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Abstract. Let V be a countably generated Hilbert C∗-module over a C∗-
algebra A. We prove that a sequence {fi : i ∈ I} ⊆ V is a standard frame for
V if and only if the sum

∑
i∈I〈x, fi〉〈fi, x〉 converges in norm for every x ∈ V

and if there are constants C,D > 0 such that C‖x‖2 ≤ ‖
∑

i∈I〈x, fi〉〈fi, x〉‖ ≤
D‖x‖2 for every x ∈ V. We also prove that surjective adjointable operators
preserve standard frames. A class of frames for countably generated Hilbert
C∗-modules over the C∗-algebra of all compact operators on some Hilbert
space is discussed.

1. Introduction and preliminaries

A (right) Hilbert C∗-module V over a C∗-algebra A (or a Hilbert A-module) is
a linear space which is a right A-module, together with an A-valued inner product
〈·, ·〉 on V ×V which is linear in the second and conjugate linear in the first variable
such that V is a Banach space with the norm ‖x‖ = ‖〈x, x〉‖1/2. We use the symbol
〈V, V 〉 for the closed, two-sided ideal of A spanned by all inner products 〈x, y〉,
x, y ∈ V. V is said to be a full Hilbert A-module if 〈V, V 〉 = A.

We denote the C∗-algebra of all adjointable operators on a Hilbert C∗-module V
by B(V ). We also use B(V, W ) to denote the space of all adjointable operators act-
ing between different Hilbert A-modules. A good reference for Hilbert C∗-modules
are the lecture notes of E. C. Lance [12].

The C∗-algebra of all bounded operators and the ideal of all compact operators
on a Hilbert space H are denoted by B(H) and K(H), respectively.

Frames for Hilbert spaces were introduced by Duffin and Schaeffer [6] as part
of their research in non-harmonic Fourier series. A frame for a separable Hilbert
space H is defined to be a finite or countable sequence {fi : i ∈ I} for which there
exists constants C, D > 0 such that

C‖x‖2 ≤
∑

i∈I

|(x, fi)|2 ≤ D‖x‖2, x ∈ H.

M. Frank and D. Larson [7, 8] generalized this definition to the situation of count-
ably generated Hilbert C∗-modules. A frame for a countably generated Hilbert
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470 LJILJANA ARAMBAŠIĆ

C∗-module V is a sequence {fi : i ∈ I} (I ⊆ N finite or countable) for which there
are constants C, D > 0 such that

(1.1) C〈x, x〉 ≤
∑

i∈I

〈x, fi〉〈fi, x〉 ≤ D〈x, x〉, x ∈ V.

We consider standard frames for which the sum in the middle of (1.1) converges
in norm for every x ∈ V. (For non-standard frames the sum in (1.1) converges
only weakly for at least one element of V.) The numbers C and D are called frame
bounds. A frame {fi : i ∈ I} is called a tight frame if we can choose C = D and
a Parseval frame (or a normalized tight frame) if C = D = 1. A sequence which
satisfies only the right-hand inequality in (1.1) is called a Bessel sequence with a
Bessel bound D.

The frame transform for a standard frame {fi : i ∈ I} is the map θ : V → �2(A)
defined by θ(x) = (〈fi, x〉)i, where �2(A) denotes a Hilbert A-module {(ai)i : ai ∈
A,

∑
i∈I a∗

i ai converges in norm} with pointwise operations and the inner product
〈(ai)i, (bi)i〉 =

∑
i∈I a∗

i bi. The frame transform possesses an adjoint operator and
realizes an embedding of V onto an orthogonal summand of �2(A) ([8, Theorem
4.4]). The operator S = (θ∗θ)−1 ∈ B(V ) is said to be the frame operator for a
standard frame {fi : i ∈ I}. The frame operator is positive, invertible, and is the
unique operator in B(V ) such that the reconstruction formula

(1.2) x =
∑

i∈I

fi〈Sfi, x〉

holds for all x ∈ V. Let us remark that although M. Frank and D. Larson [7, 8] stated
all their results for the unital case, many proofs can be applied to the non-unital
situation.

In a countably generated Hilbert C∗-module over a unital C∗-algebra, standard
frames always exist [7]. Also, a Hilbert C∗-module over a C∗-algebra of all compact
operators K(H) on some Hilbert space H possesses frames; this follows from [2],
where the concept of an orthonormal basis for a Hilbert C∗-module was discussed.

An element v of a Hilbert A-module V is said to be a basic vector if e = 〈v, v〉
is a projection in A such that eAe = Ce. The system of basic vectors {vi : i ∈ I}
in V is said to be an orthonormal basis for V if 〈vi, vj〉 = 0 for all i �= j, and if
it generates a dense submodule of V. Every orthonormal basis {vi : i ∈ I} for a
Hilbert C∗-module satisfies 〈x, x〉 =

∑
i∈I〈x, vi〉〈vi, x〉 for all x ∈ V, with the norm

convergence ([2, Theorem 1]).
Recall that, if A is a C∗-subalgebra of K(H) and e ∈ A a non-zero projection, the

condition eAe = Ce is equivalent to the minimality of e (i.e., the only subprojections
of e in A are 0 and e) [1, Lema 1.4.1]. Minimal projections in K(H) are exactly
orthogonal projections of rank 1.

Clearly, an arbitrary Hilbert C∗-module does not possess an orthonormal basis,
since there are C∗-algebras without projections. It is known that every Hilbert
C∗-module V over K(H) possesses an orthonormal basis; furthermore, for a fixed
orthogonal projection e ∈ K(H) of rank 1, there is an orthonormal basis {v : i : i ∈
I} for V such that 〈vi, vi〉 = e for all i ∈ I.

In a Hilbert K(H)-module, the condition of the minimality of supporting pro-
jections ei = 〈vi, vi〉, i ∈ I, ensures that all orthonormal bases have the same cardi-
nality ([2, Theorem 2]). For a countably generated Hilbert K(H)-module, a set of
indices for (all) orthonormal bases is countable. (By choosing an orthonormal basis
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ON FRAMES FOR COUNTABLY GENERATED HILBERT C∗-MODULES 471

{vi : i ∈ I} such that 〈vi, vi〉 = e, i ∈ I, for some orthogonal projection e ∈ K(H)
of rank 1, the last statement proves in the same way as in the Hilbert space case.)
So, every orthonormal basis for a countably generated Hilbert K(H)-module V is
a standard Parseval frame for V.

The paper is organized as follows.
In Section 2 we study standard frames for arbitrary countably generated Hilbert

C∗-modules. We first show that an adjointable operator between Hilbert C∗-
modules is bounded below with respect to the norm if and only if it is bounded below
with respect to the inner product; furthermore, this is equivalent to the surjectivity
of its adjoint operator. The first equivalence implies that, in the definition of stan-
dard frames, we can replace (1.1) with C‖x‖2 ≤ ‖

∑
i∈I〈x, fi〉〈fi, x〉‖ ≤ D‖x‖2 for

all x ∈ V (Theorem 2.6). From the second equivalence we conclude that surjective
adjointable operators preserve standard frames (Theorem 2.5).

In Section 3 we discuss standard frames {fi : i ∈ I} for which there exists
a family of projections {ei : i ∈ I} such that eiAei = Cei and fi = fiei for
every i ∈ I. Surjective images of orthonormal bases are frames of this form. We
prove that only a Hilbert C∗-module V for which 〈V, V 〉 is a CCR-algebra admits
such frames. Discussion is mainly restricted to countably generated Hilbert K(H)-
modules, where such frames always exist; moreover, for every orthogonal projection
e ∈ K(H) of rank 1, there is a frame {fi : i ∈ I} such that fi = fie for all
i ∈ I. We show that frames {fi : i ∈ I} for a countably generated Hilbert K(H)-
module V such that 〈fi, fi〉 = e, i ∈ I, correspond to frames for a Hilbert space
Ve = {ve : v ∈ V } (Theorem 3.4).

2. Some properties of standard modular frames

The results we obtain in this section are the consequences of the statement which
generalizes the well known fact: a bounded linear operator between Hilbert spaces
is surjective if and only if its adjoint is bounded below.

Proposition 2.1. Let A be a C∗-algebra, V and W Hilbert A-modules, and T ∈
B(V, W ). The following statements are mutually equivalent:

(1) T is surjective.
(2) T ∗ is bounded below with respect to the norm, i.e., there is m > 0 such that

‖T ∗x‖ ≥ m‖x‖ for all x ∈ V.
(3) T ∗ is bounded below with respect to the inner product, i.e., there is m′ > 0

such that 〈T ∗x, T ∗x〉 ≥ m′〈x, x〉 for all x ∈ V.

Proof. (1) ⇒ (3): Suppose T is surjective. Then ImT = W is closed. It follows from
[12, Theorem 3.2] that ImT ∗ is also closed, Ker T ⊕Im T ∗ = V and Ker T ∗⊕Im T =
W. We shall prove that TT ∗ is bijective.

If TT ∗x = 0 for some x ∈ V, then T ∗x ∈ Ker T ∩ Im T ∗ = {0}, hence T ∗x = 0.
Now x ∈ KerT ∗ = (ImT )⊥ = W⊥ = {0} implies x = 0. This proves that TT ∗ is
injective.

Let z be an arbitrarily chosen element of W. T is surjective, so z = Ty for
some y ∈ V. There are y1 ∈ KerT and x ∈ W such that y = y1 ⊕ T ∗x. Then
z = Ty = T (y1 ⊕ T ∗x) = TT ∗x; therefore TT ∗ is surjective.

Since TT ∗ is a positive invertible element of the C∗-algebra B(V ), we have

0 ≤ (TT ∗)−1 ≤ ‖(TT ∗)−1‖ id V ⇒ TT ∗ ≥ (‖(TT ∗)−1‖)−1 id V ,
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472 LJILJANA ARAMBAŠIĆ

where id V stands for the identity operator on V. Denoting m′ = ‖(TT ∗)−1‖−1 we
get TT ∗ − m′ id V ≥ 0. By [12, Lemma 4.1], this is equivalent to

〈(TT ∗ − m′ id V )x, x〉 ≥ 0

for all x ∈ V, i.e., 〈T ∗x, T ∗x〉 ≥ m′〈x, x〉 for all x ∈ V.
The implication (3) ⇒ (2) is trivial.
(2) ⇒ (1): Suppose that T ∗ is bounded below with respect to the norm. Then T ∗

is clearly injective, and it is easy to see that ImT ∗ is closed. Then T has the closed
range, again by [12, Theorem 3.2], and W = KerT ∗ ⊕ Im T = {0} ⊕ Im T = Im T.
Hence T is surjective. �
Corollary 2.2. Let A be a C∗-algebra, V a Hilbert A-module, and T ∈ B(V ) such
that T = T ∗. The following statements are mutually equivalent:

(1) T is surjective.
(2) There are m, M > 0 such that m‖x‖ ≤ ‖Tx‖ ≤ M‖x‖ for all x ∈ V.
(3) There are m′, M ′ > 0 such that m′〈x, x〉 ≤ 〈Tx, Tx〉 ≤ M ′〈x, x〉 for all

x ∈ V.

Remark 2.3. An operator T ∈ B(V ) is said to be coercive if there is a positive
constant m such that 〈T ∗x, T ∗x〉 ≥ m〈x, x〉 holds for all x ∈ V. It follows from
Proposition 2.1 that coercive operators in B(V ) are exactly surjections in B(V ).

Theorem 2.4. Let A be a C∗-algebra, V a countably generated Hilbert A-module,
{fi : i ∈ I} a sequence in V , and θ(x) = (〈fi, x〉)i∈I for x ∈ V. The following
statements are mutually equivalent:

(1) {fi : i ∈ I} is a standard frame for V.
(2) θ ∈ B(V, �2(A)) and θ is bounded below.
(3) θ ∈ B(V, �2(A)) and θ∗ is surjective.

Proof. It follows from [8, Theorem 4.1] and Proposition 2.1 since

〈θx, θx〉 =
∑

i∈I

〈x, fi〉〈fi, x〉, x ∈ V.

�
Another direct consequence of Proposition 2.1 is that surjective adjointable op-

erators preserve standard frames.

Theorem 2.5. Let A be a C∗-algebra, V and W countably generated Hilbert A-
modules, and T ∈ B(V, W ) surjective. If {fi : i ∈ I} is a standard frame for V with
frame bounds C and D, then {Tfi : i ∈ I} is a standard frame for W with frame
bounds C

‖(TT∗)−1‖ and D‖T‖2.

Proof. Since {fi : i ∈ I} is a standard frame for V, and since T ∗y ∈ V for all y ∈ W,
we have

C〈T ∗y, T ∗y〉 ≤
∑

i∈I

〈T ∗y, fi〉〈fi, T
∗y〉 ≤ D〈T ∗y, T ∗y〉, y ∈ W.

From the proof of Proposition 2.1 we have 〈T ∗y, T ∗y〉 ≥ ‖(TT ∗)−1‖−1〈y, y〉 for all
y ∈ W, since T is surjective. It follows that

C

‖(TT ∗)−1‖〈y, y〉 ≤
∑

i∈I

〈y, Tfi〉〈Tfi, y〉 ≤ D‖T‖2〈y, y〉, y ∈ W. �
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ON FRAMES FOR COUNTABLY GENERATED HILBERT C∗-MODULES 473

We conclude this section with the result which states that the condition (1.1)
from the definition of standard frames can be replaced with a weaker one.

Theorem 2.6. Let A be a C∗-algebra, V a countably generated Hilbert A-module,
and {fi : i ∈ I} a sequence in V such that

∑
i∈I〈x, fi〉〈fi, x〉 converges in norm for

every x ∈ V. Then {fi : i ∈ I} is a standard frame for V if and only if there are
constants C, D > 0 such that

(2.1) C‖x‖2 ≤ ‖
∑

i∈I

〈x, fi〉〈fi, x〉‖ ≤ D‖x‖2, x ∈ V.

Proof. Evidently, every standard frame for V satisfies (2.1).
For the converse we suppose that a sequence {fi : i ∈ I} fulfills (2.1). For an

arbitrary x ∈ V and a finite J ⊆ I we define xJ =
∑

i∈J fi〈fi, x〉. Then

‖xJ‖4 = ‖〈xJ , xJ〉‖2 = ‖〈xJ ,
∑

i∈J

fi〈fi, x〉〉‖2 = ‖
∑

i∈J

〈xJ , fi〉〈fi, x〉‖2

≤ ‖
∑

i∈J

〈xJ , fi〉〈fi, xJ 〉‖ · ‖
∑

i∈J

〈x, fi〉〈fi, x〉‖ ≤ D‖xJ‖2 ‖
∑

i∈J

〈x, fi〉〈fi, x〉‖,

therefore
‖

∑

i∈J

fi〈fi, x〉‖2 = ‖xJ‖2 ≤ D‖
∑

i∈J

〈x, fi〉〈fi, x〉‖.

Since J is arbitrary, the series
∑

i∈I fi〈fi, x〉 converges and

‖
∑

i∈I

fi〈fi, x〉‖2 ≤ D‖
∑

i∈I

〈x, fi〉〈fi, x〉‖ ≤ D2‖x‖2 ⇒ ‖
∑

i∈I

fi〈fi, x〉‖ ≤ D‖x‖.

Since x ∈ V is arbitrarily chosen, the operator

T : V → V, x 
→
∑

i∈I

fi〈fi, x〉

is well defined, bounded and A-linear. It is easy to check that 〈Tx, y〉 = 〈x, Ty〉 for
all x, y ∈ V, so T ∈ B(V ) and T = T ∗. From 〈Tx, x〉 =

∑
i∈I〈x, fi〉〈fi, x〉 ≥ 0 for

all x ∈ V, it follows that T ≥ 0. Now (2.1) and 〈T 1/2x, T 1/2x〉 =
∑

i∈I〈x, fi〉〈fi, x〉
imply

√
C‖x‖ ≤ ‖T 1/2x‖ ≤

√
D‖x‖ for all x ∈ V. By Corollary 2.2, there are

constants C ′, D′ > 0 such that

C ′〈x, x〉 ≤ 〈T 1/2x, T 1/2x〉 =
∑

i∈I

〈x, fi〉〈fi, x〉 ≤ D′〈x, x〉, x ∈ V.

This proves that {fi : i ∈ I} is a standard frame for V. �

3. On a class of frames for Hilbert K(H)-modules

The existence of standard frames in countably generated Hilbert K(H)-modules
V follows from the existence of orthonormal bases. If T ∈ B(V ) is a surjection and
{vi : i ∈ I} an orthonormal basis for V, then {Tvi : i ∈ I} is a standard frame
for V which satisfies Tvi = T (viei) = (Tvi)ei, where ei := 〈vi, vi〉 is an orthogonal
projection of rank 1 for every i ∈ I. However, not every standard frame in a Hilbert
K(H)-module is of this type, as we show in the next example.
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474 LJILJANA ARAMBAŠIĆ

Example 3.1. Let {vi : i ∈ I} be an orthonormal basis for a countably and not
finitely generated Hilbert K(H)-module V with property eiej = 0, i �= j, where
ei = 〈vi, vi〉. (Such a basis can always be constructed by following the procedure
described in [2, Remark 4(d)].) Let I =

⋃∞
j=1 Ij be a partition of I such that |Ij | = j.

Let fj =
∑

i∈Ij
vi ∈ V. Since 〈x, vj〉〈vi, x〉 = 〈x, vjej〉〈viei, x〉 = 〈x, vj〉ejei〈vi, x〉 =

δij〈x, vj〉〈vi, x〉 for all x ∈ V, we have

〈x, fj〉〈fj , x〉 = 〈x,
∑

i∈Ij

vi〉〈
∑

i∈Ij

vi, x〉 =
∑

i,j∈Ij

〈x, vj〉〈vi, x〉 =
∑

i∈Ij

〈x, vi〉〈vi, x〉

and then
〈x, x〉 =

∑

i∈I

〈x, vi〉〈vi, x〉 =
∑

j∈J

〈x, fj〉〈fj , x〉.

This means that {fj : j ∈ J} is a standard Parseval frame for V such that 〈fj , fj〉 =∑
i∈Ij

ei is a projection with dim Im 〈fi, fi〉 = |Ij | = j for all j ∈ J.

Proposition 3.2. Let V be a countably and not finitely generated Hilbert K(H)-
module. Let {fi : i ∈ I} be a standard frame for V such that fi = fiei for some
orthogonal projections ei, i ∈ I, of rank 1. Then there is an orthonormal basis
{vi : i ∈ I} and a surjection T ∈ B(V ) such that Tvi = fi, i ∈ I.

Proof. Let C and D be frame bounds. Let {vi : i ∈ I} be an orthonormal basis
such that vi = viei, i ∈ I. (We may assume that the sets of indices for a standard
frame and a basis are the same, since they are both infinite subsets of N.)

We first show that for every x ∈ V the series
∑

i∈I fi〈vi, x〉 converges. Let J be
a finite subset of I and xJ =

∑
i∈J fi〈vi, x〉. Then

‖xJ‖4 = ‖〈xJ , xJ 〉‖2 = ‖〈
∑

i∈J

fi〈vi, x〉, xJ〉‖2 = ‖
∑

i∈J

〈x, vi〉〈fi, xJ〉‖2

≤ ‖
∑

i∈J

〈x, vi〉〈vi, x〉‖‖
∑

i∈J

〈xJ , fi〉〈fi, xJ〉‖ ≤ ‖
∑

i∈J

〈x, vi〉〈vi, x〉‖ · D‖xJ‖2,

from where we get ‖xJ‖2 ≤ D‖
∑

i∈J 〈x, vi〉〈vi, x〉‖, that is,

‖
∑

i∈J

fi〈vi, x〉‖2 ≤ D‖
∑

i∈J

〈x, vi〉〈vi, x〉‖, for every finite J ⊆ I.

Since
∑

i∈I〈x, vi〉〈vi, x〉 converges in norm ([2, Theorem 1]), it follows that the series∑
i∈I fi〈vi, x〉 converges.
Similarly, we check that the series

∑
i∈I vi〈fi, x〉 converges for every x ∈ V.

Now we can define the operators T, R : V → V by Tx =
∑

i∈I fi〈vi, x〉 and
Rx =

∑
i∈I vi〈fi, x〉. It is straightforward to see that 〈Tx, y〉 = 〈x, Ry〉 for all

x, y ∈ V. Therefore T ∈ B(V ) and R = T ∗. From Proposition 2.1 and

C〈x, x〉 ≤
∑

i∈I

〈x, fi〉〈fi, x〉 = 〈T ∗x, T ∗x〉, x ∈ V,

it follows that T is surjective.
It only remains to note that Tvi = fi〈vi, vi〉 = fiei = fi for all i ∈ I. �

A Hilbert K(H)-module contains a Hilbert space Ve with respect to the inner
product (x, y) = tr(〈y, x〉), where ‘tr’ means the trace. More precisely, for a fixed
orthogonal projection e ∈ K(H) of rank 1, Ve is given as the set of all xe, x ∈ V .
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ON FRAMES FOR COUNTABLY GENERATED HILBERT C∗-MODULES 475

Also, for all x, y ∈ Ve we obtain that 〈x, y〉 = (y, x)e. Ve is an invariant subspace
for each T in B(V ) and the map

(3.1) T 
→ T |Ve, B(V ) → B(Ve)

establishes an isomorphism of C∗-algebras, where B(Ve) denotes the C∗-algebra of
all bounded operators on Ve. It is known that a family {vi : i ∈ I} ⊆ Ve is an
orthonormal basis for V if and only if it is an orthonormal basis for Ve. (The proofs
can be found in [2, Remark 4, Theorem 5]).) We extend the last statement to a
standard frame {fi : i ∈ I} contained in Ve. First we need a lemma which describes
some properties of the isomorphism (3.1).

Lemma 3.3. Let V be a Hilbert K(H)-module, e ∈ K(H) an orthogonal projection
of rank 1, and T ∈ B(V ). The following statements hold:

(1) T is bounded below if and only if T |Ve ∈ B(Ve) is bounded below.
(2) T is surjective if and only if T |Ve ∈ B(Ve) is surjective.

Proof. (1) First observe that if T |Ve ∈ B(Ve) is a positive operator on the Hilbert
space Ve, then T ∈ B(V ) is a positive element of the C∗-algebra B(V ). This is a
consequence of the fact that the map T 
→ T |Ve is an isomorphism of C∗-algebras.

Suppose Te := T |Ve is bounded below. Let m > 0 be such that ‖Te(xe)‖ ≥
m‖xe‖ for all x ∈ V. In other words, T ∗

e Te − m2id Ve
is a positive operator on

the Hilbert space Ve. By the observation from the beginning of the proof, we get
T ∗T − m2id V ≥ 0, i.e., 〈(T ∗T − m2id V )x, x〉 ≥ 0 for all x ∈ V. Now we have
〈Tx, Tx〉 ≥ m2〈x, x〉, and then ‖Tx‖ ≥ m‖x‖ for all x ∈ V.

The opposite statement is obvious.
(2) It follows from (1) and Proposition 2.1. �

Theorem 3.4. Let V be a countably generated Hilbert K(H)-module, e ∈ K(H)
an orthogonal projection of rank 1, and {fi : i ∈ I} a sequence of vectors in Ve.
Then {fi : i ∈ I} is a standard frame for the Hilbert K(H)-module V with frame
bounds C and D if and only if {fi : i ∈ I} is a frame for the Hilbert space Ve with
frame bounds C and D.

Proof. Suppose that {fi : i ∈ I} is a standard frame for a Hilbert K(H)-module V
with frame bounds C and D. It means that

C〈x, x〉 ≤
∑

i∈I

〈x, fi〉〈fi, x〉 ≤ D〈x, x〉, x ∈ V.

Since 〈xe, ye〉 = (ye, xe)e for all xe, ye ∈ Ve, by choosing xe instead of x in the
above inequalities, we get

C(xe, xe)e ≤
∑

i∈I

(xe, fi)(fi, xe)e ≤ D(xe, xe)e, x ∈ V,

which implies C(x, x) ≤
∑

i∈I(x, fi)(fi, x) ≤ D(x, x) for all x ∈ Ve. It proves that
{fi : i ∈ I} is a frame for the Hilbert space Ve with frame bounds C and D.

Now suppose that {fi : i ∈ I} ⊆ Ve is a frame for the Hilbert space Ve with
frame bounds C and D.

First we assume that V is finitely generated. Let {v1, . . . , vn} ⊆ Ve be an or-
thonormal basis for V and Se ∈ B(Ve) the frame operator associated to the (Hilbert
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space) frame {fi : i ∈ I}. Then

xe =
∑

i∈I

S
1
2
e fi(xe, S

1
2
e fi) =

∑

i∈I

S
1
2
e fi〈S

1
2
e fi, xe〉, xe ∈ Ve.

Since x =
∑n

j=1 vi〈vi, x〉 for all x ∈ V, and since v1, . . . , vn ∈ Ve, we immediately get

that for all x ∈ V , x =
∑

i∈I S
1
2
e fi〈S

1
2
e fi, x〉 holds. This proves that {S

1
2
e fi : i ∈ I}

is a Parseval standard frame for V. Let S ∈ B(V ) be the unique extension of
Se ∈ B(Ve). Since Se is invertible and positive, S ∈ B(V ) is also invertible and

positive. Therefore S− 1
2 preserves standard frames, so the sequence {S− 1

2 (S
1
2
e fi) :

i ∈ I} = {S− 1
2

e S
1
2
e fi : i ∈ I} = {fi : i ∈ I} is a standard frame for V.

Now we assume that V is not finitely generated. Let {vi : i ∈ I} be an or-
thonormal basis for V such that vi = vie for all i ∈ I. Then {vi : i ∈ I} is an
orthonormal basis for the Hilbert space Ve. Let Te : Ve → Ve be the operator de-
fined as Te(xe) =

∑
i∈I fi〈vi, xe〉. As in the proof of Proposition 3.2 we show that

Te is well defined, Te ∈ B(Ve) and Te is surjective. Let T ∈ B(V ) be the unique
extension of Te ∈ B(Ve). By the previous lemma, T is surjective. Now Theorem 2.5
implies that {fi : i ∈ I} is a standard frame for V, since T (vi) = Te(vi) = fi for all
i ∈ I. �

The concept of an orthonormal basis has been introduced in Hilbert C∗-modules
over an arbitrary C∗-algebra. Obviously, there are Hilbert C∗-modules which do
not possess an orthonormal basis. Actually, if a Hilbert C∗-module V possesses an
orthonormal basis, then 〈V, V 〉 has to be a CCR-algebra. We prove this in the next
theorem.

Theorem 3.5. Let A be a C∗-algebra and V a full countably generated Hilbert A-
module. Let {ei : i ∈ I} be a family of projections in A such that eiAei = Cei, i ∈ I,
and {fi : i ∈ I} a standard frame for V such that fi = fiei, i ∈ I. Then A is a
CCR-algebra. In particular, if V possesses an orthonormal basis, then A is a
CCR-algebra.

Proof. By the definition of a CCR-algebra we need to show that for every irre-
ducible representation ϕ : A → B(H), ϕ(A) ⊆ K(H) holds.

Let 0 �= ϕ : A → B(H) be an irreducible representation of A. Then eiAei = Cei

implies ϕ(ei)ϕ(A)ϕ(ei) = Cϕ(ei) for every i ∈ I.
Let i ∈ I be such that ϕ(ei) �= 0. Now ϕ(ei) is a non-zero projection, so there is

a non-zero vector ξ0 ∈ H which belongs to Imϕ(ei). Then ϕ(ei)ξ0 = ξ0 and

ϕ(ei)ϕ(A)ϕ(ei)ξ0 = Cϕ(ei)ξ0 ⇒ ϕ(ei)ϕ(A)ξ0 = Cξ0.

ϕ is irreducible, therefore it is a cyclic representation of A, and every non-zero
vector is cyclic for ϕ. In particular, ξ0 is a cyclic vector for ϕ. Therefore

{0} �= ϕ(ei)H = ϕ(ei)ϕ(A)ξ0 ⊆ ϕ(ei)ϕ(A)ξ0 = Cξ0 ⇒ Im ϕ(ei) = Cξ0.

This proves that ϕ(ei) ∈ K(H) for every i ∈ I.
Let S ∈ B(V ) be the frame operator associated to {fi : i ∈ I}. From the

reconstruction formula (1.2) we have 〈x, y〉 =
∑

i∈I〈x, Sfi〉〈fi, y〉 and then

(3.2) ϕ(〈x, y〉) =
∑

i∈I

ϕ(〈x, Sfi〉)ϕ(〈fi, y〉), x, y ∈ V.
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From fi = fiei and compactness of ϕ(ei) it follows that

ϕ(〈x, Sfi〉)ϕ(〈fi, y〉) = ϕ(〈x, Sfi〉)ϕ(ei)ϕ(〈fi, y〉) ∈ K(H), x, y ∈ V, i ∈ I.

Finally, we get ϕ(〈x, y〉) ∈ K(H) for all x, y ∈ V, as the convergence in (3.2) is in
norm. Since V is full, we conclude that ϕ(A) ⊆ K(H).

This finishes our proof. �

The converse of the previous theorem does not hold. For example, we can take
an arbitrary Hilbert C∗-module over the C∗-algebra A = C([0, 1]) of all continuous
complex functions on the unit segment [0, 1]. A is a CCR-algebra, since it is com-
mutative, and the only projection e ∈ A which satisfies eAe = Ce is the constant
function 0.

Remark 3.6. Frames of subspaces for a separable Hilbert space have been recently
introduced and studied in [4]. We can generalize their definition for Hilbert K(H)-
modules in the following way.

Let V be a countably generated Hilbert K(H)-module, {Wi : i ∈ I} (I ⊆ N) a
family of closed submodules of V , and {λi : i ∈ I} a family of weights, i.e., a family
of positive numbers. We say that {Wi : i ∈ I} is a standard frame of submodules for
V with respect to a family of weights {λi : i ∈ I}, if there are constants C, D > 0
such that

(3.3) C〈x, x〉 ≤
∑

i∈I

λ2
i 〈πi(x), πi(x)〉 ≤ D〈x, x〉, x ∈ V,

where πi ∈ B(V ) denotes the orthogonal projection on Wi for every i ∈ I, and
convergence of the sum in the middle of (3.3) is in norm.

Let us fix an orthogonal projection e ∈ K(H) of rank 1. It can be proved that
a family of closed submodules {Wi : i ∈ I} is a standard frame of submodules for
V with respect to the family of weights {λi : i ∈ I} if and only if {(Wi)e : i ∈ I}
is a frame of subspaces for Ve with respect to the family of weights {λi : i ∈ I}.
Therefore many statements from [4] can be extended to countably generated Hilbert
K(H)-modules. This will be done in our subsequent paper.
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