On Framed Link Groups

Shinji FUKUHARA
Tsuda College

Introduction

In this paper we shall study an invariant of framed links in 3 -manifolds and apply it to investigate 3 - and 4 -manifolds.

In recent years relations between framed links and 3 - or 4 -manifolds have been revealed by Kirby [3], Montesinos [4] and others. In their papers it was proved that closed orientable 3 -(resp. 4-)manifolds correspond to some equivalence classes of framed links in $S^{s}\left(\right.$ resp. $\left.\#_{n} S^{1} \times S^{2}\right)$ bijectively (resp. injectively). Thus link-theoretical invariants of the equivalence relation can be regarded as invariants of 3 -(or 4-)manifolds.

To find such invariants is an important and interesting problem as is mentioned in [2]. But almost all invariants of links known before, for examples, link groups, signatures and so on, are not efficient since they are not invariant under "band moves". On the contrary, framed link groups which we shall define in the following section are invariant under these moves. Moreover they change in a simple fashion when they are "stabilized".

In §1 we shall give the definition of framed link groups and prove its invariance under "band moves". In § 2 and $\S 3$ we shall study the relations between framed link groups and 3 - and 4 -manifold theories.

§ 1. Framed link groups.

We work in the smooth category. Let M^{3} be a connected 3 -manifold without boundary.

Definition 1. $L \subset M$ is called a framed link in M with k components if L is a disjoint union of circles $l_{i}(i=1,2, \cdots, k)$ with tubular neighbourhoods N_{i} and framings $f_{i}: l_{i} \times D^{2} \rightarrow N_{i}$ such that $N_{i} \cap N_{j}=\varnothing(i \neq j)$.

Remark. For a link in a 3 -sphere S^{3} or a 3 -disk D^{3}, a framing is indicated by an integer as in [3].

[^0]For a component l_{i} of L, let $p_{i}=f_{i}\left(l_{i} \times(1 / 2,0)\right.$) where $(1 / 2,0) \in D^{2}=$ $\left\{(x, y) \in R^{2} \mid x^{2}+y^{2} \leqq 1\right\}$ and let $m_{i}=f_{i}\left(q_{i} \times \partial D^{2}\right)$ where $q_{i} \in l_{i}$. Here we call p_{i} a parallel and m_{i} a meridian of l_{i}.

Let $G(L)=\pi_{1}(M-L)$. When we give orientations to loops p_{i} and m_{i}, and combine these to the base point by arcs, we obtain elements of $G(L)$, which we also call a parallel and a meridian of l_{i}. (They are also denoted by p_{i} and m_{i}.) Clearly a parallel and a meridian are determined up to conjugation and inversion. Let $Q(L)$ be the normal subgroup of $G(L)$ which is generated by p_{i}^{\prime} 's $(i=1,2, \cdots, k)$. The subgroup $Q(L)$ does not depend on the choice of parallels.

For subsets A, B of a group G, let $[A, B]=\left\{\Pi a_{i} b_{i} a_{i}^{-1} b_{i}^{-1} \mid a_{i} \in A, b_{i} \in B\right\}$ and $N(A)=\left\{\Pi g_{i} a_{i} g_{i}^{-1} \mid a_{i} \in A, g_{i} \in G\right\}$.

Definition 2. Let $F G(L)=G(L) /[Q(L), G(L)]$. We call it the framed link group of L.

Note that $F G(L)$ is a finitely presented group whenever $G(L)$ is so. More exactly we have the following lemma.

Lemma. Let $L \subset M$ be a framed link. Suppose that $G(L)$ is finitely presented as $\left\langle x_{1}, \cdots, x_{n} ; r_{1}, \cdots, r_{m}\right\rangle$. Then $F G(L)$ is presented as $\left\langle x_{1}, \cdots, x_{n} ; r_{1}, \cdots, r_{m},\left[p_{i}\left(x_{1}, \cdots, x_{n}\right), x_{j}\right](i=1, \cdots, k, j=1, \cdots, n)\right\rangle$, where $p_{i}\left(x_{1}, \cdots, x_{n}\right)$ is a word representing the parallel p_{i}.

Proof. Let $h:\left\langle x_{1}, \cdots, x_{n} ; r_{1}, \cdots, r_{m}\right\rangle \rightarrow G(L)$ be an isomorphism. Let N be the normal subgroup generated by $\left[p_{i}\left(x_{1}, \cdots, x_{n}\right), x_{j}\right](i=1, \cdots, k$, $j=1, \cdots, n)$. Note that $N \ni\left[p_{i}\left(x_{1}, \cdots, x_{n}\right), w\right](i=1, \cdots, k)$ for any word w in x_{1}, \cdots, x_{n}. Since h maps [$p_{i}\left(x_{1}, \cdots, x_{n}\right), x_{j}$] into [$Q(L), G(L)$] and $[Q(L), G(L)]$ is normal, we have $h(N) \subset[Q(L), G(L)]$. On the other hand, any element of $[Q(L), G(L)]$ is presented by a product of elements $h_{i}\left[p_{i}, g_{i}\right] h_{i}^{-1}$ for some $h_{i}, g_{i} \in G(L)$ where $p_{i} \in G(L)$ is a parallel. This means $[Q(L), G(L)] \subset h(N)$ and thus $[Q(L), G(L)]=h(N)$. From the definitions of factor groups and finitely presented groups, we obtain $\left\langle x_{1}, \cdots, x_{n}\right.$; $\left.r_{1}, \cdots, r_{m}\right\rangle / N \cong\left\langle x_{1}, \cdots, x_{n} ; r_{1}, \cdots, r_{m}, \quad\left[p_{i}\left(x_{1}, \cdots, x_{n}\right), x_{j}\right] \quad(i=1, \cdots, k, j=\right.$ $1, \cdots, n)\rangle$. Thus $G(L) /[Q(L), G(L)] \cong\left\langle x_{1}, \cdots, x_{n} ; r_{1}, \cdots, r_{m},\left[p_{i}\left(x_{1}, \cdots, x_{n}\right)\right.\right.$, x_{i}] $\left.(i=1, \cdots, k, j=1, \cdots, n)\right\rangle$. This completes the proof.

Let p denote the canonical surjection $G(L) \rightarrow F G(L)$.
Definition 3. Let $P(L)=p(Q(L))$. We call it the parallel subgroup of $F G(L)$.

Clearly $P(L)$ is contained in the center of $F G(L)$.
The rest of this section is offered to prove that $F G(L)$ and $P(L)$ are
unchanged by "band moves". Here we recall "band moves".
Definition 4. Let L be a framed link having at least 2 components. Let l_{i}, l_{j} be components of L and b be a band which connects l_{i} and p_{j} such that $b \cap\left(L-l_{i}\right)=\varnothing$. Let l_{i}^{\prime} be the loop obtained as connected sum of l_{i} and p_{j} which is indicated by a thick line in Figure 1. The framing of l_{i}^{\prime} is determined by the standard way from those of l_{i} and l_{j} (For more details, see Montesinos [4].). Then $L^{\prime}=\left(L-l_{i}\right) \cup l_{i}^{\prime}$ is called the framed link obtained from L by a band move.

Figure 1
Our result on the invariance of framed link groups are stated as follows:

Theorem 1. Let L^{\prime} be a framed link obtained from L by a band move. Then there is an isomorphism

$$
h: F G(L) \longrightarrow F G\left(L^{\prime}\right)
$$

which preserves the parallel subgroups, i.e., $h(P(L))=P\left(L^{\prime}\right)$.
Proof. We use the notations in Definition 4. Let $X=N_{i} \cup N_{j} \cup N(b)$ where $N(b)$ is a tubular neighbourhood of the band b as in Figure 2.

Figure 2
Note that ∂X, the boundary of X, is a surface of genus 2. We determine the generaters a, b, x, y of $\pi_{1}(\partial X)$ as in Figure 3.

Figure 3
Then $\pi_{1}(\partial X)=\langle a, b, x, y ;[a, x]=[b, y]\rangle . \quad \pi_{1}\left(X-\left(l_{i} \cup l_{j}\right)\right)$ is also generated by a, b, x, y and we obtain $\pi_{1}\left(X-\left(l_{i} \cup l_{j}\right)\right)=\langle a, b, x, y ;[a, x],[b, y]\rangle$. Similarly $\pi_{1}\left(X-\left(l_{i}^{\prime} \cup l_{j}\right)\right)=\left\langle a, b, x, y ;\left[a^{-1} b, x\right],\left[b, y^{-1} x\right]\right\rangle$.

Let $Y=\overline{M-X}$ and $\langle\boldsymbol{x} ; \boldsymbol{r}\rangle, x=\left\{x_{1}, \cdots, x_{n}\right\}, r=\left\{r_{1}, \cdots, r_{m}\right\}$ be a finite presentation of $\pi_{1}(Y-L)$. When we regard a, b, x, y as elements of $\pi_{1}(Y-L)=\langle\boldsymbol{x} ; \boldsymbol{r}\rangle$, they can be represented by words $a(x), b(x), x(x), y(x)$ in \boldsymbol{x}. Then, by van Kampen's theorem for $M-L=\left(X-\left(l_{i} \cup l_{j}\right)\right) \cup(Y-L)$, we obtain $G(L)=\pi_{1}(M-L)=\langle x, a, b, x, y ; r, a=a(x), b=b(x), x=x(x), y=$ $y(x),[a, x],[b, y]\rangle$. Similarly we obtain $G\left(L^{\prime}\right)=\pi_{1}\left(M-L^{\prime}\right)=\langle x, a, b, x, y$; $\left.r, a=a(x), b=b(\boldsymbol{x}), x=x(\boldsymbol{x}), y=y(\boldsymbol{x}),\left[a^{-1} b, x\right],\left[b, y^{-1} x\right]\right\rangle$.

Next we shall study presentations of $F G(L)$ and $F G\left(L^{\prime}\right)$. Parallels p_{l} 's $(l \neq i, j)$ can be represented by words $p_{l}(x)$ in x both in $G(L)$ and $G\left(L^{\prime}\right)$. Furthermore parallels corresponding to l_{i} and l_{i}^{\prime} are presented by a and $a^{-1} b$ in $G(L)$ and $G\left(L^{\prime}\right)$ respectively. On the other hand, parallels corresponding to l_{j}^{\prime} 's are presented by b both in $G(L)$ and $G\left(L^{\prime}\right)$. Thus we obtain the following presentations of $F G(L)$ and $F G\left(L^{\prime}\right)$.

$$
\begin{aligned}
F G(L) \cong & \langle\boldsymbol{x}, a, b, x, y ; \boldsymbol{r}, a=a(\boldsymbol{x}), b=b(\boldsymbol{x}), x=x(\boldsymbol{x}), y=y(\boldsymbol{x}),[a, x],[b, y], \\
& {\left[p_{l}(\boldsymbol{x}), \boldsymbol{x}\right],\left[p_{l}(\boldsymbol{x}), a\right],\left[p_{l}(\boldsymbol{x}), b\right],\left[p_{l}(\boldsymbol{x}), x\right],\left[p_{l}(\boldsymbol{x}), y\right](1 \leqq l \leqq k,} \\
& l \neq i, j)[a, x],[a, b],[a, x],[a, y],[b, \boldsymbol{x}],[b, a],[b, x],[b, y]\rangle \\
F G\left(L^{\prime}\right) \cong & \left\langle\boldsymbol{x}, a, b, x, y ; \boldsymbol{r}, a=a(\boldsymbol{x}), b=b(\boldsymbol{x}), x=x(\boldsymbol{x}), y=y(\boldsymbol{x}),\left[a^{-1} b, x\right],\right. \\
& {\left[b, y^{-1} x\right],\left[p_{l}(\boldsymbol{x}), \boldsymbol{x}\right],\left[p_{l}(\boldsymbol{x}), a\right],\left[p_{l}(\boldsymbol{x}), b\right],\left[p_{l}(\boldsymbol{x}), x\right],\left[p_{l}(\boldsymbol{x}), y\right] } \\
& (1 \leqq l \leqq k, l \neq i, j)\left[a^{-1} b, x\right],\left[a^{-1} b, a\right],\left[a^{-1} b, b\right],\left[a^{-1} b, x\right] \\
& {\left.\left[a^{-1} b, y\right],[b, \boldsymbol{x}],[b, a],[b, x],[b, y]\right\rangle . }
\end{aligned}
$$

Note that $[a b, c]=a[b, c] a^{-1}[a, c]$ and $[a, b c]=[a, b] b[a, c] b^{-1}$ hold for elements a, b, c in a group. Thus it is easily ascertained that any relator of $F G(L)$ can be obtained as a product of conjugate elements of relators of $F G\left(L^{\prime}\right)$ and vice versa. This shows that $F G(L)$ and $F G\left(L^{\prime}\right)$ are isomorphic. Denote this isomorphism by h. Clearly h maps the parallel subgroup $P(L)$ which is generated by $p_{l}(x)$'s, a and b to the parallel subgroup $P\left(L^{\prime}\right)$ which is generated by $p_{l}(x)^{\prime}$ s, a and $a^{-1} b$. This completes the proof of Theorem 1.

We now consider the framed link group of a split link.
Proposition 1. Let L_{i} be a framed link in $M_{i}(i=1,2)$. Let M be a connected sum of M_{1} and M_{2} which are summed keeping away from L_{1} and L_{2}. When we regard $L=L_{1} \cup L_{2}$ as a framed link in M, we obtain the following isomorphisms:

$$
\begin{aligned}
F G(L) & \cong F G\left(L_{1}\right) * F G\left(L_{2}\right) /\left[N\left(P\left(L_{1}\right) * P\left(L_{2}\right)\right), F G\left(L_{1}\right) * F G\left(L_{2}\right)\right] \\
\cup & \cup \\
P(L) & \cong N\left(P\left(L_{1}\right) * P\left(L_{2}\right)\right) / N\left(P\left(L_{1}\right) * P\left(L_{2}\right)\right) \cap\left[N\left(P\left(L_{1}\right) * P\left(L_{2}\right)\right), F G\left(L_{1}\right) * F G\left(L_{2}\right)\right] .
\end{aligned}
$$

Proof. Consider the diagram below:

where i is an isomorphism obtained from van Kampen's theorem, p is the canonical surjection and p^{\prime} is a homomorphism induced from the canonical surjections $p_{i}: G\left(L_{i}\right) \rightarrow F G\left(L_{i}\right)$. We claim that there is a homomorphism $j: F G\left(L_{1}\right) * F G\left(L_{2}\right) \rightarrow F G(L)$ such that $p \circ i=j \circ p^{\prime}$. We have $\operatorname{ker} p=[Q(L), G(L)], \quad \operatorname{ker} p^{\prime}=N\left(\left[Q\left(L_{1}\right), G\left(L_{1}\right)\right] * 1 \cup 1 *\left[Q\left(L_{2}\right), G\left(L_{2}\right)\right]\right)$ and $i\left(\left[Q\left(L_{1}\right), G\left(L_{1}\right)\right] * 1 \cup 1 *\left[Q\left(L_{2}\right), G\left(L_{2}\right)\right]\right) \subset[Q(L), Q(L)]$, considering $[Q(L), G(L)]$ is normal. So we obtain $i\left(\operatorname{ker} p^{\prime}\right) \subset \operatorname{ker} p$. This shows the existence of j.

Since $p \circ i=j \circ p^{\prime}$ is onto, j is also onto. Hence in order to show ker $j=\left[N\left(P\left(L_{1}\right) * P\left(L_{2}\right)\right), F G\left(L_{1}\right) * F G\left(L_{2}\right)\right]$ it is sufficient to prove $F G(L) \cong$ $F G\left(L_{1}\right) * F G\left(L_{2}\right) /\left[N\left(P\left(L_{1}\right) * P\left(L_{2}\right)\right), F G\left(L_{1}\right) * F G\left(L_{2}\right)\right]$. Note that ker $j=$ $p^{\prime}\left(\operatorname{ker} j \circ p^{\prime}\right)=p^{\prime}(\operatorname{ker} p \circ i)=p^{\prime}\left(i^{-1}[Q(L), G(L)]\right)$. Further, since $i\left(N\left(Q\left(L_{1}\right) *\right.\right.$ $\left.\left.Q\left(L_{2}\right)\right)\right)=Q(L)$, we have $i^{-1}[Q(L), G(L)]=\left[i^{-1}(Q(L)), i^{-1}(G(L))\right]=\left[N\left(Q\left(L_{1}\right) *\right.\right.$ $\left.\left.Q\left(L_{2}\right)\right), G\left(L_{1}\right) * G\left(L_{2}\right)\right]$. Hence $\operatorname{ker} j=p^{\prime}\left(i^{-1}[Q(L), G(L)]\right)=p^{\prime}\left[N\left(Q\left(L_{1}\right) * Q\left(L_{2}\right)\right)\right.$, $\left.G\left(L_{1}\right) * G\left(L_{2}\right)\right]=\left[N\left(P\left(L_{1}\right) * P\left(L_{2}\right)\right), F G\left(L_{1}\right) * F G\left(L_{2}\right)\right]$. Thus j induces an isomorphism, say k, k: $F G\left(L_{1}\right) * F G\left(L_{2}\right) /\left[N\left(P\left(L_{1}\right) * P\left(L_{2}\right)\right), F G\left(L_{1}\right) * F G\left(L_{2}\right)\right] \rightarrow$ $F G(L)$.

We denote by H the group $N\left(P\left(L_{1}\right) * P\left(L_{2}\right)\right) / N\left(P\left(L_{1}\right) * P\left(L_{2}\right)\right) \cap\left[N\left(P\left(L_{1}\right) *\right.\right.$ $\left.\left.P\left(L_{2}\right)\right), F G\left(L_{1}\right) * F G\left(L_{2}\right)\right]$. Regarding H as a subgroup of $F G\left(L_{1}\right) *$ $F G\left(L_{2}\right) /\left[N\left(P\left(L_{1}\right) * P\left(L_{2}\right)\right), F G\left(L_{1}\right) * F G\left(L_{2}\right)\right]$, we shall show that k maps H to $P(L)$ bijectively. We first note that H is contained in the center of $F G\left(L_{1}\right) * F G\left(L_{2}\right) /\left[N\left(P\left(L_{1}\right) * P\left(L_{2}\right)\right), F G\left(L_{1}\right) * F G\left(L_{2}\right)\right]$. In particular H is a normal subgroup. Since $P(L)$ is normally generated by parallels which come from H by k. This means that k maps the normal subgroup H onto $P(L)$. Thus $k \mid H: H \rightarrow P(L)$ is a bijection. This completes the proof of Proposition 1.

§ 2. 3-manifolds and framed link groups.

Kirby [3] showed that to diffeomorphism classes of connected closed orientable 3 -manifolds there correspond equivalence classes of framed link (or more exactly framed link types) in S^{3} defined below. The equivalence relation which is called ∂-equivalence are generated by the following two:
(i) (Kirby move or stabilization) Let L be a framed link in S^{3} and l_{0} be a unknot with framing ± 1 separated from L by a 2 -sphere. The insertion of l_{0} is called a Kirby move.
(ii) (A band move) This move was described in Definition 4.

We write $L_{\widetilde{\partial}} L^{\prime}$ when they are ∂-equivalent. For a framed link L, χ_{L} denotes the 3 -manifold obtained by surgeries on L.

Theorem (Kirby). For framed links L and L^{\prime} in S^{3}, they are ∂ equivalent if and only if χ_{L} and $\chi_{L^{\prime}}$ are diffeomorphic.

The purpose of $\S 2$ is to study the relation between χ_{L} and $F G(L)$, $P(L)$.

Proposition 2. There is an exact sequence

$$
1 \longrightarrow P(L) \longrightarrow F G(L) \longrightarrow \pi_{1}\left(\chi_{L}\right) \longrightarrow 1
$$

Proof. From the definition of χ_{L}, the sequence $1 \rightarrow Q(L) \rightarrow G(L) \xrightarrow{q}$ $\pi_{1}\left(\chi_{L}\right) \rightarrow 1$ is exact where $q: G(L)=\pi_{1}(M-L) \rightarrow \pi_{1}\left(\chi_{L}\right)$ is induced from the inclusion map. Since $[Q(L), G(L)] \subset Q(L)$, we have $q([Q(L), G(L)])=1$. Thus q induces an epimorphism $q^{\prime}: F G(L) \rightarrow \pi_{1}\left(\chi_{L}\right)$ with $\operatorname{ker} q^{\prime}=p(\operatorname{ker} q)=$ $p(Q(L))=P(L)$, where $p: G(L) \rightarrow F G(L)$ is the canonical epimorphism. Hence the sequence $1 \rightarrow P(L) \rightarrow F G(L) \rightarrow \pi_{1}\left(\chi_{L}\right) \rightarrow 1$ is exact.

Now we describe how a framed link group changes with a Kirby move. Let \boldsymbol{Z} denote an infinite cyclic group.

Proposition 3. Let $L^{\prime}=L \cup l_{0}$ be obtained from L by a Kirby move. Then the following commutative diagram holds.

Proof. We apply Proposition 1 substituting $L_{1}=L$ and $L_{2}=l_{0}$. Since l_{0} is a unknot with framing $\pm 1, F G\left(l_{0}\right)=P\left(l_{0}\right) \cong Z$. From Proposition 1, $F G\left(L^{\prime}\right) \cong F G(L) * Z /[N(P(L) * Z), F G(L) * Z]$. Considering that $P(L)$ is in the center of $F G(L)$, we have $[N(P(L) * Z), F G(L) * Z]=[N(1 * Z), F G(L) * Z]$.

This means $F G\left(L^{\prime}\right) \cong F G(L) * Z /[N(1 * Z), F G(L) * Z] \cong F G(L) \times \boldsymbol{Z}$. Similarly we have $P\left(L^{\prime}\right) \cong P(L) \times Z$ and the proposition.

Now we introduce some concept with respect to a pair of groups. By (H, G) we denote the pair of a group G and its normal subgroup H. Let $(H, G) \times K$ stand for ($H \times K, G \times K$) for any group K.

Definition 5. The pairs of groups (H, G) and (H^{\prime}, G^{\prime}) are called Z equivalent, denoted by $\left.(H, G) \widetilde{Z}^{(} H^{\prime}, G^{\prime}\right)$, if $(H, G) \times Z^{m}$ and $\left(H^{\prime}, G^{\prime}\right) \times Z^{n}$ are isomorphic as pairs for some integers m and n.

Using the definition above we have the following theorem from Theorem 1 and Proposition 3.

Theorem 2. Let L and L^{\prime} be framed links in S^{3}. If $L_{\widetilde{\partial}} L^{\prime}$, then $(P(L), F G(L)) \widetilde{Z}^{\left(P\left(L^{\prime}\right), F G\left(L^{\prime}\right)\right) .}$

This theorem combined with Kirby's theorem says that the Z-equivalence class of ($P(L), F G(L)$) is an invariant of surgery manifold χ_{L}.

Now we present some examples.
Example 1. Let L be a unknot with framing n (Figure 4).

Figure 4
In this case we have $\chi_{L} \cong L(n, 1)$, a lens space of type ($n, 1$), and clearly $1 \rightarrow P(L) \rightarrow F G(L) \rightarrow \pi_{1}\left(\chi_{L}\right) \rightarrow 1$ is isomorphic to $1 \rightarrow Z \xrightarrow{\times n} \boldsymbol{Z} \rightarrow \boldsymbol{Z} / n \boldsymbol{Z} \rightarrow \mathbf{1}$.

Example 2. Let L be the Borromean rings with framing 0 for any component (Figure 5).

Figure 5
Then $\chi_{L} \cong T^{3}$, a 3-dimensional torus. Let a^{b} denote $b a b^{-1}$. Using the Wirtinger presentation, we obtain:

$$
G(L) \cong\left\langle x, y, z, u, v, w ; x=w^{z}, y=v^{x}, z=u^{\nu}, x=w^{u}, y=v^{w}, z=u^{p}\right\rangle
$$

by Tietze's transformation,

$$
\cong\left\langle u, v, w ; w^{u}=w^{\left(u^{v}\right)}, v^{w}=v^{\left(w^{*}\right)}, u^{v}=u^{\left(v^{w}\right)}\right\rangle
$$

On the other hand parallels are presented as follows:

$$
p_{1}=u z^{-1}=u\left(u^{v}\right)^{-1}=[u, v],
$$

similarly

$$
p_{2}=[w, u] \quad \text { and } \quad p_{3}=[v, w]
$$

Hence we have:

$$
\begin{aligned}
F G(L) \cong & \left\langle u, v, w ; w^{u}=w^{\left(w^{v}\right)}, v^{w}=v^{\left(w^{u}\right)}, u^{v}=u^{\left(v^{v}\right)}\right. \\
& {[u,[v, w]],[v,[w, u]],[w,[u, v]],[v,[v, w]],[w,[w, u]] } \\
& {[u,[u, v]],[w,[v, w]],[u,[w, u]],[v,[u, v]]\rangle }
\end{aligned}
$$

Note that the first 3 relators can be induced from the others. Let G denote the free group of rank 3, then the observation above shows, in this case, $1 \rightarrow P(L) \rightarrow F G(L) \rightarrow \pi_{1}\left(\chi_{L}\right) \rightarrow 1$ is isomorphic to $1 \rightarrow[G, G] /[G$, $[G, G]] \rightarrow G /[G,[G, G]] \rightarrow G /[G, G] \rightarrow 1$.

§ 3. 4-manifolds and framed link groups.

In this section we deal with framed links in $\#_{n} S^{1} \times S^{2}$. Montesinos [4] showed that the correspondence which assigns connected closed orientable 4-manifolds to equivalence classes described below of framed links in $\#_{n} S^{1} \times S^{2}$ (where n varies within non-negative integers) is injective. The equivalence relation is generated by the following 3 types of moves:
(i^{\prime}) Let $l_{0}=S^{1} \times p t \subset S^{1} \times S^{2}$ be a framed link in $S^{1} \times S^{2}$ with the standard framing. To a framed link L in $\#_{n} S^{1} \times S^{2}$, add l_{0} to obtain a framed link $L^{\prime}=L \cup l_{0}$ in $\#_{n+1} S^{1} \times S^{2}$.
(ii') Let L be a framed link in $\#_{n} S^{1} \times S^{2}$ and l_{1} be a unknot with framing ± 0 in a 3 -ball in $\#_{n} S^{1} \times S^{2}$ which is away from L. Add l_{1} to obtain a new framed link $L^{\prime}=L \cup l_{1}$ in $\#_{n} S^{1} \times S^{2}$.
(iii') The band move described in Definition 4.
We shall define a diagram of groups which is associated with a given framed link in $\#_{n} S^{1} \times S^{2}$ and describe how the diagram changes when the link is changed by moves (i^{\prime})-(iii'). Let $\widetilde{Q}(L)$ be an image of $Q(L)$ under a canonical surjection $G(L)=\pi_{1}(M-L) \rightarrow \pi_{1}(M)$. Consider an induced homomorphism, say $r, r: F G(L)=G(L) /[Q(L), G(L)] \rightarrow \pi_{1}(M) /\left[\widetilde{Q}(L), \pi_{1}(M)\right]$. Let $M(L)$ be ker r. It is easy to see that $M(L)$ is a normal subgroup of
$F G(L)$ which is generated by meridians m_{i} 's. So we call it a meridian subgroup of $F G(L)$.

From a given framed link, we obtain the following diagram denoted by (*):
(*)

where q^{\prime} denotes the same map as in the proof of Proposition 2.
Let N_{L} be a closed 4-manifold which corresponds to a framed link $L \subset M$, where $M=\#_{n} S^{1} \times S^{2}$. More precisely N_{L} is obtained from $\emptyset_{n} S^{1} \times D^{3}$ by adding 2-handles along $L \subset M=\partial\left(\bigoplus_{n} S^{1} \times D^{3}\right)$ and by adding suitably 3 - and 4-handles to obtain a closed 4-manifold. From the diagram (*) we can read off the information about $\pi_{1}\left(N_{L}\right)$.

Proposition 4. Under the notation above, we have

$$
\pi_{1}\left(N_{L}\right) \cong \pi_{1}\left(\chi_{L}\right) / q^{\prime}(M(L)) \cong\left(\pi_{1}(M) /\left[\widetilde{Q}(L), \pi_{1}(M)\right]\right) / r(P(L))
$$

Proof. The manifold N_{L} has $\left(Є_{n} S^{1} \times D^{3}\right) \cup(2$-handles) as its 2 -skeleton, where 2 -handles are attached along L. Further, since $\pi_{1}\left(\#_{n} S^{1} \times S^{2}\right) \cong$ $\pi_{1}\left(\theta_{n} S^{1} \times D^{3}\right)$, we have

$$
\pi_{1}\left(N_{L}\right) \cong \pi_{1}\left(\emptyset_{n} S^{1} \times D^{3} \cup 2 \text {-handles }\right) \cong \pi_{1}\left(\#_{n} S^{1} \times S^{2} \cup 2 \text {-handles }\right)
$$

The last group is isomorphic to $\pi_{1}(M) / \widetilde{Q}(L)$. Since $\widetilde{Q}(L)$ and $r(P(L))$ are generated by image of parallels, we get

$$
\pi_{1}(M) / \widetilde{Q}(L) \cong\left(\pi_{1}(M) /\left[\widetilde{Q}(L), \pi_{1}(M)\right]\right) / r(P(L))
$$

The proof of the fact $\pi_{1}\left(N_{L}\right) \cong \pi_{1}\left(\chi_{L}\right) / q^{\prime}(M(L))$ is similar if we consider the dual handle decomposition. This completes the proof.

Suppose that L is changed to L^{\prime} by a band move. Then L and L^{\prime} have isomorphic diagrams; in fact, as is described in the proof of Theorem 1, not only $P(L)$ and $F G(L)$ but also $M(L)$ (which is generated by $x, y x^{-1}$ and $\left.m_{l}(l \neq i, j)\right)$ is invariant. In the remainder of this section
we study how the diagram (*) changes under the moves (i^{\prime}) and (ii ').
Let L^{\prime} be obtained from L by the move (i^{\prime}). Then $F G\left(L^{\prime}\right)$ is obtained from $F G(L)$ and a generator corresponding to a parallel of l_{0}. But this element commutes with all elements of $F G\left(L^{\prime}\right)$. Thus $F G\left(L^{\prime}\right) \cong F G(L) \times Z$. The similar argument for $P\left(L^{\prime}\right)$ and $M\left(L^{\prime}\right)$ shows the following proposition.

Proposition 5. The diagram of L^{\prime} obtained from L by move (i^{\prime}) is isomorphic to

where all maps are naturally constructed from those of the diagram (*) and id: $\boldsymbol{Z} \rightarrow \boldsymbol{Z}$.

Next suppose that L^{\prime} is obtained from L by move (ii'). Then $F G\left(L^{\prime}\right)$ is obtained from $F G(L)$ and a generater corresponding a meridian of l_{1}. But, in this case, this element commutes only with parallels, so we get $F G\left(L^{\prime}\right) \cong F G(L) * Z /[N(P(L) * 1), N(1 * Z)]$. The similar argument for $P\left(L^{\prime}\right)$ and $M\left(L^{\prime}\right)$ gives the following proposition.

Proposition 6. The diagram of L^{\prime} obtained from L by the move (ii') is isomorphic to

In relation to the propositions above, we present an example, from which we can read off from the diagram (*) further information about $\pi_{1}\left(N_{L}\right)$.

Let consider the following link picture:

Then we get $N_{L} \cong \#_{n} C P(2)$. An easy calculation shows that the corresponding diagram is:

Note that, in the diagram above, we have $M(L) \cap P(L) \cong Z^{n}$. But this property does not change when L is stabilized by the moves (i') and (ii'). Since the band move also does not change the diagram, \# ${ }_{n} C P(2)$ and $\#_{m} C P(2)(n \neq m)$ are distinguished by our diagram.

More acute observation of the diagram (*) will give us a detailed geometric information about 4-manifolds.

Remark. The following generalization of framed link groups may be useful in some setting. For a framed link L in M, let $M(L)$ be the kernel of the natural map $G(L)=\pi_{1}(M-L) \rightarrow \pi_{1}(M)$. Then $M(L)$ is the normal subgroup of $G(L)$ which is normally generated by meridians. As in $\S 1$, let $Q(L)$ be the normal subgroup of $G(L)$ which is normally generated by parallels. Let us define $\widetilde{F G}(L)=G(L) /[Q(L), M(L)]$. Then the invariance of $\widetilde{F G}(L)$ under band moves can be proved by the same way as in Theorem 1. Using $\widetilde{F G}(L)$, one can simplify the statements in §3.

References

[1] R. Fenn and C. Rourke, On Kirby's calculus of links, Topology, 18 (1979), 1-15.
[2] C. McA. Gordon, Some aspects of classical knot theory, Knot Theory (Edited by J. C. Hausmann), Lecture Notes in Math., 685, Springer-Verlag, 1978, 1-60.
[3] R. Kirby, A calculus for framed links in S^{3}, Invent. Math., 45 (1978), 35-56.
[4] J. Montesinos, Heegard diagrams for closed 4-manifold, Geometric topology (Edited by J. C. Cantrell), Proceedings of the 1977 Georgia Topology Conference, Academic Press, New York, 1979, 219-237.

Present Address:
Department of Mathematics
Tsuda College
Tsuda-machi, Kodaira, Tokyo 187

[^0]: Received December 18, 1980

