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ABSTRACT. Let V be a countably generated Hilbert C*-module over a C*-
algebra A. We prove that a sequence {f; : 4 € I} C V is a standard frame for
V if and only if the sum ), ;(x, fi){fi, x) converges in norm for every x € V/
and if there are constants C, D > 0 such that C||z||? < || Y, (w, fi) (fi, )| <
D||z||? for every € V. We also prove that surjective adjointable operators
preserve standard frames. A class of frames for countably generated Hilbert
C*-modules over the C*-algebra of all compact operators on some Hilbert
space is discussed.

1. INTRODUCTION AND PRELIMINARIES

A (right) Hilbert C*-module V' over a C*-algebra A (or a Hilbert A-module) is
a linear space which is a right A-module, together with an A-valued inner product
(+,+) on V x V which is linear in the second and conjugate linear in the first variable
such that V is a Banach space with the norm ||z|| = ||{z, z)|'/2. We use the symbol
(V, V) for the closed, two-sided ideal of A spanned by all inner products (z,y),
x,y € V. V is said to be a full Hilbert A-module if (V,V) = A.

We denote the C*-algebra of all adjointable operators on a Hilbert C*-module V'
by B(V). We also use B(V, W) to denote the space of all adjointable operators act-
ing between different Hilbert A-modules. A good reference for Hilbert C*-modules
are the lecture notes of E. C. Lance [12].

The C*-algebra of all bounded operators and the ideal of all compact operators
on a Hilbert space H are denoted by B(H) and K(H), respectively.

Frames for Hilbert spaces were introduced by Duffin and Schaeffer [6] as part
of their research in non-harmonic Fourier series. A frame for a separable Hilbert
space H is defined to be a finite or countable sequence {f; : ¢ € I'} for which there
exists constants C, D > 0 such that

Ollz|* <Y |(x, f:)|* < Dljal*, € H.
icl
M. Frank and D. Larson [7, 8] generalized this definition to the situation of count-
ably generated Hilbert C*-modules. A frame for a countably generated Hilbert
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470 LJILJANA ARAMBASIC

C*-module V is a sequence {f; : 4 € I'} (I C N finite or countable) for which there
are constants C, D > 0 such that

(1.1) Clx,x) < Z(x,fi><fi,x> < D(z,z), zeV.
il

We consider standard frames for which the sum in the middle of (II]) converges
in norm for every # € V. (For non-standard frames the sum in (LI converges
only weakly for at least one element of V.) The numbers C and D are called frame
bounds. A frame {f; : i € I} is called a tight frame if we can choose C = D and
a Parseval frame (or a normalized tight frame) if C = D = 1. A sequence which
satisfies only the right-hand inequality in (1) is called a Bessel sequence with a
Bessel bound D.

The frame transform for a standard frame {f; : ¢ € I'} is the map 6 : V' — {5(A)
defined by 6(z) = ({f;,z));, where ¢5(A) denotes a Hilbert A-module {(a;); : a; €
A, ;craja; converges in norm} with pointwise operations and the inner product
((@i)i, (bi)i) = >_;epaibs. The frame transform possesses an adjoint operator and
realizes an embedding of V' onto an orthogonal summand of ¢3(A) ([8, Theorem
4.4]). The operator S = (0*0)~1 € B(V) is said to be the frame operator for a
standard frame {f; : ¢ € I'}. The frame operator is positive, invertible, and is the
unique operator in B(V) such that the reconstruction formula

(1.2) v =Y fi(Sfix)

icl
holds for all € V. Let us remark that although M. Frank and D. Larson [7,[8] stated
all their results for the unital case, many proofs can be applied to the non-unital
situation.

In a countably generated Hilbert C*-module over a unital C'*-algebra, standard
frames always exist [7]. Also, a Hilbert C*-module over a C*-algebra of all compact
operators K(H) on some Hilbert space H possesses frames; this follows from [2],
where the concept of an orthonormal basis for a Hilbert C*-module was discussed.

An element v of a Hilbert A-module V is said to be a basic vector if e = (v, v)
is a projection in A such that eAe = Ce. The system of basic vectors {v; : i € I}
in V is said to be an orthonormal basis for V if (v;,v;) = 0 for all ¢ # j, and if
it generates a dense submodule of V. Every orthonormal basis {v; : ¢ € I} for a
Hilbert C*-module satisfies (x,z) =, (x,v;)(v;, z) for all € V, with the norm
convergence ([2, Theorem 1]).

Recall that, if A is a C*-subalgebra of K(H) and e € A a non-zero projection, the
condition eAe = Ce is equivalent to the minimality of e (i.e., the only subprojections
of ein A are 0 and e) [Il Lema 1.4.1]. Minimal projections in K(H) are exactly
orthogonal projections of rank 1.

Clearly, an arbitrary Hilbert C*-module does not possess an orthonormal basis,
since there are C*-algebras without projections. It is known that every Hilbert
C*-module V over K(H) possesses an orthonormal basis; furthermore, for a fixed
orthogonal projection e € K(H) of rank 1, there is an orthonormal basis {v : i :7 €
I} for V such that (v;,v;) = e for alli € I.

In a Hilbert K(H )-module, the condition of the minimality of supporting pro-
jections e; = (v;,v;),1 € I, ensures that all orthonormal bases have the same cardi-
nality ([2, Theorem 2]). For a countably generated Hilbert K(H )-module, a set of
indices for (all) orthonormal bases is countable. (By choosing an orthonormal basis
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ON FRAMES FOR COUNTABLY GENERATED HILBERT C*-MODULES 471

{v; : i € I} such that (v;,v;) = e,i € I, for some orthogonal projection e € K(H)
of rank 1, the last statement proves in the same way as in the Hilbert space case.)
So, every orthonormal basis for a countably generated Hilbert K(H )-module V' is
a standard Parseval frame for V.

The paper is organized as follows.

In Section Blwe study standard frames for arbitrary countably generated Hilbert
C*-modules. We first show that an adjointable operator between Hilbert C*-
modules is bounded below with respect to the norm if and only if it is bounded below
with respect to the inner product; furthermore, this is equivalent to the surjectivity
of its adjoint operator. The first equivalence implies that, in the definition of stan-
dard frames, we can replace (L) with Cllz||* < || >;c/ (@, fi)(fi,x)|| < D|lz|* for
all z € V (Theorem [Z6]). From the second equivalence we conclude that surjective
adjointable operators preserve standard frames (Theorem [Z5]).

In Section B] we discuss standard frames {f; : ¢ € I} for which there exists
a family of projections {e; : ¢ € I} such that e;Ae; = Ce; and f; = fie; for
every i € I. Surjective images of orthonormal bases are frames of this form. We
prove that only a Hilbert C*-module V for which (V, V) is a CCR-algebra admits
such frames. Discussion is mainly restricted to countably generated Hilbert K(H )-
modules, where such frames always exist; moreover, for every orthogonal projection
e € K(H) of rank 1, there is a frame {f; : i € I} such that f; = fie for all
i € I. We show that frames {f; : i € I} for a countably generated Hilbert K(H)-
module V such that (f;, f;) = e,i € I, correspond to frames for a Hilbert space
V. = {ve : v € V} (Theorem B.7).

2. SOME PROPERTIES OF STANDARD MODULAR FRAMES

The results we obtain in this section are the consequences of the statement which
generalizes the well known fact: a bounded linear operator between Hilbert spaces
is surjective if and only if its adjoint is bounded below.

Proposition 2.1. Let A be a C*-algebra, V and W Hilbert A-modules, and T €
B(V,W). The following statements are mutually equivalent:
(1) T is surjective.
(2) T* is bounded below with respect to the norm, i.e., there is m > 0 such that
IT*x|| > mllz|| for all z € V.
(3) T is bounded below with respect to the inner product, i.e., there is m’ > 0
such that (T*x, T*x) > m'(x,z) for allx € V.

Proof. (1) = (3): Suppose T is surjective. Then ImT = W is closed. It follows from
[12] Theorem 3.2] that Im 7™ is also closed, Ker T@ImT* = V and Ker 7*®Im T =
W. We shall prove that TT* is bijective.

If TT*2 = 0 for some x € V, then T*2 € Ker T N ImT* = {0}, hence T*z = 0.
Now x € KerT* = (ImT)* = W+ = {0} implies # = 0. This proves that TT* is
injective.

Let z be an arbitrarily chosen element of W. T is surjective, so z = Ty for
some y € V. There are y; € KerT and z € W such that y = y; & T*z. Then
z=Ty=T(y1 ® T*x) = TT*x; therefore TT* is surjective.

Since T'T™* is a positive invertible element of the C*-algebra B(V'), we have

0< (T~ < (") idy = TT* > ((TT*) M) id v,
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where id 1 stands for the identity operator on V. Denoting m’ = |[(TT*)~!||~! we
get TT* —m’idy > 0. By [12] Lemma 4.1], this is equivalent to

(TT* —m'idy)z,x) >0
for all x € V, ie., (T*x, T*z) > m/(x,z) for all x € V.

The implication (3) = (2) is trivial.

(2) = (1): Suppose that T* is bounded below with respect to the norm. Then T*
is clearly injective, and it is easy to see that Im 7™ is closed. Then T has the closed
range, again by [12] Theorem 3.2], and W = KerT* @ ImT = {0} ® ImT = ImT.
Hence T is surjective. O

Corollary 2.2. Let A be a C*-algebra, V' a Hilbert A-module, and T € B(V') such
that T = T*. The following statements are mutually equivalent:
(1) T is surjective.
(2) There are m, M > 0 such that m|jz|| < |Tz|| < M||z| for all z € V.
(3) There are m’, M’ > 0 such that m/(xz,x) < (Tx,Tz) < M'(z,z) for all
zeV.

Remark 2.3. An operator T' € B(V) is said to be coercive if there is a positive
constant m such that (T*z, T*z) > m(z,z) holds for all z € V. It follows from
Proposition [ZT] that coercive operators in B(V) are exactly surjections in B(V).

Theorem 2.4. Let A be a C*-algebra, V a countably generated Hilbert A-module,
{fi : i € I} a sequence in V, and 0(x) = ({fi,x))ics for x € V. The following
statements are mutually equivalent:

(1) {fi:i €I} is a standard frame for V.

(2) 6 € B(V,43(A)) and 0 is bounded below.

(3) 0 € B(V,45(A)) and 6* is surjective.

Proof. Tt follows from [8, Theorem 4.1] and Proposition [2.] since
Oz, 0x) = Z(m,fi)<fi,x>, zeV.
iel
O

Another direct consequence of Proposition [Z1] is that surjective adjointable op-
erators preserve standard frames.

Theorem 2.5. Let A be a C*-algebra, V and W countably generated Hilbert A-
modules, and T € B(V, W) surjective. If {f; : i € I} is a standard frame for V with
frame bounds C and D, then {Tf; : i € 1} is a standard frame for W with frame
bounds W and D||T|*.

Proof. Since {f; : i € I'} is a standard frame for V, and since T*y € V for all y € W,
we have

C(T*y, T*y) < > (T*y, fi){fi, T*y) < D(T*y, T*y), yeW.
iel
From the proof of Proposition 2l we have (T*y, T*y) > ||(TT*)~ ||~ (y,y) for all
y € W, since T is surjective. It follows that

W,y) <D (W, TH)Tfiy) < DTy, y), yeW. O

v
x)—1
1aTT]
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ON FRAMES FOR COUNTABLY GENERATED HILBERT C*-MODULES 473

We conclude this section with the result which states that the condition ()
from the definition of standard frames can be replaced with a weaker one.

Theorem 2.6. Let A be a C*-algebra, V a countably generated Hilbert A-module,
and {f; :i € I} a sequence in V' such that ), (x, fi){fi,x) converges in norm for
every x € V. Then {f; : 1 € I} is a standard frame for V if and only if there are
constants C, D > 0 such that

(2.1) Cllall® < |IY (@, fi)(fi2)| < Dljz]?, eV
iel

Proof. Evidently, every standard frame for V satisfies (Z1).
For the converse we suppose that a sequence {f; : « € I} fulfills (2)). For an
arbitrary x € V' and a finite J C I we define x5 = ), ; fi(fi,z). Then

s 1* = s, ) ® = s, > filfo ) ? = 1> (s, £i) (fir2)])?
ieJ ieJ
<UD o £z 1D (s i) (fo )l < Dllas |2 11> (e, fi) (Fir )],
ieJ ieJ ieJ
therefore
1Y filfoa)? = llzs* < DI (a, fi){fin 2.
ieJ ieJ

Since J is arbitrary, the series ) ., fi(fi, z) converges and

I filfi )P < DI (@, fi)(fu o) < Dal® = | filfusa)| < Dlal.

i€l el i€l

Since x € V is arbitrarily chosen, the operator

T:V -7V, xHZfZ-(fi,@
icl
is well defined, bounded and A-linear. It is easy to check that (Tx,y) = (x, Ty) for
all 2,y € V,s0 T € B(V) and T = T*. From (Tw,x) = Y, {(w, fi)(fi,z) > 0 for
all 2 € V, it follows that 7 > 0. Now (I and (T/2z, TV/%z) = 3. (@, fi){fi, )
imply VC||z|| < ||TY?z| < V/D|z| for all 2 € V. By Corollary 22 there are
constants C’, D’ > 0 such that

Cl<$7x> < <T1/2$,T1/2$> = Z<xafz><f’ux> < D/<1',ZC>, zeV.
el

This proves that {f; : i € I'} is a standard frame for V. O

3. ON A CLASS OF FRAMES FOR HILBERT K(H)-MODULES

The existence of standard frames in countably generated Hilbert K(H )-modules
V follows from the existence of orthonormal bases. If T' € B(V) is a surjection and
{v; : i € I} an orthonormal basis for V, then {Tw; : i € I} is a standard frame
for V' which satisfies Tv; = T'(vse;) = (Tv;)e;, where e; := (v;,v;) is an orthogonal
projection of rank 1 for every ¢ € I. However, not every standard frame in a Hilbert
K(H)-module is of this type, as we show in the next example.
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Example 3.1. Let {v; : i € I} be an orthonormal basis for a countably and not
finitely generated Hilbert K(H)-module V' with property e;e; = 0,7 # j, where
e; = (v;,v;). (Such a basis can always be constructed by following the procedure
described in [2, Remark 4(d)].) Let I = J;Z, I; be a partition of I such that |I;| = j.
Let f; = Zz’elj v; € V. Since (x,vj)(vi, ) = (x,v,€j)(vie;, ) = (x,v5)eje; (v, T) =
0ij(x,vj)(v;, x) for all € V, we have

(@, F)(f ) = (@, ) o) (D viw) = Y (wv) (v, x) = Y (@, 0:) (vi, @)

iel; i€l i,j€1; iel;
and then
(w,x) =Y (@, v) (v x) = > _(x, f;){f;,2).
iel jes
This means that {f; : j € J} is a standard Parseval frame for V such that (f;, f;) =
Ziel,» e; is a projection with dim Im (f;, f;) = |I;| = j for all j € J.

Proposition 3.2. Let V be a countably and not finitely generated Hilbert K(H )-
module. Let {f; : i € I} be a standard frame for V such that f; = fie; for some
orthogonal projections e;,i € I, of rank 1. Then there is an orthonormal basis
{vi i € I} and a surjection T € B(V) such that Tv; = f;,i € 1.

Proof. Let C and D be frame bounds. Let {v; : i € I} be an orthonormal basis
such that v; = v;e;,1 € I. (We may assume that the sets of indices for a standard
frame and a basis are the same, since they are both infinite subsets of N.)

We first show that for every = € V the series ), ; fi(vi, z) converges. Let J be
a finite subset of I and x; =3, ; fi(vi, ). Then

lesl* = Ieg, e = 1 filvi ), )P = 1Y (e, v fi, 2|

icJ ieJ
< H Z<CE,U2><’UZ,LL‘>|||| Z<xJ7 fZ><f27 xJ>|| < ” Z<xﬂvi><vi7‘%‘>“ ’ DHxJH27
ieJ i€J i€J
from where we get ||z,||? < D|| Y, ¢, (@, v:)(vi, )|, that is,
1Y filvi, 2)1> < DI (@, vi) (v, )|, for every finite J C 1.
ieJ icJ

Since ), o/ (x, ;) (v;, x) converges in norm ([2, Theorem 1]), it follows that the series
> icr Ji{vi, x) converges.
Similarly, we check that the series ), ; vi(fi, z) converges for every x € V.
Now we can define the operators T,R : V. — V by Tz = ), fi{vs, x) and
Rz = ) .. vi(fi,z). It is straightforward to see that (T'z,y) = (x, Ry) for all
x,y € V. Therefore T € B(V) and R = T*. From Proposition 2] and

C<(£,£L’> § Z<x>f1><fz,x> = <T*x,T*x>, RS V,
il
it follows that T is surjective.
It only remains to note that Tv; = f;{v;,v;) = fie; = f; for all i € I. O

A Hilbert K(H)-module contains a Hilbert space V, with respect to the inner
product (z,y) = tr({y, z)), where ‘tr’ means the trace. More precisely, for a fixed
orthogonal projection e € K(H) of rank 1, V. is given as the set of all ze, x € V.
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Also, for all x,y € V. we obtain that (z,y) = (y,z)e. V. is an invariant subspace
for each T in B(V') and the map

(3.1) T —TV., B(V)— B(V,)

establishes an isomorphism of C*-algebras, where B(V.) denotes the C*-algebra of
all bounded operators on V. It is known that a family {v; : i € I} C V, is an
orthonormal basis for V' if and only if it is an orthonormal basis for V;. (The proofs
can be found in [2, Remark 4, Theorem 5]).) We extend the last statement to a
standard frame {f; : ¢ € I'} contained in V. First we need a lemma which describes
some properties of the isomorphism (B.1).

Lemma 3.3. Let V be a Hilbert K(H)-module, e € K(H) an orthogonal projection
of rank 1, and T € B(V'). The following statements hold:

(1) T is bounded below if and only if T|V. € B(V,) is bounded below.
(2) T is surjective if and only if T|V, € B(V,) is surjective.

Proof. (1) First observe that if T|V, € B(V.) is a positive operator on the Hilbert
space V., then T € B(V) is a positive element of the C*-algebra B(V). This is a
consequence of the fact that the map T — T|V, is an isomorphism of C*-algebras.

Suppose T, := T|V, is bounded below. Let m > 0 be such that ||T.(ze)| >
m||ze|| for all z € V. In other words, T*T, — m?idy, is a positive operator on
the Hilbert space V.. By the observation from the beginning of the proof, we get
T*T — m%idy > 0, ie., (T*T — m?idy)z,x) > 0 for all x € V. Now we have
(Tx,Tx) > m?(x,z), and then |Tz| > m||z|| for all z € V.

The opposite statement is obvious.

(2) Tt follows from (1) and Proposition 211 O

Theorem 3.4. Let V' be a countably generated Hilbert K(H )-module, e € K(H)
an orthogonal projection of rank 1, and {f; : i € I} a sequence of vectors in V.
Then {f; : i € I} is a standard frame for the Hilbert K(H)-module V' with frame
bounds C and D if and only if {f; : i € I} is a frame for the Hilbert space V, with
frame bounds C and D.

Proof. Suppose that {f; : ¢ € I'} is a standard frame for a Hilbert K(H)-module V'
with frame bounds C and D. It means that

Cla,z) <> (x, fi){fi,x) < D(w,x), z€V.
i€l

Since (ze,ye) = (ye,ze)e for all ze,ye € V., by choosing ze instead of x in the
above inequalities, we get

C(ze,ze)e < Z(:ce, fi)(fi,xze)e < D(ze,xze)e, x €V,
icl

which implies C(z,z) < 3, ;(z, fi)(fi,z) < D(z,z) for all z € V.. It proves that
{fi : 4 € I} is a frame for the Hilbert space V. with frame bounds C and D.

Now suppose that {f; : i € I} C V, is a frame for the Hilbert space V. with
frame bounds C' and D.

First we assume that V is finitely generated. Let {vi,...,v,} C V. be an or-
thonormal basis for V and S. € B(V,) the frame operator associated to the (Hilbert
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476 LIJILJANA ARAMBASIC
space) frame {f; : i € I'}. Then
Te = ngfi(anEfi) = ZSffi<SEfi,xe>, ze € V..
iel i€l
Since z = i, : . °
that for all z € V, 2 = 3, 52 fi(S¢ fi, x) holds. This proves that {S&f; :i € I}

is a Parseval standard frame for V. Let S € B(V) be the unique extension of
Se € B(V,). Since S, is invertible and positive, S € B(V) is also invertible and

v; (v, x) for all x € V, and since vy, ..., v, € V., we immediately get

positive. Therefore S —3 preserves standard frames, so the sequence {5 —3 (Se% fi) :
iel} = {S;%Se%fi c1 €I}t ={f; i€} is astandard frame for V.

Now we assume that V' is not finitely generated. Let {v; : ¢ € I} be an or-
thonormal basis for V' such that v; = v;e for all ¢ € I. Then {v; : i € I} is an
orthonormal basis for the Hilbert space V.. Let T, : V. — V. be the operator de-
fined as Te(we) = >, fi(vi, we). As in the proof of Proposition we show that
T, is well defined, T, € B(V,) and T, is surjective. Let T' € B(V) be the unique
extension of T, € B(V.). By the previous lemma, T is surjective. Now Theorem
implies that {f; : ¢ € I'} is a standard frame for V, since T'(v;) = T.(v;) = f; for all
1el. O

The concept of an orthonormal basis has been introduced in Hilbert C*-modules
over an arbitrary C*-algebra. Obviously, there are Hilbert C*-modules which do
not possess an orthonormal basis. Actually, if a Hilbert C*-module V possesses an
orthonormal basis, then (V, V) has to be a CC R-algebra. We prove this in the next
theorem.

Theorem 3.5. Let A be a C*-algebra and V a full countably generated Hilbert A-
module. Let {e; : i € I} be a family of projections in A such that e; Ae; = Ce;,i € I,
and {f; : i € I} a standard frame for V such that f; = fie;,;i € I. Then A is a
CCR-algebra. In particular, if V' possesses an orthonormal basis, then A is a
CCR-algebra.

Proof. By the definition of a CCR-algebra we need to show that for every irre-
ducible representation ¢ : A — B(H), ¢(4) C K(H) holds.

Let 0 # ¢ : A — B(H) be an irreducible representation of A. Then e; Ae; = Ce;
implies ¢(e;)p(A)p(e;) = Cop(e;) for every i € I.

Let i € I be such that ¢(e;) # 0. Now ¢(e;) is a non-zero projection, so there is
a non-zero vector {o € H which belongs to Im ¢(e;). Then ¢(e;)&p = & and

p(e)p(A)p(ei)éo = Cplei)éo = plei)p(A)éo = Céo.

@ is irreducible, therefore it is a cyclic representation of A, and every non-zero
vector is cyclic for . In particular, & is a cyclic vector for ¢. Therefore

{0} # w(ei) H = p(ei)p(A)so € p(ei)p(A)so = C&o = Im p(e;) = Céo.

This proves that p(e;) € K(H) for every ¢ € I.
Let S € B(V) be the frame operator associated to {f; : ¢ € I}. From the
reconstruction formula (L2) we have (z,y) = > ;. (%, Sfi){fi,y) and then

(3.2) e((z.y) =Y ez Sfi)e((fiy), zyeV.

icl
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From f; = fie; and compactness of ¢(e;) it follows that

o((z, Sf))e((fiy) = ez, Sfi))ple)e((fi,y) € K(H), z,yeV,iel.

Finally, we get ¢((z,y)) € K(H) for all z,y € V, as the convergence in (32 is in
norm. Since V is full, we conclude that ¢(A) C K(H).
This finishes our proof. O

The converse of the previous theorem does not hold. For example, we can take
an arbitrary Hilbert C*-module over the C*-algebra A = C([0, 1]) of all continuous
complex functions on the unit segment [0,1]. A is a CC R-algebra, since it is com-
mutative, and the only projection e € A which satisfies eAe = Ce is the constant
function 0.

Remark 3.6. Frames of subspaces for a separable Hilbert space have been recently
introduced and studied in [4]. We can generalize their definition for Hilbert K(H)-
modules in the following way.

Let V be a countably generated Hilbert K(H)-module, {W; :i € I} (I CN) a
family of closed submodules of V', and {); : i € I'} a family of weights, i.e., a family
of positive numbers. We say that {W; : i € I} is a standard frame of submodules for
V' with respect to a family of weights {\; : i € I}, if there are constants C, D > 0
such that

(3.3) Clz,z) < ZA?(wl(x),Wl(x» < D{(z,z), z€V,
iel

where 7; € B(V) denotes the orthogonal projection on W; for every i € I, and
convergence of the sum in the middle of (83) is in norm.

Let us fix an orthogonal projection e € K(H) of rank 1. It can be proved that
a family of closed submodules {W; : i € I} is a standard frame of submodules for
V with respect to the family of weights {X; : ¢ € I} if and only if {(W;). : i € I}
is a frame of subspaces for V. with respect to the family of weights {)\; : i € T}.
Therefore many statements from [4] can be extended to countably generated Hilbert
K(H)-modules. This will be done in our subsequent paper.
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