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Introduction

In this paper we shall study an invariant of framed links in 3-mani-
folds and apply it to investigate 3- and 4-manifolds.

In recent years relations between framed links and 3-or 4-manifolds
have been revealed by Kirby [3], Montesinos [4] and others. In their
papers it was proved that closed orientable 3-(resp. $4-$)$manifolds$ cor-
respond to some equivalence classes of framed links in $S^{s}$ (resp. $\#_{n}S^{1}\times S^{2}$)
bijectively (resp. injectively). Thus link-theoretical invariants of the
equivalence relation can be regarded as invariants of 3-(or $4-$)$manifolds$ .

To find such invariants is an important and interesting problem as
is mentioned in [2]. But almost all invariants of links known before,
for examples, link groups, signatures and so on, are not efficient since
they are not invariant under “band moves”. On the contrary, framed
link groups which we shall define in the following section are invariant
under these moves. Moreover they change in a simple fashion when they
are “stabilized”.

In \S 1 we shall give the definition of framed link groups and prove
its invariance under “band moves”. In \S 2 and \S 3 we shall study the
relations between framed link groups and 3- and 4-manifold theories.

\S 1. Framed link groups.

We work in the smooth category. Let $M^{3}$ be a connected 3-manifold
without boundary.

DEFINITION 1. $L\subset M$ is called a framed link in $M$ with $k$ components
if $L$ is a disjoint union of circles $l_{i}(i=1,2, \cdots, k)$ with tubular neigh-
bourhoods $N_{i}$ and framings $f_{i}:l_{i}\times D^{2}\rightarrow N_{i}$ such that $N_{i}\cap N_{j}=\emptyset(i\neq j)$ .

REMARK. For a link in a 3-sphere $S^{3}$ or a 3-disk $D^{3}$ , a framing is
indicated by an integer as in [3].
Received December 18, 1980



308 SHINJI FUKUHARA

For a component $l_{i}$ of $L$ , let $p=f(l\times(1/2,0))$ where $($1/2, $0)eD^{2}=$

$\{(x, y)eR^{2}|x^{2}+y^{2}\leqq 1\}$ and let $m_{i}=f_{i}(q_{i}\times\partial D^{2})$ where $q_{i}el_{i}$ . Here we call
$p_{i}$ a parallel and $m$ a meridian of $l$ .

Let $G(L)=\pi_{1}(M-L)$ . When we give orientations to loops $p_{i}$ and $m_{i}$ ,
and combine these to the base point by arcs, we obtain elements of $G(L)$ ,
which we also call a parallel and a meridian of $l_{i}$ . (They are also denoted
by $p$ and $m_{i}.$ ) Clearly a parallel and a meridian are determined up to
conjugation and inversion. Let $Q(L)$ be the normal subgroup of $G(L)$

which is generated by $ps(i=1,2, \cdots, k)$ . The subgroup $Q(L)$ does not
depend on the choice of parallels.

For subsets $A,$ $B$ of a group $G$ , let $[A, B]=\{\prod ab_{i}a_{i}^{-1}b_{i}^{-1}|aeA, b_{l}eB\}$

and $N(A)=\{\prod ga_{i}g_{i}^{-1}|aeA, g_{i}\in G\}$ .
DEFINITION 2. Let $FG(L)=G(L)/[Q(L), G(L)]$ . We call it the framed

link group of $L$ .
Note that $FG(L)$ is a finitely presented group whenever $G(L)$ is so.

More exactly we have the following lemma.

LEMMA. Let $L\subset M$ be a framed link. Suppose that $G(L)$ is finitely
presented as $\langle x_{1}, \cdots, x_{n};r_{1}, \cdots, r.\rangle$ . Then $FG(L)$ is presented as
$\langle x_{1}, \cdots, x_{n};r_{1}, \cdots, r_{\alpha}, [p_{i}(x_{1}, \cdots, x_{n}), x_{j}](i=1, \cdots, k, j=1, \cdots, n)\rangle$ , where
$p(x_{1}, \cdots, x_{n})$ is a word representing the parallel $p$ .

PROOF. Let $h:\langle x_{1}, \cdots, x_{n};r_{1}, \cdots, r_{n}\rangle\rightarrow G(L)$ be an isomorphism. Let
$N$ be the normal subgroup generated by $[p_{i}(x_{1}, \cdots, x_{n}), x_{j}](i=1,$ $\cdots,$

$k$,
$j=1,$ $\cdots,$ $n$). Note that $Na[p(x_{1}, \cdots, x_{n}), w](i=1, \cdots, k)$ for any word
$w$ in $x_{1},$ $\cdots,$ $x_{n}$ . Since $h$ maps $[p(x_{1}, \cdots, x_{n}), x_{\dot{f}}]$ into $[Q(L), G(L)]$ and
$[Q(L), G(L)]$ is normal, we have $h(N)\subset[Q(L), G(L)]$ . On the other hand,
any element of $[Q(L), G(L)]$ is presented by a product of elements
$h_{i}[p, g_{i}]h_{i}^{-1}$ for some $h_{i},$ $geG(L)$ where $p_{i}eG(L)$ is a parallel. This means
$[Q(L), G(L)]\subset h(N)$ and thus $[Q(L), G(L)]=h(N)$ . From the definitions of
factor groups and finitely presented groups, we obtain \langle $x_{1},$ $\cdots,$ $x_{n}$ ;
$r_{1},$ $\cdots,$

$ r_{r}\rangle$ $/N\cong\langle x_{1},$
$\cdots,$ $x_{n};r_{1},$ $\cdots,$ $r_{n}$ , $[p(x_{1}, \cdots, x_{n}), x_{j}](i=1,$ $\cdots,$

$k,$ $j=$

$1,$
$\cdots,$ $n$)\rangle . Thus $G(L)/[Q(L), G(L)]\cong\langle x_{1},$ $\cdots,$ $x_{n};r_{1},$ $\cdots,$ $r.,$ $[p_{i}(x_{1}, \cdots, x_{n})$ ,

$ x_{j}](i=1, \cdots, k, j=1, \cdots, n)\rangle$ . This completes the proof.

Let $p$ denote the canonical surjection $G(L)\rightarrow FG(L)$ .
DEFINITION 3. Let $P(L)=p(Q(L))$ . We call it the parallel subgroup

of $FG(L)$ .
Clearly $P(L)$ is contained in the center of $FG(L)$ .
The rest of this section is offered to prove that $FG(L)$ and $P(L)$ are
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unchanged by “band moves”. Here we recall “band moves”.

DEFINITION 4. Let $L$ be a framed link having at least 2 components.
Let $l_{i},$ $l_{j}$ be components of $L$ and $b$ be a band which connects $l_{i}$ and $p_{j}$

such that $ b\cap(L-l_{t})=\emptyset$ . Let $l_{l}^{\prime}$ be the loop obtained as connected sum
of $l_{i}$ and $p_{j}$ which is indicated by a thick line in Figure 1. The framing
of $l_{i}^{\prime}$ is determined by the standard way from those of $l_{i}$ and $l_{j}$ (For
more details, see Montesinos [4].). Then $L’=(L-l_{i})\cup l_{i}^{\prime}$ is called the framed
link obtained from $L$ by a band move.

FIGURE 1

Our result on the invariance of framed link groups are stated as
follows:

THEOREM 1. Let $L^{\prime}$ be a framed link obtained from $L$ by a band
move. Then there is an isomorphism

$h:FG(L)\rightarrow FG(L’)$

which preserves the parallel subgroups, i.e., $h(P(L))=P(L^{\prime})$ .
PROOF. We use the notations in Definition 4. Let $X=N_{i}\cup N_{j}\cup N(b)$

where $N(b)$ is a tubular neighbourhood of the band $b$ as in Figure 2.

FIGURE 2

Note that $\partial X$, the boundary of $X$, is a surface of genus 2. We
determine the generaters $a,$ $b,$ $x,$ $y$ of $\pi_{1}(\partial X)$ as in Figure 3.
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FIGURE 3

Then $\pi_{1}(\partial X)=\langle a, b, x, y;[a, x]=[b, y]\rangle$ . $\pi_{1}(X-(l_{i}\cup l_{j}))$ is also generated
by $a,$ $b,$ $x,$ $y$ and we obtain $\pi_{1}(X-(l_{i}\cup l_{\dot{J}}))=\langle a, b, x, y;[a, x], [b, y]\rangle$ . Simi-
larly $\pi_{1}(X-(l_{i}^{\prime}\cup l_{j}))=\langle a, b, x, y;[a^{-1}b, x], [b, r^{1}x]\rangle$ .

Let $Y=\overline{M-X}$ and $\langle x;r\rangle,$ $x=\{x_{1}, \cdots, x_{n}\},$ $r=\{r_{1}, \cdots, r_{u}.\}$ be a finite
presentation of $\pi_{1}(Y-L)$ . When we regard $a,$ $b,$ $x,$ $y$ as elements of
$\pi_{1}(Y-L)=\langle x;r\rangle$ , they can be repre8ented by words $a(x),$ $b(x),$ $x(x),$ $y(x)$

in $x$ . Then, by van Kampen’s theorem for $M-L=(X-(l\cup l_{j}))\cup(Y-L)$ ,
we obtain $G(L)=\pi_{1}(M-L)=\langle x,$ $a,$ $b,$ $x,$ $y;r,$ $a=a(x),$ $b=b(x),$ $x=x(x),$ $y=$

$y(x),$ $[a, x],$ $[b, y]\rangle$ . Similarly we obtain $G(L’)=\pi_{1}(M-L^{\prime})=\langle x,$ $a,$ $b,$ $x,$ $y$ ;
$r,$ $a=a(x),$ $b=b(x),$ $x=x(x),$ $y=y(x),$ $[a^{-1}b, x],$ $[b, r^{1}x]\rangle$ .

Next we shall study presentations of $FG(L)$ and $FG(L^{\prime})$ . Parallels
$p_{\iota}’ s(l\neq i, j)$ can be represented by words $p_{\iota}(x)$ in $x$ both in $G(L)$ and
$G(L^{\prime})$ . Furthermore parallels corresponding to $l_{i}$ and $l_{i}$ are presented by
$a$ and $a^{-1}b$ in $G(L)$ and $G(L’)$ respectively. On the other hand, parallels
corresponding to $l_{j}’ s$ are presented by $b$ both in $G(L)$ and $G(L^{\prime})$ . Thus
we obtain the following presentations of $FG(L)$ and $FG(L$‘

$)$ .
$FG(L)\cong\langle x,$ $a,$ $b,$ $x,$ $y;r,$ $a=a(x),$ $b=b(x),$ $x=x(x),$ $y=y(x),$ $[a, x],$ $[b, y]$ ,

$[p_{l}(x), x],$ $[p_{l}(x), a],$ $[p_{l}(x), b],$ $[p_{\iota}(x), x],$ $[p_{l}(x), y](1\leqq l\leqq k$ ,
$l\neq i,$ $j$) $[a, x],$ $[a, b],$ $[a, x],$ $[a, y],$ $[b, x],$ $[b, a],$ $[b, x],$ $[b, y]\rangle$

$FG(L’)\cong\langle x,$ $a,$ $b,$ $x,$ $y;r,$ $a=a(x),$ $b=b(x),$ $x=x(x),$ $y=y(x),$ $[a^{-1}b, x]$ ,
$[b, y^{-1}x],$ $[p_{l}(x), x],$ $[p_{\iota}(x), a],$ $[p_{\iota}(x), b],$ $[p_{\iota}(x), x],$ $[p_{l}(x), y]$

$(1\leqq l\leqq k, l\neq i, j)[a^{-1}b, x],$ $[a^{-1}b, a],$ $[a^{-1}b, b],$ $[a^{-1}b, x]$ ,
$[a^{-1}b, y],$ $[b, x],$ $[b, a],$ $[b, x],$ $[b, y]\rangle$ .

Note that [ab, $c$] $=a[b, c]a^{-1}[a, c]$ and $[a, bc]=[a, b]b[a, c]b^{-1}$ hold for
elements $a,$ $b,$ $c$ in a group. Thus it is easily ascertained that any relator
of $FG(L)$ can be obtained as a product of conjugate elements of relators
of $FG(L^{\prime})$ and vice versa. This shows that $FG(L)$ and $FG(L^{\prime})$ are iso-
morphic. Denote this isomorphism by $h$ . Clearly $h$ maps the parallel
subgroup $P(L)$ which is generated by $p_{l}(x)s,$ $a$ and $b$ to the parallel
subgroup $P(L^{\prime})$ which is generated by $p_{l}(x)s,$ $a$ and $a^{-1}b$ . This completes
the proof of Theorem 1.
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We now consider the framed link group of a split link.

PROPOSITION 1. Let $L_{i}$ be a framed link in $M_{i}(i=1,2)$ . Let $M$ be
a connected sum of $M_{1}$ and $M_{2}$ which are summed keeping away from,
$L_{1}$ and $L_{2}$ . When we regard $L=L_{1}\cup L_{2}$ as a framed link in $M$, we obtain
the following isomorphisms:

$FG(L)\cong FG(L_{1})*FG(L_{2})/[N(P(L_{1})*P(L_{2})), FG(L_{1})*FG(L_{2})]$

$\cup$ $\cup$

$P(L)\cong N(P(L_{1})*P(L_{2}))/N(P(L_{1})*P(L_{2}))\cap[N(P(L_{1})*P(L_{2})), FG(L_{1})*FG(L_{2})]$ .
PROOF. Consider the diagram below:

$G(L_{1})*G(L_{2})$ $\rightarrow^{\cong i}G(L)$

$\downarrow p^{\prime}$ $\downarrow p$

$FG(L_{1})*FG(L_{2})----\succ jFG(L)$

where $i$ is an isomorphism obtained from van Kampen’s theorem, $p$ is
the canonical surjection and $p^{\prime}$ is a homomorphism induced from the
canonical surjections $p_{i}:G(L_{i})\rightarrow FG(L_{i})$ . We claim that there is a homo-
morphism $j:FG(L_{1})*FG(L_{2})\rightarrow FG(L)$ such that $p\circ i=j\circ p^{\prime}$ . We have
ker $p=[Q(L), G(L)]$ , ker $p^{\prime}=N([Q(L_{1}), G(L_{1})]*1\cup 1*[Q(L_{2}), G(L_{2})])$ and
$i([Q(L_{1}), G(L_{1})]*1\cup 1*[Q(L_{2}), G(L_{2})])\subset[Q(L), Q(L)]$ , considering $[Q(L), G(L)]$

is normal. So we obtain $i(kerp’)\subset kerp$ . This shows the existence of $j$ .
Since $poi=j\circ p^{\prime}$ is onto, $j$ is also onto. Hence in order to show

ker $j=[N(P(L_{1})*P(L_{2})), FG(L_{1})*FG(L_{2})]$ it is sufficient to prove $ FG(L)\cong$

$FG(L_{1})*FG(L_{2})/[N(P(L_{1})*P(L_{2})), FG(L_{1})*FG(L_{2})]$ . Note that ker $j=$

$p^{\prime}(kerj\circ p^{\prime})=p’(kerp\circ i)=p^{\prime}(i^{-1}[Q(L), G(L)])$ . Further, since $i(N(Q(L_{1})*$

$Q(L_{2})))=Q(L)$ , we have $i^{-1}[Q(L), G(L)]=[i^{-1}(Q(L)), i^{-1}(G(L))]=[N(Q(L_{1})*$

$Q(L_{2})),$ $G(L_{1})*G(L_{2})$ ]. Hence ker $j=p^{\prime}(i^{-1}[Q(L), G(L)])=p^{\prime}[N(Q(L_{1})*Q(L_{2}))$ ,
$G(L_{1})*G(L_{2})]=[N(P(L_{1})*P(L_{2})), FG(L_{1})*FG(L_{2})]$ . Thus $j$ induces an iso-
morphism, say $k$ , $ k:FG(L_{1})*FG(L_{2})/[N(P(L_{1})*P(L_{2})), FG(L_{1})*FG(L_{2})]\rightarrow$

$FG(L)$ .
We denote by $H$ the group $N(P(L_{1})*P(L_{2}))/N(P(L_{1})*P(L_{2}))\cap[N(P(L_{1})*$

$P(L_{2})),$ $FG(L_{1})*FG(L_{2})$ ]. Regarding $H$ as a subgroup of $FG(L_{1})*$

$FG(L_{2})/[N(P(L_{1})*P(L_{2})), FG(L_{1})*FG(L_{2})]$ , we shall show that $k$ maps $H$

to $P(L)$ bijectively. We first note that $H$ is contained in the center of
$FG(L_{1})*FG(L_{2})/[N(P(L_{1})*P(L_{2})), FG(L_{1})*FG(L_{2})]$ . In particular $H$ is a
normal subgroup. Since $P(L)$ is normally generated by parallels which
come from $H$ by $k$ . This means that $k$ maps the normal subgroup $H$

onto $P(L)$ . Thus $k|H:H\rightarrow P(L)$ is a bijection. This completes the proof
of Proposition 1.
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\S 2. 3-manifolds and framed link groups.

Kirby [3] showed that to diffeomorphism classes of connected closed
orientable 3-manifolds there correspond equivalence classes of framed link
(or more exactly framed link types) in $S^{3}$ defined below. The equivalence
relation which is called $\partial$-equivalence are generated by the following two:

(i) (Kirby move or stabilization) Let $L$ be a framed link in $S^{3}$

and $l_{0}$ be a unknot with framing $\pm 1$ separated from $L$ by a 2-sphere.
The insertion of $l_{0}$ is called a Kirby move.

(ii) (A band move) This move was described in Definition 4.
We write $L_{\partial}\sim L^{\prime}$ when they are $\partial$-equivalent. For a framed link $L,$ $\chi_{L}$

denotes the 3-manifold obtained by surgeries on $L$ .
THEOREM (Kirby). For framed links $L$ and $L$’ in $S^{3}$ , they are $\partial-$

equivalent if and only if $\chi_{L}$ and $\chi_{L^{\prime}}$ are difeomorphic.

The purpose of \S 2 is to study the relation between $\chi_{L}$ and $FG(L)$ ,
$P(L)$ .

PROPOSITION 2. There is an exact sequence
$1\rightarrow P(L)\rightarrow FG(L)\rightarrow\pi_{1}(\chi_{L})\rightarrow 1$ .

PROOF. From the definition of $\chi_{L}$ the sequence $1\rightarrow Q(L)\rightarrow G(L)\rightarrow q$

$\pi_{1}(\chi_{L})\rightarrow 1$ is exact where $q:G(L)=\pi_{1}(M-L)\rightarrow\pi_{1}(\chi_{L})$ is induced from the
inclusion map. Since $[Q(L), G(L)]\subset Q(L)$ , we have $q([Q(L), G(L)])=1$ . Thus
$q$ induces an epimorphism $q’:FG(L)\rightarrow\pi_{1}(\chi_{L})$ with ker $q^{\prime}=p(kerq)=$

$p(Q(L))=P(L)$ , where $p:G(L)\rightarrow FG(L)$ is the canonical epimorphism. Hence
the sequence $1\rightarrow P(L)\rightarrow FG(L)\rightarrow\pi_{1}(\chi_{L})\rightarrow 1$ is exact.

Now we describe how a framed link group changes with a Kirby move.
Let $Z$ denote an infinite cyclic group.

PROPOSITION 3. Let $L‘=L\cup l_{0}$ be obtained from $L$ by a Kirby move.
Then the following commutative diagram holds.

$ 1\rightarrow$

$ P(L’)\downarrow\cong$

$\downarrow\cong$ $\downarrow\cong$

$\rightarrow$ $FG(L’)$ $\rightarrow\pi_{1}(\chi_{L^{\prime}})\rightarrow 1$

$1\rightarrow P(L)\times Z\rightarrow FG(L)\times Z\rightarrow\pi_{1}(\chi_{L})\rightarrow 1$ .
PROOF. We apply Proposition 1 substituting $L_{1}=L$ and $L_{g}=l_{0}$ . Since

$l_{0}$ is a unknot with framing $\pm 1,$ $FG(l_{0})=P(l_{0})\cong Z$. From Proposition 1,
$FG(L’)\cong FG(L)*Z/[N(P(L)*Z), FG(L)*Z]$ . Considering that $P(L)$ is in
the center of $FG(L)$ , we have $[N(P(L)*Z), FG(L)*Z]=[N(1*Z), FG(L)*Z]$ .
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This means $FG(L^{\prime})\cong FG(L)*Z/[N(1*Z), FG(L)*Z]\cong FG(L)\times Z$. Similarly
we have $P(L^{\prime})\cong P(L)\times Z$ and the proposition.

Now we introduce some concept with respect to a pair of groups.
By $(H, G)$ we denote the pair of a group $G$ and its normal subgroup $H$.
Let $(H, G)\times K$ stand for $(H\times K, G\times K)$ for any group $K$.

DEFINITION 5. The pairs of groups $(H, G)$ and $(H’, G’)$ are called Z-
equivalent, denoted by $(H, G)\sim z(H’, G’)$ , if $(H, G)\times Z^{m}$ and $(H^{\prime}, G^{\prime})\times Z^{n}$

are isomorphic as pairs for some integers $m$ and $n$ .
Using the definition above we have the following theorem from

Theorem 1 and Proposition 3.

THEOREM 2. Let $L$ and $L$ ’ be framed links in $S^{3}$ . If $ L\sim L\partial$ then
$(P(L), FG(L))_{Z}\sim(P(L^{\prime}), FG(L^{\prime}))$ .

This theorem combined with Kirby’s theorem says that the Z-equiva-
lence class of $(P(L), FG(L))$ is an invariant of surgery manifold $\chi_{L}$ .

Now we present some examples.

EXAMPLE 1. Let $L$ be a unknot with framing $n$ (Figure 4).

FIGURE 4

In this case we have $\chi_{L}\cong L(n, 1)$ , a lens space of type $(n, 1)$ , and
$\times n$

clearly $1\rightarrow P(L)\rightarrow FG(L)\rightarrow\pi_{1}(\chi_{L})\rightarrow 1$ is isomorphic to $1\rightarrow Z\rightarrow Z\rightarrow Z/nZ\rightarrow 1$ .
EXAMPLE 2. Let $L$ be the Borromean rings with framing $0$ for any

component (Figure 5).

FIGURE 5

Then $x_{L}\cong\tau^{3}$ , a 3-dimensional torus. Let $a^{b}$ denote $bab^{-1}$ . Using the
Wirtinger presentation, we obtain:



314 SHINJI FUKUHARA

$ G(L)\cong\langle x, y, z, u, v, w;x=w^{z}, y=v^{x}, z=u, x=w^{u}, y=v^{\tau 0}, z=u^{r}\rangle$ ,

by Tietze’s transformation,

$\cong\langle u, v, w;w^{\prime\iota}=w^{(u^{v})}, v^{\prime\sigma}=v^{(w^{*})}, u^{v}=u^{(v^{w})}\rangle$ .
On the other hand parallels are presented as follows:

$p_{1}=uz^{-1}=u(u^{v})^{-1}=[u, v]$ ,
similarly

$p_{2}=[w, u]$ and $p_{\theta}=[v, w]$ .
Hence we have:

$FG(L)\cong\langle u,$ $v,$ $w;w^{u}=w^{(*)},$ $v^{\tau v}=v^{\{w^{u})},$$u^{v}=u^{(’)}vw$ ,
$[u, [v, w]],$ $[v, [w, u]],$ $[w, [u, v]],$ $[v, [v, w]],$ $[w, [w, u]]$ ,
$[u, [u, v]],$ $[w, [v, w]],$ $[u, [w, u]],$ $[v, [u, v]]\rangle$ .

Note that the first 3 relators can be induced from the others:’ Let $G$

denote the free group of rank 3, then the observation above shows, in
this case, $1\rightarrow P(L)\rightarrow FG(L)\rightarrow\pi_{1}(\chi_{L})\rightarrow 1$ is isomorphic to $1\rightarrow[G, G]/[G$ ,
$[G, G]]\rightarrow G/[G, [G, G]]\rightarrow G/[G, G]\rightarrow 1$ .

\S 3. $4\cdot manifolds$ and framU link $grOups$ .
In this section we deal with framed links in $\#_{n}S^{1}\times S^{2}$ . Montesinos [4]

showed that the correspondence which assigns connected closed orientable
4-manifolds to equivalence classes described below of framed links in
$\#_{n}S^{1}\times S^{2}$ (where $n$ varies within non-negative integers) is injective. The
equivalence relation is generated by the following 3 types of moves:

$(i^{\prime})$ Let $l_{0}=S^{1}\times pt\subset S^{1}\times S^{2}$ be a framed link in $S^{1}\times S^{2}$ with the
standard framing. To a framed link $L$ in $\#_{n}S^{1}\times S^{2}$ , add $l_{0}$ to obtain a
framed link $L^{\prime}=L\cup l_{0}$ in $\#_{n+1}S^{1}\times S^{2}$ .

(ii’) Let $Lbea/$ framed link in $\#_{n}S^{1}\times S^{2}$ and $l_{1}$ be a unknot with
framing $\pm 0$ in a 3-ball in $\#_{n}S^{1}\times S^{2}$ which is away from $L$ . Add $l_{1}$ to
obtain a new framed link $L’=L\cup l_{1}$ in $\#_{n}S^{1}\times S^{2}$ .

(iii’) The band move described in Definition 4.
We shall define a diagram of groups which is associated with a given

framed link in $\#.S^{1}\times S^{2}$ and describe how the diagram changes when the
link is changed by moves $(i)-(iii^{\prime})$ . Le $t$

,
$\tilde{Q}(L)$ be an image of $Q(L)$ under

a canonical surjection $G(L)=\pi_{1}(M-L)\rightarrow\pi_{1}(M)$ . Consider an induced
homomorphism, say $r,$ $r:FG(L)=G(L)/[Q(L), G(L)]\rightarrow\pi_{1}(M)/[\tilde{Q}(L), \pi_{1}(M)]$ .
Let $M(L)$ be ker $\gamma$ . It is easy to see that $M\langle L$) is a normal subgroup of
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$FG(L)$ which is generated by meridians $ms$ . So we call it a meridian
subgroup of $FG(L)$ .

From a given framed link, we obtain the following diagram denoted
by $(*)$ :

$ M(L)11\downarrow$

$(*)$ $1\rightarrow P(L)=FG(L)\rightarrow^{q^{\prime}}\pi_{1}(\chi_{L})\rightarrow 1$ (exact)
$\downarrow r$

$\pi_{1}(M)/[\tilde{Q}(L), \pi_{1}(M)]$

$-$
$\downarrow$

1 (exact)

where $q$
’ denotes the same map as in the proof of Proposition 2.

Let $N_{L}$ be a closed 4-manifold which corresponds to a framed link
$L\subset M$, where $M=\#_{n}S^{1}\times S^{2}$ . More precisely $N_{L}$ is obtained from $p_{n}S^{1}\times D^{3}$

by adding 2-handles along $LcM=\partial(b_{n}S^{1}\times D^{3})$ and by adding suitably
3- and 4-handles to obtain a closed 4-manifold. From the diagram $(*)$

we can read off the information about $\pi_{1}(N_{L})$ .
PROPOSITION 4. $ Unde\gamma$ the notation above, we have

$\pi_{1}(N_{L})\cong\pi_{1}(\chi_{L})/q^{\prime}(M(L))\cong(\pi_{1}(M)/[\tilde{Q}(L), \pi_{1}(M)])/r(P(L))$ .
PROOF. The manifold $N_{L}$ has $(H_{n}S^{1}\times D^{3})\cup$ ($2$-handles) as its $2_{\neg}skeleton$ ,

where 2-handles are attached along $L$ . Further, since $\pi_{1}(\#_{n}S^{1}\times S^{2})\cong$

$\pi_{1}(H_{n}S^{1}\times D^{3})$ , we have
$\pi_{1}(N_{L})\cong\pi_{1}(b_{n}S^{1}\times D^{3}\cup 2- handles)\cong\pi_{1}$( $\#_{n}S^{1}\times S^{2}\cup 2$-handles).

The last group is isomorphic to $\pi_{1}(M)/\tilde{Q}(L)$ . Since $\tilde{Q}(L)$ and $\gamma(P(L))$ are
generated by image of parallels, we get

$\pi_{1}(M)/\tilde{Q}(L)\cong(\pi_{1}(M)/[\tilde{Q}(L), \pi_{1}(M)])/r(P(L))$ .
The. proof of the fact $\pi_{1}(N_{L})\cong\pi_{1}(\chi_{L})/q^{\prime}(M(L))$ is similar if we consider the
dual handle decomposition. This completes the proof.

Suppose that $L$ is changed to $L^{\prime}$ by a band move. Then $L$ and $L^{\prime}$

have isomorphic diagrams; in fact, as is described in the proof of Theo-
rem 1, not only $P(L)$ and $FG(L)$ but a18o $M(L)$ (which is generated by
$x,$ $yx^{-1}$ and $m_{l}(l\neq i, j))$ is invariant. In the remainder of this section
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we study how the diagram $(*)$ changes under the moves $(i$
‘

$)$ and (ii’).
Let $L^{\prime}$ be obtained from $L$ by the move $(i’)$ . Then $FG(L^{\prime})$ is obtained

from $FG(L)$ and a generator corresponding to a parallel of $l_{0}$ . But this
element commutes with all elements of $FG(L’)$ . Thus $FG(L^{\prime})\cong FG(L)\times Z$.
The similar argument for $P(L’)$ and $M(L’)$ shows the following proposition.

PROPOSITION 5. The diagram of $L^{\prime}$ obtained from $L$ by move $(i^{\prime})$ is
isomorphic to

$ M(L)1\downarrow\downarrow$

$1\rightarrow P(L)\times Z\rightarrow FG(L)\times Z\rightarrow\pi_{1}(\chi_{L})\rightarrow 1$

$\downarrow$

$(\pi_{1}(M)/[\tilde{Q}(M), \pi_{1}(M)])\times Z$

$\downarrow$

1
where all maps are naturally constructed from those of the diagram $(*)$

and id: $Z\rightarrow Z$.
Next suppose that $L$’ is obtained from $L$ by move (ii’). Then $FG(L’)$

is obtained from $FG(L)$ and a generater corresponding a meridian of $l_{1}$ .
But, in this case, this element commutes only with parallels, so we get
$FG(L^{\prime})\cong FG(L)*Z/[N(P(L)*1), N(1*Z)]$ . The similar argument for $P(L^{\prime})$

and $M(L’)$ gives the following proposition.

PROPOSITION 6. The diagram of $L^{\prime}$ obtained from $L$ by the move
(ii’) is isomorphic to

$ N(M(L)*Z)/[N(P(L)*1), N(1*Z)]\cap N(M(L)*Z)1\downarrow$

$\downarrow$

$1\rightarrow P(L)\rightarrow FG(L)*Z/[N(P(L)*1), N(1*Z)]\rightarrow\pi_{1}(\chi_{L})*Z\rightarrow 1$

$\pi_{1}(M)/[\tilde{Q}(L), \pi_{1}(M)]\downarrow$

$\downarrow$

1.
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In relation to the propositions above, we present an example, from
which we can read off from the diagram $(*)$ further information about
$\pi_{1}(N_{L})$ .

Let consider the following link picture:

$L=OOO----------O$
1 1 1 1

FIGURE 6

Then we get $N_{L}\cong\#_{n}CP(2)$ . An easy calculation shows that the cor-
responding diagram is:

1

$ Z^{n}\cong M(L)\downarrow$

$1-Z^{n}\rightarrow Z^{n}\downarrow\rightarrow 1\rightarrow 1$

$P(L)|||$
$ 1\cong\pi_{1}(M)/[\tilde{Q}(L), \pi_{1}(M)]\downarrow$

$ 1\downarrow$

.
Note that, in the diagram above, we have $M(L)\cap P(L)\cong Z^{n}$ . But this
property does not change when $L$ is stabilized by the moves $(i^{\prime})$ and (ii’).
Since the band move also does not change the diagram, $\#_{n}CP(2)$ and
$\#_{m}CP(2)(n\neq m)$ are distinguished by our diagram.

More acute observation of the diagram $(*)$ will give us a detailed
geometric information about 4-manifolds.

REMARK. The following generalization of framed link groups may
be useful in some setting. For a framed link $L$ in $M$, let $M(L)$ be the
kernel of the natural map $G(L)=\pi_{1}(M-L)\rightarrow\pi_{1}(M)$ . Then $M(L)$ is the
normal subgroup of $G(L)$ which is normally generated by meridians. As
in \S 1, let $Q(L)$ be the normal subgroup of $G(L)$ which is normally gen-
erated by parallels. Let us define $\overline{FG}(L)=G(L)/[Q(L), M(L)]$ . Then the
invariance of $\overline{FG}(L)$ under band moves can be proved by the same way
as in Theorem 1. Using $\overline{FG}(L)$ , one can simplify the statements in \S 3.
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