

)]
=

sα–β

sα + λ
for |λ| <

∣∣sα
∣∣. (11)

Definition 2.10 The Fox function, also referred to as the Fox’s H-function, generalizes
the Mellin–Barnes function. The importance of the Fox function lies in the fact that it
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includes nearly all special functions occurring in applied mathematics and statistics as
special cases. In 1961, Fox defined the H-function as the Mellin–Barnes type path integral:

Hm,n
p,q

[

–σ

∣∣
∣∣
∣
(ak , Ak)p

1

(bk , Bk)q
1

]

=
1

2π i

∫

l

∏m
k=1 (bk – Bks)

∏n
j=1 �(1 – aj + sAj)σ s ds

∏q
k=m+1 �(1 – bk + Bks)

∏p
j=n+1 (aj – sAj)

, (12)

where l is a suitable contour, the orders (m, n, p, q) are integers 0 ≤ m ≤ q, 0 ≤ n ≤ p, and
the parameters aj ∈ R, Aj > 0, j = 1, 2, . . . , p, bk ∈ R, Bk > 0, k = 1, 2, . . . , q, are such that
Aj(bk + i) �= Bk(aj – i – 1), i = 0, 1, 2, . . .

H1,s
s,t+1

[

–σ

∣∣∣
∣∣

(1 – a1, A1), . . . , (1 – as, As)
(1, 0), (1 – b1, B1), . . . , (1 – bt , Bt)

]

=
∞∑

r=0

�(a1 + A1r) . . .�(as + Asr)σ r

r!�(b1 + B1r) . . .�(bt + Btr)
. (13)

3 Preliminaries regarding Laplace transforms of first, second, third, and fourth
order

In this section, we recall some basic results and notions which we consider helpful for
readers to understand the present work. Proof of theorems are omitted as they can be
proved by the following steps similar to the case of classical derivatives.

Theorem 3.1 If f ∈ Cl(R+ × R+) and l = max{m1, m2}, where m1, m2 ∈ Z. For i =
1, 2, . . . , m1 and j = 1, 2, . . . , m2, there exist k, τ1, τ2 > 0 such that | ∂ i+j f (x,t)

∂xi∂tj | < kexτ1+tτ2 , then
the “double Laplace transform” satisfies the following formulae [34]:

LtLx

{
∂m1 f (x, t)

∂xm1

}
= sm1

1 LxLt
{

f (x, t)
}

–
m1–1∑

i=0

sm1–1–i
1 Lt

{
∂ if (0, t)

∂xi

}
,

LtLx

{
∂m2 f (x, t)

∂tm2

}
= sm2

2 LxLt
{

f (x, t)
}

–
m2–1∑

j=0

sm2–1–j
1 Lx

{
∂ jf (0, t)

∂xj

}
,

LtLx

{
∂m1+m2 f (x, t)
∂tm1∂xm2

}

= sm1
1 sm2

2

[

LtLx
{

f (x, t)
}

–
m2–1∑

j=0

s–j–1
2 Lx

{
∂ jf (x, 0)

∂tj

}

–
m1–1∑

i=0

s–i–1
1 Lt

{
∂ if (0, t)

∂xi

}
+

m2–1∑

i=0

m1–1∑

j=0

s–i–1
1 s–j–1

2

{
∂ i+jf (0, 0)

∂xi∂tj

}]

,

(14)

where ∂m1+m2
∂tm1 ∂xm2 f (x, t) denotes a mixed partial derivative at the point (x, t).

Proof The proof is similar to that of the Laplace transforms of the ordinary derivatives of
functions of a single variable, see for more detail [35]. �

Theorem 3.2 Let f ∈ Cl(R+ ×R+ ×R+), and l = max{m1, m2, m3}, where m1, m2, m3 ∈ Z.
For i1 = 1, 2, . . . , m1, i2 = 1, 2, . . . , m2, and i3 = 1, 2, . . . , m3, there exist k, τ1, τ2, τ3 > 0 such
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that | ∂ i1+i2+i3 f (x,y,t)
∂xi1 ∂yi2 ∂ti3 | < kexτ1+yτ2+tτ3 , then the triple Laplace transform satisfies the following

formulae [34]:

LtLyLx

{
∂m1 f (x, y, t)

∂xm1

}

= sm1
1 LxLyLt

{
f (x, y, t)

}
–

m1–1∑

i1=0

sm1–1–i1
1 LtLy

{
∂ i1 f (0, y, t)

∂xi1

}
,

LtLyLx

{
∂m2 f (x, y, t)

∂ym2

}

= sm2
2 LxLyLt

{
f (x, y, t)

}
–

m2–1∑

i2=0

sm2–1–i2
2 LtLx

{
∂ i2 f (x, 0, t)

∂yi2

}
,

LtLyLx

{
∂m3 f (x, y, t)

∂tm3

}

= sm3
3 LxLyLt

{
f (x, y, t)

}
–

m3–1∑

i3=0

sm3–1–i3
3 LyLx

{
∂ i3 f (x, y, 0)

∂yi3

}
,

LtLyLx

{
∂m1+m2+m3 f (x, y, t)

∂tm1∂ym2∂xm3

}

= sm1
1 sm2

2 sm3
3 [LtLyLx

{
f (x, y, t)

}

–
m3–1∑

i3=0

m2–1∑

i2=0

sm2–i2–1
2 sm3–i3–1

3 Lx

{
∂ i2+i3 f (x, 0, 0)

∂ti3∂yi2

}

–
m1–1∑

i1=0

m3–1∑

i3=0

sm1–i1–1
1 sm3–i3–1

3 Ly

{
∂ i1+i3 f (0, y, 0)

∂ti3∂xi1

}

–
m1–1∑

i1=0

m2–1∑

i2=0

sm1–i1–1
1 sm2–i2–1

2 Lt

{
∂ i1+i2 f (0, 0, t)

∂xi1∂yi2

}

+
m1–1∑

i1=0

m2–1∑

i2=0

m3–1∑

i3=0

s–m1–1
1 s–m2–1

2 s–m3–1
3

{
∂ i1+i2+i3 f (0, 0, 0)

∂xi1∂yi2∂ti3

}

(15)

where ∂ i1+i2+i3
∂xi1 ∂yi2 ∂ti3 f (x, y, t) denotes a mixed partial derivative at the point (x, t).

Proof In a similar fashion it can be proved as the Laplace transforms of the ordinary

derivatives of functions of a single variable [35]. �

Theorem 3.3 Let f ∈ Cl(R+ × R+ × R+ × R+) and l = max{m1, m2, m3, m4}, where

m1, m2, m3, m4 ∈ Z. For i1 = 1, 2, . . . , m1, i2 = 1, 2, . . . , m2, i3 = 1, 2, . . . , m3, and i4 = 1, 2, . . . ,

m4, there exist k, τ1, τ2, τ3, τ4 > 0 such that | ∂ i1+i2+i3+i4 f (x,y,z,t)
∂xi1 ∂yi2 ∂zi3 ∂ti4 | < kexτ1+yτ2+zτ3+tτ4 , then the
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fourth order Laplace transform satisfies the following formulae:

LtLzLyLx

{
∂m1 f (x, y, z, t)

∂xm1

}

= sm1
1 LxLyLzLt

{
f (x, y, z, t)

}
–

m1–1∑

i1=0

sm1–1–i1
1 LtLzLy

{
∂ i1 f (0, y, z, t)

∂xi1

}
,

LtLzLyLx

{
∂m2 f (x, y, z, t)

∂ym2

}

= sm2
2 LxLyLzLt

{
f (x, y, z, t)

}
–

m2–1∑

i2=0

sm2–1–i2
2 LtLxLz

{
∂ i2 f (x, 0, z, t)

∂yi2

}
,

LtLzLyLx

{
∂m3 f (x, y, z, t)

∂tm3

}

= sm3
3 LxLyLzLt

{
f (x, y, z, t)

}
–

m3–1∑

i3=0

sm3–1–i3
3 LzLyLx

{
∂ i3 f (x, y, z, 0)

∂yi3

}
,

LtLzLyLx

{
∂m1+m2+m3 f (x, y, z, t)

∂tm1∂ym2∂xm3

}

= sm1
1 sm2

2 sm3
3 sm4

4 [LtLzLyLx
{

f (x, y, z, t)
}

–
m4–1∑

i4=0

m3–1∑

i3=0

m2–1∑

i2=0

sm2–i2–1
2 sm3–i3–1

3 sm4–i4–1
4 Lx

{
∂ i2+i3+i4 f (x, 0, 0, 0)

∂ti4∂zi3∂yi2

}

–
m1–1∑

i1=0

m3–1∑

i3=0

m4–1∑

i4=0

sm1–i1–1
1 sm3–i3–1

3 sm4–i4–1
4 Ly

{
∂ i1+i3+i4 f (0, y, 0, 0)

∂ti4∂zi3∂xi1

}

–
m1–1∑

i1=0

m2–1∑

i2=0

m4–1∑

i4=0

sm1–i1–1
1 sm2–i2–1

2 sm4–i4–1
4 Lz

{
∂ i1+i2+i4 f (0, 0, z, 0)

∂ti4∂yi2∂xi1

}

–
m1–1∑

i1=0

m2–1∑

i2=0

m3–1∑

i3=0

sm1–i1–1
1 sm2–i2–1

2 sm3–i3–1
3 Lt

{
∂ i1+i2+i3 f (0, 0, 0, t)

∂zi3∂yi2∂xi1

}

+
m1–1∑

i1=0

m2–1∑

i2=0

m3–1∑

i3=0

m4–1∑

i4=0

s–m1–1
1 s–m2–1

2 s–m3–1
3 s–m4–1

4

{
∂ i1+i2+i3+i4 f (0, 0, 0, 0)

∂xi1∂yi2∂zi3∂ti4

}
,

(16)

where ∂ i1+i2+i3+i4
∂xi1 ∂yi2 ∂zi3 ∂ti4 denotes a mixed partial derivative at the point (x, y, z, t).

Proof The proof is similar to that of the Laplace transforms of the ordinary derivatives of
functions of a single variable, and therefore the readers are suggested to see [35] and the
references therein. �

In the following theorems we define the double, triple, and fourth order Laplace trans-
form of fractional integrals.

Theorem 3.4 Let α,β ∈ C such that R(α),R(β) ≥ 0. Let a, b ∈ R with a, b > 0 and
f ∈ L1[(0, a)× (0, b)]. Further assume that for x > a, t > b and constants k, τ1, τ2 > 0 the in-
equality |f (x, t)| ≤ kexτ1+tτ2 holds. Then the double Laplace transform of fractional integral
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is given by [34]

LtLx
{

0Iα
x f (x, t)

}
(s1, s2) =

1
sα

1
LtLx

{
f (x, t)

}
(s1, s2), (17)

LtLx
{

0Iβ
t f (x, t)

}
(s1, s2) =

1
sβ

2
LtLx

{
f (x, t)

}
(s1, s2), (18)

and

LtLx
{

0It
β

0Ix
αf (x, t)

}
(s1, s2) =

1
sα

1 sβ
2
LtLxf (x, t)(s1, s2), (19)

where s1 and s2 are parameters of Laplace transforms of x and t respectively.

Proof Formula (17) can be derived by taking the double Laplace transform of the convo-
lution with respect to x. By taking the double Laplace transform of the convolution with
respect to t, one can easily prove formula (18). For the proof of formula (19), one may
consider the double Laplace transform of the double convolution. For further details on
the double Laplace transforms, see [3, 36] and the references therein. �

Theorem 3.5 Let α,β ,γ ∈C such that R(α),R(β),R(γ ) ≥ 0. Let a, b, c ∈ R with a, b, c >
0 and f ∈ L1[(0, a) × (0, b) × (0, c)]. Further assume that for x > a, y > b, t > c and con-
stants k, τ1, τ2, τ3 > 0 the inequality |f (x, y, t)| ≤ kexτ1+yτ2+tτ3 holds. Then the triple Laplace
transform of fractional integrals is given by [34]

LtLyLx
{

0Iα
x f (x, y, t)

}
(s1, s2, s3) =

1
sα

1
LtLyLx

{
f (x, y, t)

}
(s1, s2, s3), (20)

LtLyLx
{

0Iβ
y f (x, y, t)

}
(s1, s2, s3) =

1
sβ

2
LtLyLx

{
f (x, y, t)

}
(s1, s2, s3), (21)

LtLyLx
{

0Iγ
t f (x, y, t)

}
(s1, s2, s3) =

1
sγ

3
LtLyLx

{
f (x, y, t)

}
(s1, s2, s3), (22)

and

LtLyLx
{

0Iγ
t 0Iβ

t 0Iα
x f (x, y, t)

}
(s1, s2, s3) =

1
sα

1 sβ
2 sγ

3
LtLyLxf (x, y, t)(s1, s2, s3), (23)

where s1, s2, and s3 are the parameters of Laplace transforms of x, y, and t respectively.

Theorem 3.6 Let α,β ,γ ,σ ∈ C such that R(α),R(β),R(γ ),R(σ ) ≥ 0. Let a, b, c, d ∈ R

with a, b, c, d > 0 and f ∈ L1[(0, a)× (0, b)× (0, c)× (0, d)]. Further assume that for x > a, y >
b, z > c, t > d and constants k, τ1, τ2, τ3, τ4 > 0 the inequality |f (x, y, z, t)| ≤ kexτ1+yτ2+zτ3+tτ4

holds. Then the triple Laplace transform of fractional integrals is given by

LtLzLyLx
{

0Iα
x f (x, y, z, t)

}
(s1, s2, s3, s4)

=
1
sα

1
LtLzLyLx

{
f (x, y, z, t)

}
(s1, s2, s3, s4), (24)
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LtLzLyLx
{

0Iβ
y f (x, y, z, t)

}
(s1, s2, s3, s4)

=
1
sβ

2
LtLzLyLx

{
f (x, y, z, t)

}
(s1, s2, s3, s4), (25)

LtLzLyLx
{

0Iγ
z f (x, y, z, t)

}
(s1, s2, s3, s4)

=
1
sγ

3
LtLzLyLx

{
f (x, y, z, t)

}
(s1, s2, s3, s4), (26)

LtLzLyLx
{

0Iσ
t f (x, y, z, t)

}
(s1, s2, s3, s4)

=
1
sσ

3
LtLzLyLx

{
f (x, y, z, t)

}
(s1, s2, s3, s4), (27)

and

LtLzLyLx
{

0Iσ
t 0Iγ

z yIβ

0+ 0Iα
x f (x, y, z, t)

}
(s1, s2, s3, s4)

=
1

sα
1 sβ

2 sγ
3 sσ

4
LtLzLyLxf (x, y, z, t)(s1, s2, s3, s4), (28)

where s1, s2, s3, and s4 are the parameters of Laplace transforms of x, y, z, and t respectively.

In the theorems given below, we give the double, triple, and fourth order Laplace trans-
forms of the fractional Caputo derivatives.

Theorem 3.7 Let m1, m2 ∈N and α,β > 0 such that m2 – 1 < α ≤ m2, m1 – 1 < β ≤ m1. Let
us choose l = max{m1, m2} and let f ∈ Cl(R+ ×R+). Assume further that for a, b > 0 we have
f (l) ∈ L1[(0, a) × (0, b)]. Further assume that for x > a, t > b and constants k, τ1, τ2 > 0 the
inequality |f (x, t)| ≤ kexτ1+tτ2 holds. The double Laplace transforms of the partial fractional
Caputo derivatives can be defined as

LtLx
{

0
cDα

x f (x, t)
}

= sα
1

[

LtLx
{

f (x, t)
}

–
m1–1∑

i1=0

s–1–i1
1 Lt

{
∂ i1 f (0, t)

∂xi1

}]

, (29)

LtLx
{

0
cDβ

t f (x, t)
}

= sβ
2

[

LtLx
{

f (x, t)
}

–
m2–1∑

i2=0

s–1–i2
2 Lx

{
∂ i2 f (0, t)

∂ti2

}]

, (30)

LtLx
{

0
cDα

x 0
cDβ

t f (x, t)
}

= sα
1 sβ

2

[

LtLx
{

f (x, t)
}

–
m2–1∑

i1=0

s–1–i1
1 Lt

{
∂ i1 f (0, t)

∂xi1

}

–
m1–1∑

i2=0

s–1–i2
2 Lx

{
∂ i2 f (x, 0)

∂ti2

}
+

m1–1∑

i2=0

m2–1∑

i1=0

s–i1–1
1 s–i2–1

2
∂ i1+i2 f (0, 0)

∂xi1∂ti2

]

. (31)

Theorem 3.8 Let m1, m2, m3 ∈N and α,β ,γ > 0 such that m3 – 1 < γ ≤ m3, m2 – 1 < β ≤
m2, m1 – 1 < α ≤ m1. Let us choose l = max{m1, m2, m3} and let f ∈ Cl(R+ ×R+ ×R+). As-
sume further that for a, b, c > 0 we have f (l) ∈ L1[(0, a)× (0, b)× (0, c)]. Further assume that
for x > a, y > b, t > c and constants k, τ1, τ2, τ3 > 0 the inequality |f (x, y, t)| ≤ kexτ1+yτ2+tτ3

holds. The triple Laplace transforms of the partial fractional Caputo derivatives can be
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defined as [17]

LtLyLx
{

0
cDα

x f (x, y, t)
}

= sα
1

[

LtLyLx
{

f (x, y, t)
}

–
m1–1∑

i1=0

s–1–i1
1 LyLt

{
∂ i1 f (0, y, t)

∂xi1

}]

, (32)

LtLyLx
{

0
cDβ

y f (x, y, t)
}

= sβ
2

[

LtLyLx
{

f (x, y, t)
}

–
m2–1∑

i2=0

s–1–i2
2 LtLx

{
∂ i2 f (x, 0, t)

∂yi2

}]

, (33)

LtLyLx
{

0
cDγ

t f (x, y, t)
}

= sγ
3

[

LtLyLx
{

f (x, y, t)
}

–
m3–1∑

i3=0

s–1–i3
3 LyLx

{
∂ i3 f (x, y, 0)

∂ti2

}]

, (34)

LtLyLx
{

0
cDα

x 0
cDβ

y 0
cDγ

t f (x, y, t)
}

= sα
1 sβ

2 sγ
3

[

LtLyLx
{

f (x, y, t)
}

–
m2–1∑

i1=0

s–1–i1
1 LtLy

{
∂ i1 f (0, y, t)

∂xi1

}

–
m1–1∑

i2=0

s–1–i2
2 LtLx

{
∂ i2 f (x, 0, t)

∂yi2

}
–

m3–1∑

i3=0

s–1–i3
3 LyLx

{
∂ i3 f (x, y, 0)

∂ti3

}

+
m3–1∑

i3=0

m2–1∑

i2=0

m1–1∑

i1=0

s–i1–1
1 s–i2–1

2 s–i3–1
3

∂ i1+i2+i3 f (0, 0, 0)
∂xi1∂yi2∂ti3

]

. (35)

Theorem 3.9 Let m1, m2, m3, m4 ∈ N and α,β ,γ ,σ > 0 such that m4 – 1 < σ ≤ m4, m3 –
1 < γ ≤ m3, m2 – 1 < β ≤ m2, m1 – 1 < α ≤ m1. Let us choose l = max{m1, m2, m3, m4}
and let f ∈ Cl(R+ × R+ × R+ × R+). Assume further that for a, b, c, d > 0 we have f (l) ∈
L1[(0, a) × (0, b) × (0, c) × (0, d)]. Further assume that for x > a, y > b, z > c, t > d and
constants k, τ1, τ2, τ3, τ4 > 0 the inequality |f (x, y, z, t)| ≤ kexτ1+yτ2+zτ3+tτ4 holds. The fourth
order Laplace transforms of the partial fractional Caputo derivatives can be defined as

LtLzLyLx
{

0
cDα

x f (x, y, z, t)
}

= sα
1

[

LtLzLyLx
{

f (x, y, z, t)
}

–
m1–1∑

i1=0

s–1–i1
1 LzLyLt

{
∂ i1 f (0, y, z, t)

∂xi1

}]

, (36)

LtLzLyLx
{

0
cDβ

y f (x, y, z, t)
}

= sβ
2

[

LtLzLyLx
{

f (x, y, z, t)
}

–
m2–1∑

i2=0

s–1–i2
2 LtLzLx

{
∂ i2 f (x, 0, z, t)

∂yi2

}]

, (37)

LtLzLyLx
{

0
cDγ

z f (x, y, z, t)
}

= sγ
3

[

LtLzLyLx
{

f (x, y, z, t)
}

–
m3–1∑

i3=0

s–1–i3
3 LyLx

{
∂ i3 f (x, y, 0, t)

∂zi3

}]

, (38)



Khan et al. Boundary Value Problems         (2022) 2022:16 Page 11 of 18

LtLzLyLx
{

0
cDσ

t f (x, y, z, t)
}

= sσ
4

[

LtLzLyLx
{

f (x, y, z, t)
}

–
m4–1∑

i4=0

s–1–i4
4 LzLyLx

{
∂ i4 f (x, y, z, 0)

∂ti4

}]

, (39)

LtLzLyLx
{

0
cDα

x 0
cDβ

y 0
cDγ

z 0
cDσ

t f (x, y, z, t)
}

= sα
1 sβ

2 sγ
3

[

LtLzLyLx
{

f (x, y, z, t)
}

–
m2–1∑

i1=0

s–1–i1
1 LtLzLy

{
∂ i1 f (0, y, z, t)

∂xi1

}
–

m2–1∑

i2=0

s–1–i2
2 LtLzLx

{
∂ i2 f (x, 0, z, t)

∂yi2

}

–
m3–1∑

i3=0

s–1–i3
3 LtLyLx

{
∂ i3 f (x, y, 0, t)

∂zi3

}
–

m3–1∑

i3=0

s–1–i4
4 LtLyLx

{
∂ i4 f (x, y, z, 0)

∂ti4

}

–
m4–1∑

i4=0

m3–1∑

i3=0

s–1–i4
4 LzLyLx

{
∂ i4 f (x, y, z, 0)

∂ti4

}

+
m4–1∑

i4=0

m3–1∑

i3=0

m2–1∑

i2=0

m1–1∑

i1=0

s–i1–1
1 s–i2–1

2 s–i3–1
3 s–i4–1

4
∂ i1+i2+i3+i4 f (0, 0, 0, 0)

∂xi1∂yi2∂zi3 ti4

]

. (40)

4 Solution of third order fractional heat equation
In this section of the manuscript we use the ideas discussed in the previous sections to
solve a third order fractional heat equation (1) subject to initial/ boundary conditions (2).
Applying fourth order Laplace transformation to both sides of (1) and exploiting the lin-
earity of the fourth order Laplace transform, one can write

LtLxLyLz
{c

t Dα
0 u(x, y, z, t)

}
=

1
π2 LtLxLyLz

{∇2u(x, y, z, t)
}

. (41)

In the light of Theorem 3.7, Eq. (41) takes the form

sα
4 LtLzLyLxu(x, y, z, t) – sα–1

4 LzLyLxu(x, y, z, 0) – sα–2
4 LzLyLxu(x, y, z, 0)

=
1
π2

{
s2

1LtLzLyLxu(x, y, z, t) – s1LtLzLyu(0, y, z, t) – LtLzLy
∂

∂x
u(0, y, z, t)

+ s2
2LtLzLyLxu(x, y, z, t) – s2LtLzLxu(x, 0, z, t) – LtLzLx

∂

∂y
u(x, 0, z, t)

+ s2
3LtLzLyLxu(x, y, z, t) – s3LtLyLxu(x, y, 0, t) – LtLyLx

∂

∂z
u(x, y, 0, t)

}
,

which implies that

sα
4 LtLzLyLxu(x, y, z, t) –

1
π2

{
s2

1LtLzLyLxu(x, y, z, t) + s2
2LtLzLyLxu(x, y, z, t)

+ s2
3LtLzLyLxu(x, y, z, t)

}

= sα–1
4 LzLyLxu(x, y, z, 0) + sα–2

4 LzLyLxu(x, y, z, 0)

+
1
π2

{
s1LtLzLyu(0, y, z, t) + LtLzLy

∂

∂x
u(0, y, z, t) + s2LtLzLxu(x, 0, z, t)
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+ LtLzLx
∂

∂y
u(x, 0, z, t) + s3LtLyLxu(x, y, 0, t) + LtLyLx

∂

∂z
u(x, y, 0, t)

}
.

Using some algebraic manipulation, the above equation looks like

LtLzLyLxu(x, y, z, t)
{

sα
4 –

1
π2

(
s2

1 + s2
2 + s2

3
)}

= sα–1
4 LzLyLxu(x, y, z, 0)

– sα–2
4 LzLyLxu(x, y, z, 0) –

1
π2

{
s1LtLzLyu(0, y, z, t) + LtLzLy

∂

∂x
u(0, y, z, t)

+ s2LtLzLxu(x, 0, z, t) + LtLzLx
∂

∂y
u(x, 0, z, t) + s3LtLyLxu(x, y, 0, t)

+ LtLyLx
∂

∂z
u(x, y, 0, t)

}
.

The simplification and little re-arrangement of the above equation leads to the following
assertion:

LtLzLyLxu(x, y, z, t)

=
π2

π2sα
4 – (s2

1 + s2
2 + s2

3)

{
sα–1

4 LzLyLxu(x, y, z, 0) – sα–2
4 LzLyLxu(x, y, z, 0)

–
1
π2

[
s1LtLzLyu(0, y, z, t) + LtLzLyux(0, y, z, t) + s2LtLzLxu(x, 0, z, t)

+ LtLzLxuy(x, 0, z, t) + s3LtLyLxu(x, y, 0, t) + LtLyLxuz(x, y, 0, t)
]}

. (42)

Now, applying the definition of triple Laplace transformation given in Theorem 3.8 to the
initial/boundary conditions (2), we obtain

LzLyLx
{

u(x, y, z, 0)
}

=
π3

(s2
1 + π2)(s2

2 + π2)(s2
3 + π2)

,

LzLyLx
{

ut(x, y, z, 0)
}

= LzLxLtu(x, 0, z, t) = LzLyLtu(0, y, z, t)

= LyLxLtu(x, y, 0, t) = 0,

LzLyLt
{

ux(x, y, z, t)
}

=
πsα–1

4
s3s2(1 + sα

4 )
,LzLxLt

{
uy(x, y, z, t)

}

=
πsα–1

4
s3s1(1 + sα

4 )
,

LyLxLt
{

uz(x, y, z, t)
}

=
πsα–1

4
s1s2(1 + sα

4 )
.

(43)

The introduction of Eq. (43) to Eq. (42) leads to

LtLzLyLx
{

u(x, y, z, t)
}

=
π2sα–1

4
π2sα

4 – (s2
1 + s2

2 + s2
3)

[
π3

(s1 + π2)(s2 + π2)(s3 + π2)

+
1

π (1 + sα
4 )

{
1

s1s2
+

1
s2s3

+
1

s1s3

}]
. (44)
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To find the inverse Laplace of Eq. (44), we shall exploit the following formula:

(1 + x)α =
∞∑

p=0

1
p!

�(p – α)
�(α)

(–x)p. (45)

As a result, Eq. (44), after some algebraic manipulation, can be written as follows:

LtLzLyLx
{

u(x, y, z, t)
}

=
∞∑

p=0

∞∑

v=0

∞∑

w=0

�(v – p)�(v – w)
v!w!�(p)�(v)

×
[ ∞∑

q=0

∞∑

r=0

∞∑

s=0

(–1)q+v+w+r

�(w)π2(p+q+r+s+w)s2(v–p–q–r)
1 s–2(v+r+w)

2 s–2(p+q+r)
3 s2α–αp+αw+1

4

–
(–1)v+w+m

π2(p+w+v+1)

{ ∞∑

m=0

1
s2(m–v–p)

1 s(v–r+w)+1
2 s2(m–r+w)+1

3 s2(αm+p+w)
4

–
∞∑

n=0

1
s2(m–v–p)+1

1 s2(v–r+w)
2 s2(n–r+w)+1

3 s2(αn+p+w)
4

–
∞∑

c=0

1
s2(m–v–p)+1

1 s2(v–r+w)+1
2 s2(c–r+w)

3 s2(αc+p+w)
4

}]

. (46)

Finally, by the application of inverse Laplace transform to Eq. (46) and using the Fox H-
function, the solution of the fractional three dimensional heat equation can be expressed
as follows:

u(x, y, z, t)

=
∞∑

p=0

∞∑

q=0

∞∑

r=0

∞∑

s=0

∞∑

v=0

(–1)q+v+rx2v–2p–2q–2r–1y–2v–2r–1z–2p–2q–1t2α–αp

v!π2p+2q+2r+2s

× H2,1
1,12

⎡

⎢
⎢⎢
⎣

–
(

tαπ2

y2z2

)

∣∣
∣∣
∣∣
∣∣∣

(1 – v + p, 0), (1 – v, 1).
(0, 1), (2, 0)4, (1 – p, 0), (1 – v, 0), (1, 1),

(1 + 2v + 2p + 2q + 2r, 0), (1 + 2v + 2r, 2),
(1 + 2p + 2q, 2), (–2α + αp,α).

⎤

⎥
⎥⎥
⎦

–
∞∑

p=0

∞∑

v=0

∞∑

w=0

(–1)v+wx–2v–2p–1y2v–2r+2wz–2r+2wt2p+2w–1

v!w!π2+2p+2w+2v

× H2,1
1,8

⎡

⎢
⎣–

(
xztα

)2

∣∣
∣∣
∣∣
∣

(1 – v + p, 0), (1 – v – w, 0).
(2, 0)2, (1 – p, 0), (1 – v, 0), (1 + 2v + 2p, 2),

(–2v + 2r – 2w, 0), (2r – 2w, 0), (1 – 2p – 2w, 2α).

⎤

⎥
⎦

–
∞∑

p=0

∞∑

v=0

∞∑

w=0

(–1)v+wx–2v–2py2v–2r+2w–1z–2r+2wt2p+2w–1

v!w!π2+2p+2w+2v

× H2,1
1,8

⎡

⎢
⎣–

(
xztα

)2

∣∣∣
∣∣
∣∣

(1 – v + p, 0), (1 – v – w, 0).
(2, 0)2, (1 – p, 0), (1 – v, 0), (2v + 2p, 2),

(1 – 2v + 2r – 2w, 0), (2r – 2w, 0), (1 – 2p – 2w, 2α).

⎤

⎥
⎦
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–
∞∑

p=0

∞∑

v=0

∞∑

w=0

(–1)v+wx–2v–2py2v–2r+2wz–2r+2w–1t2p+2w–1

v!w!π2+2p+2w+2v

× H2,1
1,8

⎡

⎢
⎣–

(
xztα

)2

∣∣
∣∣
∣∣
∣

(1 – v + p, 0), (1 – v – w, 0).
(2, 0)2, (1 – p, 0), (1 – v, 0), (2v + 2p, 2),

(–2v + 2r – 2w, 0), (1 – 2r – 2w, 0), (1 – 2p – 2w, 2α).

⎤

⎥
⎦ . (47)

We present some graphical visualization of the analytical results carried out to study
the effect of temperature profile of the proposed problem by varying x, y, z and fractional
order parameter α. We study the effect of the variables x, y, z and the fractional order α

upon the temperature profile u(x, y, z, t) as a function of the time variable t in the first two
figures, i.e., Figs. 1 and 2. To study the effect of t and x on the temperature profile u(x, y, z, t)
along different value of fractional order α, we fixed the value of z and y, while varying x
and t as shown in Fig. 1. Likewise the effect of x and y with α = 1 is given in Fig. 2. More-
over, to describe the relative impact of each component x, y, z, and t against various values
of fractional order α, we plotted the contour plots as demonstrated in Figs. 3, 4, 5, and 6
in a different plane against various values of fractional order. Here the graphical results
are presented to show the effect of fractional order on the temperature profile u(x, y, z, t).
Clearly we observed that the fractional order parameter α has a significant impact on the
temperature profile as seen in the graphical results. Likewise, to compare our results with
other methods which have been utilized to the proposed fractional order heat equation,
a natural transform decomposition technique has been reported by Hassan Khan et al.

Figure 1 Plot of solution curves given by (47) of fractional heat equation (1) for different values of x, t and at
fixed values z = y = 0.9

Figure 2 Plot of solution curves given by (47) of fractional heat equation (1) for different values of x, t and at
fixed values z = y = 0.9 and α = 1.0
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Figure 3 The contour plot of the solution curves given by (47) of fractional heat equation (1) for constant
values t = 0.5, z = 0.5 at different values of α = 0.4, 0.6, 0.8, 1.0 in the xy-plane

Figure 4 The contour plot of the solution curves given by (47) of fractional heat equation (1) for constant
values of x = 0.5, z = 0.5 at different values of α = 0.4, 0.6, 0.8, 1.0 in the ty-plane

Figure 5 The contour solution plot given by (47) of fractional heat equation (1) for different values of
α = 0.4, 0.6, 0.8, 1.0 and fixed values of the variables z = y = 0.5 in the tx-plane

in [25]. It could be noted that the solution obtained by the fourth order Laplace trans-
form revealed the highest degree of accuracy. It is also analyzed that the fractional order
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Figure 6 The contour plot of solution curves given by (47) of fractional heat equation (1) for different values
of α = 0.4, 0.6, 0.8, 1.0 and at fixed values x = y = 0.5 in the tz-plane

solutions are more feasible while comparing with the integer order. Thus, the method of
generalized Laplace transform is one of the best methods in order to find the solution of
partial differential equations having fractional order.

5 Conclusion
Fractional calculus is a developing area in the field of mathematics, science, and technol-
ogy. It is observed that the anomalous behavior of complex systems in various fields of
science and technology is studied via fractional-order systems, e.g., the anomalous behav-
ior of dynamical systems in electrochemistry, physics, viscoelasticity, biology, and chaotic
systems. In this work, we have extended a three dimensional heat equation from integer
order to fractional order and investigated its associated analytical solution via the gener-
alized Laplace transformation. For this purpose, first we generalized the notion of double
Laplace transformation to the triple one and then to fourth order. We have developed
theory related to the Laplace transform of the third and fourth orders. The established
theory has been used to analytically solve a fractional order partial differential equation.
We have solved a three dimensional heat problem with noninteger order using the mul-
tiple transform method of Laplace. Numerical simulations have been presented to verify
our analytical calculations.

In the future, the concerned technique of multiple transform method may be used to
study more general and complex problems of higher dimension with noninteger order
derivatives.
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University, Ankara 06374, Turkey. 5MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha,
410081, Hunan, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 12 October 2021 Accepted: 9 March 2022

References
1. Duffy, D.G.: Transform Methods for Solving Partial Differential Equations. Chapman & Hall, London (2004)
2. Estrin, T.A., Higgins, T.J.: The solution of boundary value problems by multiple Laplace transformations. J. Franklin Inst.

252(2), 153–167 (1951)
3. Kılıçman, A., Gadain, H.E.: On the applications of Laplace and Sumudu transforms. J. Franklin Inst. 347(5), 848–862

(2010)
4. Belgacem, F.B.M., Karaballi, A.A.: Sumudu transform fundamental properties investigations and applications. Int. J.

Stoch. Anal. 2006 (2006)
5. Watugala, G.: Sumudu transform: a new integral transform to solve differential equations and control engineering

problems. Integr. Educ. 24(1), 35–43 (1993)
6. Zhou, Y., Wang, J., Zhang, L.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2016)
7. Kilbas, A.A., Srivastava, H.M., Trujillo, J.: Theory and Applications of Fractional Differential Equations (Vol. 204) Elsevier,

Amsterdam (2006)
8. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential

Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)
9. Trujillo, J.J., Scalas, E., Diethelm, K., Baleanu, D.: Fractional Calculus: Models and Numerical Methods, vol. 5. World

Scientific, Singapore (2016)
10. Jafari, H., Kadem, A., Baleanu, D., Yılmaz, T.: Solutions of the fractional Davey-Stewartson equations with variational

iteration method (2012)
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