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Abstract— We develop a novel localization theory for planar
networks of nodes that measure each other’s relative position,
i.e., we assume that nodes do not have the ability to perform
measurements expressed in a common reference frame. We
begin with some basic definitions of frame localizability and
orientation localizability. Based on some key kinematic rela-
tionships, we characterize orientation localizability for networks
with angle-of-arrival sensing. We then address the orientation
localization problem in the presence of noisy measurements.
Our first algorithm computes a least-square estimate of the
unknown node orientations in a ring network given angle-of-
arrival sensing. For arbitrary connected graphs, our second
algorithm exploits kinematic relationships among the orienta-
tion of node in loops in order to reduce the effect of noise.
We establish the convergence of the algorithm, and through
some simulations we show that the algorithm reduces the mean-
square error due to the noisy measurements.

I. INTRODUCTION

One of the key problems in sensor networks is localization,

i.e., determining the location of each sensor in the network.

Sensor networks are used in a large number of applications

which cover a wide range of fields, such as, surveillance, tar-

geting systems, controls, communications, monitoring areas,

intrusion detection, vehicle tracking and mapping.

We address the problem in a distributed manner, by

assuming that any node in the network has its own reference

frame, and does not have any knowledge about its physical

position in the environment or the position of all the other

nodes. Each node, through a sensor, can detect the presence

and the relative position of any node inside a given sensor

footprint. The measures are affected by noise, so we extend

our analysis to the noisy case. We call frame localization the

problem of computing the relative location and orientation

of each node of the network. We aim to solve the problem

through a distributed algorithm, which computes the estimate

of the angle associated to every edge of the graph by

distributing the error of every cycle on its edges.

Network localization has been the center of extensive

research work, and the various approaches are due to dif-

ferent assumptions on the deployment of the nodes and the

way sensors work. In some cases, there is the use of some

special nodes, whose position is known, called beacons or

anchors. Moreover, to obtain a more accurate estimation,

some researchers, e.g., [1], investigate the possibility of

choosing the position of the beacons. Particular interest arises

from the works of Roumeliotis and coworkers, [2] and [3], in
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which the problem of determining the relative position for

pair of robots moving in 2D or 3D is studied using only

distance measurements between the robots. The literature

review includes also the beautiful treatment in [4], where

a theory of localization emerges.

This paper contains several contributions and proceeds

as follows. First, we review and identify a few useful

kinematic relationships and fundamental elements of graph

theory. Second, we present a novel formulation of the frame

localizability and frame computational localization problem

for networks with relative sensing. Third, we define a

characterization of frame localizability for planar networks,

focusing on consistency for the orientation localization prob-

lem. Fourth, we compute a least-square estimate of the

unknown node orientations in a ring network. Fifth, we

consider arbitrary connected graphs and provide a distributed

algorithms for planar orientation localization which exploits

kinematic relationships among the orientation of nodes in

loops in order to reduce the effect of noise. We also add some

considerations on the convergence rate of the algorithm.

Finally, we provide some simulations in order to validate

our algorithm results.

The paper is organized as follows. In Section II, we

review some kinematic conventions and elements of graph

theory that are used throughout the paper. Section III is

dedicated to the description of the network model and the

problem with some preliminary relationships on relative

positions. Section IV studies the orientation localizability of

the network considering the measurement noise, including a

formula to compute the optimal least-squares angle estimate

in a ring, and offers a convergent algorithm for the frame

localization problem in a general network. In Section V some

simulation results are shown. Section VI gives a short review

of the paper with conclusions and aims for future work. All

proofs can be found in the technical report [5].

II. PRELIMINARIES

A. Elements of kinematics

We let R and C denote real and complex numbers,

respectively. We let ‖v‖ denote the Euclidean norm of the

vector v ∈ Rd. We define the versor operator vers: Rd → Rd

by vers(0) = 0 and vers(v) = v/‖v‖ for v 6= 0. Given a

scalar θ, we let proj(θ) take value in [−π, π[, where the map

proj: R → [−π, π[ is defined by

proj(θ) = (θ + π)mod2π − π. (1)

We let ∠z denote the phase of z ∈ C.

We will be interested in measurements expressed in differ-

ent reference frames. Accordingly, it is useful to review some

basic kinematic conventions. We let Σ1 = {p1,x1,y1, z1}
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be a fixed reference frame in R3. A point q and a vector

v expressed with respect to frame Σ1 are denoted by q1

and v1, respectively. Next, let Σ2 = {p2,x2,y2, z2} be a

p1
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y
1

z1 p
1

2

q

q
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y
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Fig. 1. Two reference frames in R
3

reference frame fixed with a moving body. The origin of

Σ2 is the point p2, denoted by p1
2 when expressed with

respect to Σ1. The orientation of Σ2 is characterized by

the 3-dimensional rotation matrix R1

2, whose columns are

the frame vectors {x2,y2, z2} of Σ2 expressed with respect

to Σ1. We recall here the definition of the set of rotation

matrices in d-dimensions, for d ∈ {2, 3}:

SO(d) = {R ∈ R
d×d| RR

T = Id, det(R) = +1}.
With these notations, reference frame transformations are

described by

q1 = R
1

2q
2 + p1

2, and v1 = R
1

2v
2. (2)

Recall also R
1

2 = (R2

1)
T . Analogously, we let Si denote the

point set S as expressed in the reference frame Σi. Finally,

if three reference frames Σi, i ∈ {1, 2, 3}, are considered,

then simple bookkeeping arguments lead to

R1

2R
2

3R
3

1 = I3, and R1

2 = R1

3R
3

2. (3)

Next, it is convenient to present a planar case version of

these notions. In the planar case, p1 and p2 take values in

R2, the reference frames consist of only two orthonormal

vectors, and the rotation matrices take values in SO(2). It is

convenient to identify R2 with the set of complex numbers

C and to denote the unit imaginary number by
√
−1 ∈ C.

If we describe the planar rotation matrix R1

2 ∈ SO(2) by

its unit-length complex number representation exp(θ12
√
−1),

with angle θ12 ∈ [−π, π[, then the second part of equation (2)

reads

v1 = exp(θ12
√
−1)v2.

B. Elements of graph theory

We review a few useful notions from graph theory [6],

[7]. We let G = (V,E) represents an undirected graph G,

with vertex set V , {vi}ni=1 and edge set E with cardinality

m. Gd = (V,Ed) defines a directed graph associated to G,

where Ed is an orientation of E. We denote a directed edge

from vertex vi to vj by eij = (i, j). If the graph is undirected,

(i, j) is equivalent to (j, i).

Definition 1 (Path and cycle) Let G be either a directed or

undirected non-empty graph. A path is a non-empty graph

P = (VP , EP ) ⊆ G of the form VP , {vi}ki=1 and

Ep , {(ji, ji+1)}k−1

i=1
, where {j1, · · · , jk} is a permutation

of {1, · · · , k}. The vertices vj2 , · · · , vjk−1
are the inner

vertices of P. Furthermore, every sequence of edges that form

a closed path in G and do not visit the same node twice,

except the start/end node, is called cycle and it is denoted

by ℓ.

The direction of a cycle is the order in which the nodes

are visited. We let L(G) denote the set of all cycles of G.

We let |ℓ| denote the number of edges in the cycle ℓ. It

should be noted that, in a digraph Gd, the cycle directions

are independent of the direction of the individual edges

composing the cycles.

Definition 2 (Cycle vector) For ℓ ∈ L(Gd), the cycle vec-

tor is the vector 1ℓ ∈ {−1, 0,+1}m ⊂ Rm whose ith entry

is +1 if the ith edge belongs to ℓ and its orientation is

consistent with the orientation of ℓ, −1 if the ith edge belongs

to ℓ and its orientation is opposite the orientation of ℓ, and

is 0 otherwise.

Definition 3 (Set of cycle and fundamental cycle vectors)

The set of cycle vectors is L = {1ℓ| for all ℓ ∈ L(Gd)}. A

set of fundamental cycle vectors Lf ⊆ L is a subset of L
that constitute a base for L. The elements of Lf are called

fundamental cycle vectors.

Given a set of fundamental cycle vectors Lf , we let Lf (Gd)
denote the associated fundamental cycles

Lf (G) = {ℓ ∈ L(Gd)| 1ℓ ∈ Lf}.

Definition 4 (Cycle and fundamental cycle matrix) The

cycle matrix C of a directed graph Gd is the k × m
matrix C = [1ℓ1 , . . . ,1ℓk ]T where k is the dimension of L,

and m is the number of edges of Gd. The r × m matrix

Cf ⊆ C, with r = dim(Lf ), such that each row represents

a fundamental cycle vector in Lf , is called the fundamental

cycle matrix:

Cf = [1ℓ1 , . . . ,1ℓr ]
T , for all 1ℓi ∈ Lf . (4)

Note that Cf is not unique since it depends on the choice of

the fundamental cycles vectors, and it is a full rank matrix.

The following result is known from [6].

Theorem 5 (Number of independent cycles) If Gd has n
vertices and m edges, than the dimension of the fundamental

cycle space Lf is m − n + 1, i.e., there are m − n + 1
independent cycles.

Definition 6 (Plane graph) A graph is called plane graph

if it has the following properties:

(i) V ⊆ R2;

(ii) every edge is an arc between two vertices;

(iii) the interior of an edge contains no vertex and no point

of any other edge.

The following result is known from [6].
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Theorem 7 (Number of edges in a plane graph) A plane

graph with n ≥ 3 vertices has at most 3n− 6 edges.

Definition 8 (Planar network) A planar network is a

graph with nodes in R2.

Note not to confuse planar network with planar graph. In

literature, the term planar graph defines all the graphs that

can be drawn in the plane without edges crossing. This

definition is clearly different from our definition of planar

network.

III. NETWORK MODEL AND LOCALIZATION PROBLEMS

In what follows we describe our notion of network

equipped with relative sensors. We consider a group of n
nodes in Rd, for d ∈ {2, 3}, and we assume that a reference

frame Σi with origin pi, for i ∈ {1, . . . , n}, is attached to

each node. We assume pi 6= pj for all i 6= j. We label the

1st node the reference node.

There might or might not exist a fixed spatial reference

frame. If a fixed spatial reference frame exists, then we

denote it by Σ0 with origin p0.

A. Relative sensing models

Each node i activates a sensor that detects the presence

and returns a measurement about the relative position of any

node inside a given sensor footprint. We let Si ⊂ Rd be the

sensor footprint of node i and Sii be its expression in the

Σi frame; we shall assume that all node sensors are equal,

so that we write Sii = Si. We assume that there exists a

map sns : Rd → Rk, for some k, called the sensing function,

such that node i acquires the symbol sns(pij) for each node

j ∈ {1, . . . , n} \ {i} that satisfies pij ∈ Si. The sensor we

will use throughout the paper is the following:

Angle-of-arrival sensing: Node i measures vers(pij),
i.e., sns(pij) = vers(pij) ∈ Rd, for all nodes j within a

fixed sensing range r from i, that is, the footprint Si

is a disk of radius r and the function sns returns the

spherical coordinates of its argument.

Given the nodes p1, . . . , pn, the directed sensing graph,

Gd = (VS , Ed) is the directed graph where vertex vi corre-

sponds to node i and the directed edge (i, j) ∈ Ed if pij ∈ Si,
that is, if node j is inside the sensor footprint of node i. In

what follows, we assume that the sensor footprint Si is a

unit-radius disk with pi as the center, so that the sensing

graph is the so-called unit-disk geometric graph illustrated

in Figure 2. With this assumption, if node i senses node j,
then node j senses node i as well. Therefore, if (i, j) ∈ Ed,

then (j, i) ∈ Ed as well. To simplify notation we use an

undirected graph GS = (VS , ES) with vertex set VS and

undirected edge set ES satisfying (i, j) ∈ ES ⇐⇒ (i, j) ∈
Ed ⇐⇒ (j, i) ∈ Ed. We call GS the undirected sensing

graph or simply the sensing graph. We further assume that

a pair of nodes i and j communicate with each other if

and only if they can sense each other, i.e., (i, j) ∈ ES .

In summary, the physical components of a relative sensing

network consist of n nodes with identifiers in {1, . . . , n},

with configurations in Rd×SO(d), and with relative sensors

described by the sensor footprint Si and sensing function sns.

Fig. 2. The disk graph in R
2

B. The frame localization problem

Loosely speaking, we call frame localization the problem

of computing the location and orientation of each node of

a relative sensing network. Additionally, we call orientation

localization the problem of computing the orientation of each

node of a relative sensing network. We begin with questions

about the uniqueness of these localization problems.

Problem 9 (Frame and orientation localizability) Given

a relative sensing network with reference node 1, provide

graph theoretical conditions under which:

(frame localizability:) the reference frames transformations

{R1

i , p
1
i }, for all i ∈ {2, . . . , n}, are uniquely deter-

mined by the relative measurements;

(orientation localizability:) the orientations R
1

i , for all i ∈
{2, . . . , n}, are uniquely determined by the relative

measurements. �

Second, we are interested in algorithmic matters.

Problem 10 (Centralized and distributed localization)

Given a frame (respectively, orientation) localizable network,

give a centralized or distributed algorithm to compute the

reference frames transformation {R1

i , p
1
i } (respectively, the

orientations R
1

i ), for all i ∈ {2, . . . , n}. Give algorithms for

both noise-less and noisy sensor measurements. �

Finally, for the above questions, we are interested in

complexity in arbitrary networks and expected complexity

in random geometric networks.

Remark 11 (Data referencing motivation) It is worth re-

marking that the frame localization problem needs to be

solved in relative sensing networks if measurement taken by

arbitrary sensors in their respective reference frames need

to be expressed (and possibly fused) in a common unique

reference frame. Measurements might include positions of

targets, environment boundaries, etc. �

C. Preliminary relationships

In three dimensions, for any sensing and communication

undirected edge (i, j), the basic relationship between the

relative positions pji and pij and the change of frame rotation

matrix Ri
j can be computed from (2) to be

pij = −R
i
jp
j
i . (5)
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It is possible to write a normalized version of this equation

that applies to angle-of-arrival measurements:

vers(pij) = −Ri
j vers(pji ). (6)

It is also possible to write a planar version of equation (5),

where relative positions are complex numbers and rotations

matrices are unit-length complex numbers:

θij = proj(∠pij − ∠pji + π). (7)

Remark 12 (Measurements and variables) Recall that

the two nodes i and j measure each other’s relative positions

pij and pji (through the sensing function), respectively. The

unknown variable in equation (5) is the rotation matrix Ri
j

with d degrees of freedom. �

It is possible to parametrize the solutions to equation (6).

Lemma 13 (Feasible orientations) Given unit-length mea-

surements pij and pji , compute Hi
j ∈ SO(3) by

H
i
j = exp

(
αij êij

)
,

where eij ∈ R3, αij ∈ [0, π] are defined by

eij =

{
vers(pij × pji ), if pij × pji 6= 0,

any unit-length vector ⊥ pij , otherwise,

αij = arctan2(‖pij × pji‖,−pij · pji ).
Then every solution to equation (6) may be written as

R
i
j = exp

(
β ̂vers(pij)

)
H

i
j ,

for an appropriate angle β ∈ [−π, π[.

IV. PLANAR FRAME LOCALIZATION

A. Orientation localizability with angle-of-arrival sensors

Our first localizability result follows.

Theorem 14 (Orientation localizability for planar net-

works with angle-of-arrival sensing) Consider a relative

sensing network with d = 2 (i.e., a planar network) and with

noiseless angle-of-arrival sensing. The following statements

are equivalent:

(i) the sensing graph is connected, and

(ii) the network is orientation localizable.

Proposition 15 A network with only range measurements is

not orientation localizable.

Proof: The range measurement is independent of the

reference frame. That is, given a fixed geometry of a network,

each node may have an infinite number of orientations.

Proposition 16 (Sufficient conditions for localizability)

A network with n nodes capable of angle-of-arrival

measurement is both frame localizable and orientation

localizable if the sensing graph is rigid and at least one of

the edge lengths is known.

B. Orientation localization with noisy angle-of-arrival sen-

sors

Now we follow Theorem 14, and we consider a planar

network with angle-of-arrival sensing. We assume that, for

each undirected edge (i, j) of the sensing graph, nodes i and

j measure, respectively, the angles

∠pij + nij and ∠pji + nji ,

where we suppose the noises nji and nij to be independent,

Gaussian random variables with zero mean and variance σ.

Therefore, for each undirected edge (i, j), we can measure

only

yij = proj((∠pij + nij) − (∠pji + nji ) + π), (8)

and not the true relative orientation θij as in equation (7).

Remark 17 (Redundant measurements in cycles) If the

sensing graph is a tree, then there is no redundant mea-

surement and we cannot reduce the effect of measurement

noise on our angle estimates. However, for every cycle in the

network, we can enforce a cycle constraint (see equation (3)).

We formalize this statement as follows. �

Let GS = (VS , ES) be the undirected sensing graph with

n nodes and m edges. We assign a direction to each edge

in ES in the following way: the direction is from i to j
if i < j. Noting that this direction assignment is different

from/independent of the sensing/communication relations, let

us denote the directed graph obtained, by Gd = (VS , Ed).
Consider the oriented edge e = (j, i) ∈ Ed, with i > j. Let

ψe denote the estimate of the true relative angle associated to

e, θe = θji . Let ψ ∈ Rm denote the vector of angle estimates

for all the edges of the graph. Analogously, we let y denote

the measurement vector with components ye = yji , for i > j.
For ℓ ∈ L(Gd), the cycle error ǫℓ at ψ is

ǫℓ = proj(1ℓ · ψ), (9)

where the map proj: R → [−π, π[ is defined in (1) and the

map proj: Rn → [−π, π[
n

is defined by

proj([x1, . . . , xn]T ) = [proj(x1), . . . ,proj(xn)]T . (10)

Note that

proj(1ℓ · ψ) = proj
( ∑

f∈ℓ

±ψf
)
,

where ± indicates whether or not the direction of the edge

f is concordant with the direction of the cycle ℓ which f
belongs to.

In what follows, we aim to solve the following least-square

estimation problem:

min
ψ

‖ψ − y‖2

subj. to proj(1ℓ · ψ) = 0, for all ℓ ∈ L(Gd).
(11)

Note that the optimal ψ lives in a set of countable affine

subspaces; once the optimal affine subspace is determined,

the optimal estimate is computed via a linear projection.
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C. Optimal estimation in a ring

Now, suppose the sensing graph GS is a ring with nodes

{1, . . . , n} and with undirected edges (i, (i+1) mod n), for

i ∈ {1, . . . , n}. In what follows, we write (i+ 1) to denote

(i+ 1) mod n. Compute a set of angle estimates ψii+1 by

ψii+1 = yii+1 −
1

n

(
proj

( n−1∑

i=1

yii+1 − y1
n

))
, (12)

and ψ1
n = −ψn1 . Equation (12) can be written in vectorial

form as

ψ = y − 1ℓ
1

n
proj(1ℓ · y), (13)

where y = [y1
2 , y

2
3 , · · · , y1

n]
T and ψ = [ψ1

2 , ψ
2
3 , · · · , ψ1

n]
T .

This affine map is a projection onto one of the affine

subspaces that describe the constraint in the optimization

problem (11).

Theorem 18 (Solution to the least squares) The angle es-

timates computed in equation (12) are the solution to the

least squares estimation problem (11).

It is interesting to note that equation (13) is a particular case

of the Kaczmarz’s projection method [8] for solving a system

of linear equations through iterative projections.

D. An iterative estimation algorithm for arbitrary graphs

We now consider an arbitrary network Gd with set of

cycles L(Gd) and we propose a natural generalization of

the optimal estimation algorithm (13). Let L̂ ⊆ L(Gd) be a

subset of the cycle set, and let ψe denote the estimate of the

angle associated to the edge e. For 0 < κ≪ 1, consider the

following “cycle-distributed” discrete-time system:

ψe(0) = ye,

ψe(t+ 1) = ψe(t) − κ
∑

ℓ∈L̂: e∈ℓ

(1ℓ · ee) proj(1ℓ · ψ(t)), (14)

where ei is the m-dimensional vector whose ith entry is 1,

and all the other entries are equal to zero. We will often

focus our attention to the case where the set of cycles L̂ is

a set of fundamental cycles Lf .

Theorem 19 (Exponential convergence) Consider a pla-

nar relative sensing network N with noisy angle-of-arrival

sensing and sensing graph GS = (VS , ES) with n vertices

and m edges, and its associated directed graph Gd =
(VS , Ed). Let Lf be a fundamental cycle set for the digraph

with associated fundamental cycle matrix Cf . The solution

of the discrete-time system (14) with L̂ = Lf converges

exponentially fast with exponential converges factor ρ =
(1 − κ)2, to the set of angles with zero cycle error for

κ < 2/(1 + λmax(F )), where F = CfC
T
f , and λmax(F )

is the maximum eigenvalue of F .

At this time, it is not known whether the proposed

algorithm computes the optimal least-square estimate of

the unknown angles. Numerical experiments in Section V

illustrate however its compelling performance in this regard.

E. Some remarks on complexity

in order to speed up the exponential convergence factor ρ
of algorithm (14), it is desirable to maximize κ. To compute

the largest possible κ that guarantees convergence, it is

natural to ask how to choose Cf , i.e., how to choose the

fundamental cycle set in order to minimize the maximum

eigenvalue of the matrix F = CfC
T
f . At this time, we

only provide the following conservative analysis. One can

see that trace(F ) =
∑
i∈{1,...,r} |ℓi|, and, since λmax(F ) <

trace(F ), exponential convergence of algorithm (14) is guar-

anteed if

κ <
2

1 +
∑

i∈{1,...,r} |ℓi|
.

From Theorem 5, we know the fundamental cycle space has

rank m− n+ 1 in a digraph with n nodes and m edges. In

the worst-case, it is possible for a digraph to have order n2

edges and it is certainly true that each cycle has at most order

n edges. Therefore, in the worst-case, we can only choose

κ ∈ O
( 1

n3

)
.

Suppose now instead that (i) the graph is planar, so that it

has at most 3n − 6 edges by Theorem 7, and that (ii) we

consider only cycles with bounded length (e.g., in a planar

graph that is a triangulation, one can choose a fundamental

cycle set with all cycles of length 3). Then we can choose

κ ∈ O
( 1

n

)
.

More generally, how to choose a fundamental cycle set to

minimize the sum of cycle lengths is an optimization problem

known as the minimum cycle basis problem. In the beautiful

work of Elkin and coworkers [9], the authors construct a

fundamental cycle basis for an unweighted undirected graph

of length O(n2).

V. SIMULATIONS

We provide some simulations to illustrate the performance

of the proposed distributed algorithm considering L̂ as a

set of independence cycles. We consider arbitrary network

configurations with fixed node positions and varying sensing

footprints, e.g., see Figure 3. Different number of edges in

the network lead to different number of independent loops.

As illustrated by the plot in Figure 4, the mean-square error

‖ψ − θ‖2 is smaller than ‖y − θ‖2 and decreases as the

number of independent loops increases. Convergence of (14)

is shown in Figure 5.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduces the frame localization problem in a

connected network. For the orientation localization problem

with angle-of-arrival (bearing) sensors, we developed an

algorithm that reduces the effect of noise. Our algorithm

computes the correct least-square estimate for ring networks

in one step. Our algorithm is proved to converge expo-

nentially fast and is validated it through some simulations.

We are currently extending the work in several directions.

First, we want to improve the efficiency of the orienta-

tion localization algorithm and either show its least-square
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Fig. 3. Plot (a) refers to a configuration of n = 10 points. By
considering different sensing footprints, in plot (b) it is shown the
complete graph with 36 independent loops, and in (c) we show the
same nodes configuration but with 10 independent loops.
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Fig. 4. Evolution of the average MSE of ψ and y for network in
Figure 3 and measurement noise variance σ2

= 0.1 as the number
of edges in the graph changes. The dashed and continuous lines
represent the evolution respectively of ‖y − θ‖2 and ‖ψ − θ‖2.
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Fig. 5. This plot refers to the complete graph in Figure 3 (b),
using (14) and noise variance σ2

= 0.01. In the first plot from left
it is shown the angle estimate for every edge. In the second plot it
is shown the loop error for every loop.

optimality or modify it to achieve least-square optimality.

Second, we aim to study orientation localization in mixed

setups with angle-of-arrival as well as exploring the case

with the use of distance measurements. Third, we plan to
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Fig. 6. This figure shows a complete network performing self-
localization considering a set of independent cycles. The solid lines
are the true frames. The dotted lines are the measured frames (with
respect to the pre-specified frame in the bottom left corner). The
dashed line are the estimated frame computed by algorithm (14).

address the problem of position localization, defined earlier

in this paper. Fourth and final, we aim to formulate conditions

for frame localization in three dimensions. In particular, we

are investigating orientation localizability for three nodes

in 3D space, to subsequently expand the work towards

localizability for arbitrary networks.
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