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Introduction

This is a survey paper devoted to some aspects of the theory of Fréchet subdif-
ferentiation. The selection of the material reflects interests of the author and
is far from being complete. The paper contains definitions and statements of
some important results in the field with very few proofs. The author hopes
that reading the paper will not be difficult even for those mathematicians
whose main scientific interests are not in the field of nonsmooth analysis.

All the variety of different subdifferentials known by now can be divided
into two big groups: “simple” subdifferentials and “strict” ones. A simple
subdifferential is defined at a given point and it does not take into account
“differential” properties of a function in its neighborhood. Usually such
subdifferentials generalize some classical differentiability notions (Fréchet,
Gâteaux, Dini, etc.). They are not widely used directly because of rather
poor calculus.

Contrary to simple subdifferentials the definitions of strict ones incorpo-
rate differential properties of a function near a given point. Usually strict
subdifferentials can be represented as (some kinds of) limits of simple ones.
This procedure makes them generalizations of the notion of a strict derivative
[14], enriches their properties, and allows constructing satisfactory calculus.
The examples of limiting subdifferentials are the generalized differential (the
limiting Fréchet subdifferential) [49, 53, 63, 66, 67] and the approximate sub-
differential (the limiting Dini subdifferential) [38, 39, 41, 43]. The famous
generalized gradient of Clarke [15, 17] can also be considered as being a strict
subdifferential. The Warga’s derivate container [98, 101] belongs to this class,
too.
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The limiting subdifferentials proved to be very efficient in nonsmooth
analysis and optimization (see [17, 38, 41, 42, 43, 44, 49, 50, 52, 53, 62,
63, 67, 69, 74, 75, 93, 95, 97, 98, 99, 100, 101, 102]), especially in finite
dimensions. When applying limiting subdifferentials in infinite dimensional
spaces one must be careful about nontriviality of limits in the weak∗ topology.
Additional regularity conditions are needed (compact epi-Lipschitzness [7],
sequential normal compactness, partial sequential normal compactness [74,
75, 77], etc.).

On the other hand, it is possible to formulate the results without tak-
ing limits and thus avoid the above mentioned difficulties. Such state-
ments are formulated (without additional regularity conditions) in terms
of simple subdifferentials calculated at some points arbitrary close to the
point under consideration. They are usually referred to as fuzzy results
[10, 12, 27, 28, 29, 40, 45, 62, 76, 78, 104]. In general, such results are
stronger than the corresponding statements in terms of limiting subdifferen-
tials. Only fuzzy results will be discussed in this paper.

The paper consists of three sections. The first one is devoted to defini-
tions and elementary properties of Fréchet subdifferentials, normal cones and
coderivatives. It partly follows the early papers [48, 51], some parts of which
have never been published. The main fuzzy results (from the author’s point
of view) in terms of Fréchet subdifferentials are presented in Section 2. Some
of them are formulated with the help of strict δ-subdifferentials [55, 61]. The
extended extremality notions [61] are discussed in Section 3. Being weaker
than the traditional definitions they describe some “almost extremal” points
for which the known dual necessary conditions in terms of Fréchet subdiffer-
entials become sufficient. Adopting these extended extremality notions leads
to a form of duality in nonsmooth nonconvex optimization.

Some constants are defined in the paper which simplify definitions and
statements of the results.

Mostly standard notations are used throughout the paper. X, Y denote
Banach spaces and X∗, Y ∗ denote their topological duals. 〈·, ·〉 is a bilinear
form defining a canonical paring between a space and its dual. Bρ(x) stands
for a closed ball with center x and radius ρ. We shall write Bρ instead
of Bρ(0). The norms in the primal and the dual spaces will be denoted
respectively by ‖ · ‖ and ‖ · ‖∗.

1 Fréchet Subdifferentials

Fréchet subdifferentials have been known for more than a quarter of a cen-
tury. They were probably first introduced in finite dimensions in [3] (under
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the name “lower semidifferentials”). Some of their properties in an infinite
dimensional setting were investigated in [48, 51].

1.1 Definitions and Elementary Properties

Let X be a real Banach space and let f be a function from X into an extended
real line R̄ = R ∪ {+∞}, finite at x.

A set

∂f(x) =

{
x∗ ∈ X∗ : lim inf

u→x

f(u)− f(x)− 〈x∗, u− x〉
‖u− x‖

≥ 0

}
(1.1)

is called a (Fréchet) subdifferential of f at x. Its elements are sometimes
referred to as (Fréchet) subgradients (regular subgradients [93]).

The set (1.1) is closed and convex. The next two propositions show that it
generalizes the notions of a Fréchet derivative and a subdifferential of convex
analysis.

Proposition 1.1. If f is Fréchet differentiable at x with a derivative ∇f(x)
then ∂f(x) = {∇f(x)}.

Proposition 1.2. If f is convex then

∂f(x) = {x∗ ∈ X∗ : f(u)− f(x) ≥ 〈x∗, u− x〉,∀u ∈ X}. (1.2)

Let us also note that the set (1.1) does not depend on the specific (equiv-
alent) norm in X.

Example 1.1. The set (1.1) can be empty. Take f : R → R : f(u) = −|u|,
u ∈ R. Obviously ∂f(0) = ∅.

If ∂f(x) 6= ∅ we will say that f is (Fréchet) subdifferentiable at x.
Besides the subdifferential (1.1) one can consider a (Fréchet) superdiffer-

ential

∂+f(x) =

{
x∗ ∈ X∗ : lim sup

u→x

f(u)− f(x)− 〈x∗, u− x〉
‖u− x‖

≤ 0

}
. (1.3)

It is also closed and convex. If ∂+f(x) 6= ∅ we will say that f is (Fréchet)
superdifferentiable at x.

While the set (1.1) consists of linear continuous functionals “supporting”
f from below, functionals from (1.3) “support” f from above. Contrary to
the classical case the existence of two different derivative-like objects is quite
natural for nonsmooth analysis: “differential” properties of a function “from
below” and “from above” could be essentially different.

Surely, in the nondifferential case at least one of the sets (1.1) and (1.3)
must be empty.

4



Proposition 1.3. Both sets (1.1) and (1.3) are nonempty simultaneously if
and only if f is Fréchet differentiable at x. In this case one has ∂f(x) =
∂+f(x) = {∇f(x)}.

In general the following relation holds:

∂(−f)(x) = −∂+f(x).

Example 1.2. Both sets (1.1) and (1.3) can be empty simultaneously. Take
f : R→ R : f(u) = u sin(1/u) if u 6= 0, and f(0) = 0. ∂f(0) = ∂f+(0) = ∅.
Example 1.3. The fact that the set (1.1) is a singleton does not imply differen-
tiability. Take f : R→ R : f(u) = max(u sin(1/u), 0) if u 6= 0, and f(0) = 0.
Then f is nondifferentiable at 0, though we evidently have ∂f(0) = {0}.
Example 1.4. Fréchet differentiability is essential in Proposition 1.1. Gâteaux
differentiable functions could be non-subdifferentiable in the Fréchet sense.
Take f : R2 → R : f(u1, u2) = −

√
|u1|2 + |u2|2 if u2 = u2

1, and f(u1, u2) = 0
otherwise. f is Gâteaux differentiable at 0 (with the derivative equal to 0)
while ∂f(0) = ∅.

Proposition 1.4. If f is Gâteaux differentiable and Fréchet subdifferentiable
at x with a (Gâteaux) derivative ∇f(x) then ∂f(x) = {∇f(x)}.

Example 1.5. Under the conditions of Proposition 1.4 f can be still non-
differentiable in the Fréchet sense. Take f : R2 → R : f(u1, u2) =√
|u1|2 + |u2|2 if u2 = u2

1, and f(u1, u2) = 0 otherwise.

Remark 1.1. It is possible to define a Gâteaux subdifferential based on the
notion of the Gat̂eaux differentiability. For this subdifferential analogs of
Propositions 1.1, 1.2, 1.3 and some other results hold true. Considering
Gâteaux (and other types of) subdifferentials can be useful in some appli-
cations. In general, a Gat̂eaux subdifferential is a larger set than a Fréchet
one.

The definition (1.1) of the Fréchet subdifferential can be reformulated in
the following way.

Proposition 1.5. x∗ ∈ ∂f(x) if and only if there exists a function g : X → R
such that

(a) g(u) ≤ f(u) for any u ∈ X, and g(x) = f(x),
(b) g is Fréchet differentiable at x and ∇g(x) = x∗.

Condition (a) in Proposition 1.5 means that g “supports” f from below.
The sufficient part of Proposition 1.5 follows directly from the defini-

tion (1.1). To prove the necessity one can set g(u) = min(f(u), f(x) +
〈x∗, u− x〉), u ∈ X.
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One more differentiability notion must be mentioned here. It is so called
strict differentiability. Let us recall that f is called strictly differentiable [14]
at x (with a strict derivative ∇f(x)) if

lim
u→x, u′→x

f(u′)− f(u)− 〈∇f(x), u′ − u〉
‖u′ − u‖

= 0. (1.4)

Clearly (1.4) is a more restrictive condition than simple Fréchet differ-
entiability, though it is less restrictive than continuous differentiability. It
is exactly the property of strict differentiability which is actually needed for
such classical analysis results as the inverse function theorem or the implicit
function theorem to hold true.

Proposition 1.6. If f is strictly differentiable at x with a derivative ∇f(x)
then for any ε > 0 there exists δ > 0 such that

∂f(u) ∪ ∂+f(u) ⊂ ∇f(x) + εB∗

for all u ∈ Bδ(x).

Proof. It follows from (1.4) that for any ε > 0 there exists δ > 0 such that

|f(u′)− f(u)− 〈∇f(x), u′ − u〉| ≤ ε

2
‖u′ − u‖,∀u, u′ ∈ B2δ(x). (1.5)

Let u ∈ Bδ(x) and x∗ ∈ ∂f(u). Then it follows from (1.1) that there exists
a positive δ′ ≤ δ such that

f(u′)− f(u)− 〈x∗, u′ − u〉 ≥ −ε
2
‖u′ − u‖,∀u′ ∈ Bδ′(u). (1.6)

Inequalities (1.5) and (1.6) yield

〈x∗ −∇f(x), u′ − u〉 ≤ ε‖u′ − u‖, ∀u′ ∈ Bδ′(u)

and consequently ‖x∗ −∇f(x)‖∗ ≤ ε. The case x∗ ∈ ∂+f(u) can be treated
in a similar way.

∂f(x) characterizes local properties of f near x, e. g. subdifferentiability
imply lower semicontinuity.

Proposition 1.7. If ∂f(x) 6= ∅ then f is lower semicontinuous at x.

Proposition 1.8. If f is lower semicontinuous at x then ∂f(x) = ∂(cl f)(x),
where cl f is a lower semicontinuous envelope of f .
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Comparing (1.1) and (1.2) one can see that in the convex case the defini-
tion of a subdifferential is significantly simplified. Another example of such
a simplification is given by positively homogeneous functions. Let us recall
that f is positively homogeneous if f(λu) = λf(u) for any u ∈ X and any
λ > 0.

Proposition 1.9. Let f be positively homogeneous.
(a) If f(0) = 0 then

∂f(0) = {x∗ ∈ X∗ : f(u) ≥ 〈x∗, u〉, ∀u ∈ X}.

(b) If f is finite at x then ∂f(λx) = ∂f(x) for any λ > 0.

1.2 Simple Calculus

The Propositions below present some simple calculus results for Fréchet sub-
differentials deduced directly from the definitions. More advanced statements
of fuzzy calculus will be presented in Section 2.

Proposition 1.10. If f attains a local minimum at x then 0 ∈ ∂f(x).

Proposition 1.11. ∂(λf)(x) = λ∂f(x) for any λ > 0.

Proposition 1.12. Let f1 : X → R̄ and f2 : X → R̄ be subdifferentiable at
x. Then f1 + f2 is subdifferentiable at x and

∂(f1 + f2)(x) ⊃ ∂f1(x) + ∂f2(x). (1.7)

Proposition 1.12 presents an example of a sum rule. Usually the sum rule
is the central result of any subdifferential calculus. Unfortunately, the inclu-
sion (1.7) is almost useless: it does not allow to decompose elements of the
subdifferential of the sum of functions in terms of elements of subdifferentials
of initial functions.

Corollary 1.12.1. Let f1 : X → R̄ and f2 : X → R̄ be finite at x and f1 +f2

and −f1 be subdifferentiable at x. Then f2 is subdifferentiable at x and

∂f2(x) ⊃ ∂(f1 + f2)(x)− ∂+f1(x).

Combining Proposition 1.12, Corollary 1.12.1, and Proposition 1.3 we
come to the following result.

Corollary 1.12.2. Let f1 : X → R̄ and f2 : X → R̄ be finite at x and f1 be
Fréchet differentiable at x. Then

∂(f1 + f2)(x) = ∇f1(x) + ∂f2(x). (1.8)
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Corollary 1.12.2 gives an important case when equality holds in (1.7). It
is interesting to note that (1.8) follows from (1.7).

Corollary 1.12.3. Let f1 : X → R̄ and f2 : X → R̄ be finite at x and f1

be Fréchet differentiable at x. If f1 + f2 attains a local minimum at x then
−∇f1(x) ⊂ ∂f2(x).

Now let us come to chain rules. Let h be a function on X taking values
in another real Banach space Y . We shall assume that it satisfies at x the
following calmness condition (cf. [93]):

||f(u)− f(x)|| ≤ l||u− x||

for some l > 0 and for all u in some neighborhood of x.
For any y∗ ∈ Y ∗ we shall consider a scalar function 〈y∗, h〉 defined by the

equality 〈y∗, h〉(u) = 〈y∗, h(u)〉.
Let g : Y → R̄ be finite at y = h(x). We shall consider a composition

f(u) = g(h(u)), u ∈ X.

Proposition 1.13. Let g be subdifferentiable at y and let 〈y∗, h〉 be subdif-
ferentiable at x for some y∗ ∈ ∂g(y). Then f is subdifferentiable at x and

∂f(x) ⊃ ∂〈y∗, h〉(x).

The conclusion of Proposition 1.13 can be rewritten in the following form:

∂f(x) ⊃ ∪ {∂〈y∗, h〉(x) : y∗ ∈ ∂g(y)}.

Corollary 1.13.1. Let h be Fréchet differentiable at x. Then

∂f(x) ⊃ (∇h(x))∗∂g(h(x)), (1.9)

where (∇h(x))∗ : Y ∗ → X∗ is the adjoint operator to ∇h(x).

Taking into account the inverse function theorem [83] it is possible to de-
duce from Corollary 1.13.1 the following result giving conditions guaranteeing
equality in (1.9).

Corollary 1.13.2. Let h be strictly differentiable at x and let ∇h(x) be
invertible. Then equality holds true in (1.9).

Corollary 1.13.3. Let f(u) = g(au+ b), u ∈ X. Then

∂f(x) = a ∂g(ax+ b).

8



Proposition 1.14. Let f be subdifferentiable at x and let g be superdiffer-
entiable at y. Then 〈y∗, h〉 is subdifferentiable at x for any y∗ ∈ ∂+g(y)
and

∂f(x) ⊂ ∂〈y∗, h〉(x).

Combining Propositions 1.13 and 1.14 we get the following Corollary.

Corollary 1.14.1. Let g be Fréchet differentiable at y. Then

∂f(x) = ∂〈∇g(y), h〉(x).

As an easy consequence of Corollary 1.14.1 one can deduce formulas for
subdifferentials of the product and the quotient of two scalar functions.

Corollary 1.14.2. Let f1, f2 be finite at x and satisfy the calmness condition
at x. Let us denote αi = fi(x), i = 1, 2. Then

∂(f1 · f2)(x) = ∂(α2f1 + α1f2)(x).

If α2 6= 0 then

∂(
f1

f2

)(x) =
∂(α2f1 − α1f2)(x)

α2
2

.

Proposition 1.15. Let f(u) = supi∈I fi(u), u ∈ X, where I is a nonempty
set of indexes and all the functions fi, i ∈ I, and f are finite at x. Then

∂f(x) ⊃ clco
⋃

i∈I0(x)

∂fi(x),

where I0(x) = {i ∈ I : fi(x) = f(x)} and clco denotes a convex closure.

1.3 Fréchet Subdifferentials and Directional Deriva-
tives

Subdifferentials are dual space objects. The Fréchet subdifferential was de-
fined above (see (1.1)) directly, without invoking any local approximations of
a function. Another approach to investigating nonsmooth functions consists
in considering first some kind of directional derivative at a given point.

Let us define for some z ∈ X (possibly infinite) limits

df(x)(z) = lim inf
t→+0, y→z

f(x+ ty)− f(x)

t
, (1.10)

dwf(x)(z) = lim inf
t→+0, y

w→z

f(x+ ty)− f(x)

t
,
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where y
w→ z means that y tends to z in the weak topology of X. They are

called respectively a subderivative (see [3, 38, 42, 86, 89, 93]) and a weak
subderivative (see [48, 94]) of f at x in z direction.

df(x)(·) and dwf(x)(·) are positively homogeneous functions from X into
R ∪ {±∞}, lower semicontinuous in the norm and the weak topology of X
respectively. The inequality dwf(x)(z) ≤ df(x)(z) holds true for any z ∈ X.
If dimX < ∞, both subderivatives coincide. In general the functions are
different and they can differ from the usual directional derivative even if the
latter exists. If f is uniformly differentiable [24, 47, 81] at x in z direction,
df(x)(z) reduces to the usual directional derivative. In the Lipschitz case the
definition (1.10) can be simplified.

Proposition 1.16. If f is Lipschitz continuous near x then

df(x)(z) = lim inf
t→+0

f(x+ tz)− f(x)

t
.

Surely, subderivatives can be used for characterizing local properties of f
near x, e. g. the equality df(x)(0) = 0 implies lower semicontinuity of f at
x.

dwf(x)(·) is in a sense the lowest possible directional derivative. It is
closely related to the subdifferential (1.1).

Proposition 1.17.

∂f(x) ⊂ {x∗ ∈ X∗ : dwf(x)(z) ≥ 〈x∗, z〉, ∀z ∈ X}. (1.11)

If X is reflexive then equality holds true in (1.11).

The first assertion of Proposition 1.17 follows directly from the definitions.
The second one is a consequence of the fact that a unit ball in a reflexive
space is weakly compact [2].

The set in the right-hand side of (1.11) can be taken as a definition of a
subdifferential. It agrees with (1.1) in reflexive spaces, but in general this set
is larger than (1.1).

1.4 Fréchet Normals

Now let Ω be a nonempty set in X and let x ∈ Ω.
In a similar way as in the definition (1.1) of a (Fréchet) subdifferential

one can define a geometrical object – a (Fréchet) normal cone

N(x|Ω) =

{
x∗ ∈ X∗ : lim sup

u
Ω→x

〈x∗, u− x〉
‖u− x‖

≤ 0

}
(1.12)
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to Ω at x. Here u
Ω→ x means that u→ x with u ∈ Ω.

It is really a closed and convex cone closely related to the subdifferential
defined above.

Let us consider an indicator function δΩ of Ω: δΩ(u) = 0 if u ∈ Ω and
δΩ(u) =∞ otherwise.

Proposition 1.18. N(x|Ω) = ∂δΩ(x).

Due to Proposition 1.18 one can deduce some properties of normal cones
from the corresponding statements about subdifferentials. Thus, it follows
from Proposition 1.2 that the normal cone (1.12) generalizes the correspond-
ing notion of convex analysis.

Proposition 1.19. If Ω is convex then

N(x|Ω) = {x∗ ∈ X∗ : 〈x∗, u− x〉 ≤ 0,∀u ∈ Ω}.

Proposition 1.20. N(x|Ω) = N(x|cl Ω).

Remark 1.2. A normal cone can be defined by (1.12) for any x ∈ cl Ω.

Proposition 1.21. Let Ω be a cone. Then N(λx|Ω) = N(x|Ω) for any λ > 0
and

N(0|Ω) = {x∗ ∈ X∗ : 〈x∗, u〉 ≤ 0,∀u ∈ Ω}.

Proposition 1.22. Let Ω = Ω1 ∩ Ω2. Then

N(x|Ω) ⊃ N(x|Ω1) +N(x|Ω2).

Proposition 1.23. Let f be Fréchet differentiable at x. If f attains at x a
local minimum relative to Ω then −∇f(x) ∈ N(x|Ω).

Let us define for Ω a primal space local approximations – a tangent cone

T (x|Ω) = {z ∈ X : ∃{xk} ∈ Ω, {αk} ∈ R+, xk → x, αk(xk − x)→ z}

and a weak tangent cone (to Ω at x)

Tw(x|Ω) = {z ∈ X : ∃{xk} ∈ Ω, {αk} ∈ R+, xk → x, αk(xk − x)
w→ z}.

These are nonconvex cones, closed in the norm and weak topologies of
X respectively. They are widely used in optimization theory (see e. g.
[3, 4, 13, 24, 35, 94, 96]).

Surely, the following inclusion holds true: T (x|Ω) ⊂ Tw(x|Ω) and it can
be strict [35]. The two cones coincide if dimX <∞ or Ω is convex.

It is easy to verify that the indicator functions of T (x|Ω) and Tw(x|Ω)
coincide respectively with the subderivative and the weak subderivative of
δΩ at x.
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Proposition 1.24.

N(x|Ω) ⊂ {x∗ ∈ X∗ : 〈x∗, z〉 ≤ 0,∀z ∈ Tw(x|Ω)}. (1.13)

If X is reflexive then equality holds true in (1.13).

The set in the right-hand side of (1.13) – a polar cone [47] of Tw(x|Ω)
– can be taken as a definition of a normal cone. It agrees with (1.12) in
reflexive spaces, but in general this set is larger than (1.12).

Proposition 1.25. x∗ ∈ N(x|Ω) if and only if there exists a function g :
X → R such that

(a) g(u) ≤ 0 for any u ∈ Ω, and g(x) = 0,
(b) g is Fréchet differentiable at x and ∇g(x) = x∗.

Finally four more simple statements about normal cones which follow
easily from the definition.

Proposition 1.26. If Ω′ ⊃ Ω then N(x|Ω′) ⊂ N(x|Ω).

Proposition 1.27. Let Ω = Ω1 + Ω2, x = x1 + x2, xi ∈ Ωi, i = 1, 2. Then
N(x|Ω) ⊂ N(x1|Ω1) ∩N(x2|Ω2).

Proposition 1.28. Let Ω̃ = {(ω, ω) : ω ∈ Ω}, x̃ = (x, x). Then N(x̃|Ω̃) =
{(x∗1, x∗2) ∈ X∗ ×X∗ : x∗1 + x∗2 ∈ N(x|Ω)}.

Proposition 1.29. Let X = X1 × X2, Ω = Ω1 × Ω2, x = (x1, x2),
xi ∈ Ωi ⊂ Xi, i = 1, 2. Then N(x|Ω) = N(x1|Ω1)×N(x2|Ω2).

1.5 Normal Cones and Subdifferentials

Another approach to defining the normal cone is based on considering first
the subdifferential of the distance function. Let us recall that the distance
function (to Ω) is defined by the following formula:

dΩ(u) = inf
ω∈Ω
‖u− ω‖.

Proposition 1.30. ∂dΩ(x) = {x∗ ∈ N(x|Ω) : ‖x∗‖ ≤ 1}.

This statement was proved in [48]. Here we present an improved version
of the proof.
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Proof. Let x∗ ∈ ∂dΩ(x). Thus

lim inf
u→x

dΩ(u)− 〈x∗, u− x〉
‖u− x‖

≥ 0 (1.14)

and consequently

lim sup
u

Ω→x

〈x∗, u− x〉
‖u− x‖

≤ 0.

The last inequality means that x∗ ∈ N(x|Ω). It also follows from (1.14) that
for any z ∈ X, z 6= 0 we have

lim inf
t→+0

dΩ(x+ tz)− t〈x∗, z〉
t

≥ 0

and consequently 〈x∗, z〉 ≤ ‖z‖. This yields ‖x∗‖ ≤ 1.
Now let x∗ /∈ ∂dΩ(x) and ‖x∗‖ ≤ 1. We will prove that x∗ /∈ N(x|Ω).

According to the definition of the subdifferential there exist a sequence
{xk} ∈ X and a positive number ε0 such that xk → x and

dΩ(xk)− 〈x∗, xk − x〉+ ε0‖xk − x‖ < 0.

In order to achieve the goal we must replace xk by some point ωk ∈ Ω. Let
ωk be a point in Ω such that

‖xk − ωk‖ ≤ dΩ(xk) +
ε0

2
‖xk − x‖. (1.15)

Adding the last two inequalities we get

〈x∗, xk − x〉 > ‖xk − ωk‖+
ε0

2
‖xk − x‖.

This yields

〈x∗, ωk − x〉 >
ε0

2
‖xk − x‖. (1.16)

To complete the proof we need some lower estimate for ‖xk − x‖ in terms of
‖ωk − x‖. It follows from (1.15) that ‖xk − ωk‖ ≤ (1 + ε0/2)‖xk − x‖ and
consequently ‖ωk − x‖ ≤ (2 + ε0/2)‖xk − x‖. Combining the last inequality
with (1.16) we come to

〈x∗, ωk − x〉 >
ε0

ε0 + 4
‖ωk − x‖.

Consequently x∗ /∈ N(x|Ω).
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The following corollary gives an equivalent definition of the normal cone.
Contrary to the indicator function whose subdifferential can be used for defin-
ing the normal cone (see Proposition 1.18) the distance function is Lipschitz
continuous. This makes it more convenient in some situations.

Corollary 1.30.1. N(x|Ω) = {λx∗ : λ > 0, x∗ ∈ ∂dΩ(x)}.
It follows from Proposition 1.18 that a normal cone is a particular case of

a subdifferential. The converse is also true: the subdifferential of an arbitrary
function can be equivalently defined through the normal cone to its epigraph.
Let us recall that the epigraph of f is the set

epi f = {(u, µ) ∈ X × R : f(u) ≤ µ}.

Proposition 1.31. The following assertions hold true:
(a) If x∗ ∈ ∂f(x) then (x∗,−1) ∈ N(x, f(x)|epi f);
(b) If µ ≥ f(x) and (x∗, λ) ∈ N(x, µ|epi f) then λ ≤ 0;
(c) If λ 6= 0 in (b) then µ = f(x) and −x∗/λ ∈ ∂f(x).

Corollary 1.31.1. ∂f(x) = {x∗ ∈ X∗ : (x∗,−1) ∈ N(x, f(x)|epi f)}.
The case λ = 0 in part (b) of Proposition 1.31 (the case of “horizontal

normals” to the epigraph) can be important.
Let us define a set

∂∞f(x) = {x∗ ∈ X∗ : (x∗, 0) ∈ N(x, f(x)|epi f)}.

It is a convex cone, which is usually referred to as a singular subdifferential.
Then the normal coneN(x, f(x)|epi f) is completely defined by the sets ∂f(x)
and ∂∞f(x).

Corollary 1.31.2. N(x, f(x)|epi f) = ∪λ≥0λ(∂f(x),−1) ∪ (∂∞f(x), 0).
If f satisfies a calmness condition at x then

N(x, f(x)|epi f) =
⋃
λ≥0

λ(∂f(x),−1).

Under the calmness condition one has ∂∞f(x) = {0}. This remark proves
the last assertion in Corollary 1.31.2.

One can also consider normals to the graph

gph f = {(u, µ) ∈ X × R : f(u) = µ}.

of f . It is a subset of epi f .

Corollary 1.31.3. N(x, f(x)|gph f) ⊃ (∂f(x),−1) ∪ (−∂+f(x), 1).

It is possible to formulate the exact formula like in Corollary 1.31.2. To
do that one must use besides the singular subdifferential also the singular
superdifferential (the definition is obvious) or assume the calmness condition.

14



1.6 Fréchet Coderivatives

Starting from the definition of a normal cone it is possible to define a derivati-
ve-like object for a set-valued mapping (multifunction) F : X ⇒ Y from X
into another Banach space Y . To do that one must consider the graph
gphF = {(u, v) ∈ X ×Y : v ∈ F (u)} of F and the normal cone to the graph
at some point (x, y) ∈ gphF .

The multifunction ∂F (x, y) : Y ∗ ⇒ X∗ defined by the equality

∂F (x, y)(y∗) = {x∗ ∈ X∗ : (x∗,−y∗) ∈ N(x, y|gphF )}

is called the (Fréchet) coderivative of F at (x, y).
If F (u) = f(u) +R+, u ∈ X, for some function f : X → R̄, then gphF =

epi f and it follows from Corollary 1.31.1 that ∂F (x, f(x))(1) = ∂f(x).
When F is single-valued at x we write ∂F (x) instead of ∂F (x, F (x)).
If F (u) = {f(u)} in a neighborhood of x for some (single-valued) function

f then (under the calmness condition) the coderivative reduces to the subd-
ifferential of the scalar function 〈y∗, f〉 defined by the equality 〈y∗, f〉(u) =
〈y∗, f(u)〉, u ∈ X.

Proposition 1.32. If f satisfies a calmness condition at x then ∂f(x)(y∗) =
∂〈y∗, f〉(x).

1.7 Proximal Subdifferentials

In many cases, especially in finite dimensions and Hilbert spaces, the follow-
ing subset of the Fréchet subdifferential could be of importance:

∂Pf(x) = {x∗ ∈ X∗ : ∃γ > 0, ρ > 0 such that

f(u)− f(x)− 〈x∗, u− x〉+ γ‖u− x‖2 ≥ 0,∀u ∈ Bρ(x)}. (1.17)

The elements from ∂Pf(x) support f at x from below up to an infinitely
small (in comparison with ‖u− x‖) term which is contrary to (1.1) is given
in (1.17) explicitly: its degree equals to 2.

∂Pf(x) is called a proximal subdifferential of f at x [92, 93]. It is a convex
set which in general is not closed. ∂Pf(x) reduces to the subdifferential if
f is convex, but in a nonconvex case it can be empty even if f is Fréchet
differentiable at x.

Let us also note that (1.17) depends on the specific (equivalent) norm in
X. In finite dimensions it is usually used with the Euclidean norm.

(1.17) can be rewritten equivalently:

∂Pf(x) =

{
x∗ ∈ X∗ : lim inf

u→x

f(u)− f(x)− 〈x∗, u− x〉
‖u− x‖2

> −∞
}
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The geometrical counterpart of (1.17) is defined in a similar way:

NP (x|Ω) = {x∗ ∈ X∗ : ∃γ > 0 such that

〈x∗, u− x〉 ≤ γ‖u− x‖2,∀u ∈ Ω},

or equivalently

NP (x|Ω) =

{
x∗ ∈ X∗ : lim sup

u
Ω→x

〈x∗, u− x〉
‖u− x‖2

<∞

}
It is a convex cone called a proximal normal cone to Ω at x [92, 93].
If x is a Hilbert space and 〈·, ·〉 is an inner product (X∗ can be identified

with X under these assumptions) then one can use the following equivalent
representation of a proximal normal cone: x∗ ∈ NP (x|Ω) if and only if x∗ is
perpendicular to Ω at x: x∗ = α(u− x) for some α > 0, u ∈ X such that x is
the closest to u point in Ω. In other words x belongs to the metric projection

PrΩ(u) = {ω ∈ Ω : ‖u− ω‖ = d(u,Ω)}.

of u onto Ω.
Proximal normals where used in [63, 66, 67] when defining generalized

normals. There exist also relations between proximal normals and generalized
gradients of Clarke and approximate subdifferentials (see [8, 17, 44, 92]).

1.8 Strict Fréchet δ-Subdifferentials

As it was mentioned in Introduction “simple” subdifferentials have pour cal-
culus and their direct application has been rather limited. There exists a
way of enriching the properties of subdifferentials. It consists in considering
differential properties of a function not only at a given point but also at
points nearby.

Let us introduce a new derivative-like object based on the (Fréchet) sub-
differential (1.1):

∂̂δf(x) =
⋃

u∈Bδ(x)

|cl f(u)−f(x)|≤δ

∂(cl f)(u). (1.18)

It depends on some positive δ. cl f denotes here the lower semicontinuous
envelope of f . Contrary to (1.1) the set (1.18) can be nonconvex. We shall
call it a strict (Fréchet) δ-subdifferential of f at x.

A strict δ-superdifferential of f at x can be defined in a similar way:

∂̂+
δ f(x) =

⋃
u∈Bδ(x)

|cl ↑f(u)−f(x)|≤δ

∂+(cl ↑f)(u) (1.19)
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(cl ↑f is the upper semicontinuous envelope of f). The equality

∂̂+
δ f(x) = −∂̂δ(−f)(x)

holds true.
Let us note that strict sub- and superdifferentials can be nonempty si-

multaneously and can be essentially different as in the nonsmooth case “dif-
ferential” properties of a function “from below” and “from above” can differ
significantly.

The set
∂̂0
δϕ(x) = ∂̂δf(x) ∪ ∂̂+

δ f(x) (1.20)

is called a strict δ-differential of f at x.
The above definitions (1.18), (1.19), (1.20) are some modifications of the

definitions of strict ε-semidifferentials introduced in [55]. Strict δ-subdifferen-
tials were used in [59].

All the “strict” sets (1.18), (1.19), (1.20) do have some properties of a
strict derivative.

The corresponding geometrical objects are defined similarly: a strict δ-
normal cone to a set:

N̂δ(x|Ω) =
⋃

[N(u|cl Ω) : u ∈ cl Ω ∩Bδ(x)]

and a strict δ-coderivative [59] for a multifunction:

∂̂δF (x, y)(y∗) = {x∗ ∈ X∗ : (x∗,−y∗) ∈ N̂δ(x, y|gphF )}.

They are closely related to strict δ-subdifferentials.
Let us note that the purpose of introducing strict δ-subdifferentials is

mainly notational. They are convenient for formulating “fuzzy” results, but
all of them can certainly be formulated in terms of ordinary subdifferentials.

1.9 Limiting Subdifferentials

The limiting Fréchet subdifferentials are defined in [53, 63, 66, 67] as limits of
“simple” ones. To simplify the definitions we will assume in this subsection
that f : X → R̄ is lower semicontinuous in a neighborhood of x.

A set

∂̄f(x) = {x∗ ∈ X∗ : ∃ sequences {xk} ⊂ X, {x∗k} ⊂ X∗ such that

xk
f→ x, x∗k

w∗→ x∗ and x∗k ∈ ∂f(xk), k = 1, 2, . . .} (1.21)

is called a limiting Fréchet subdifferential of f at x.
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The denotations xk
f→ x and x∗k

w∗→ x∗ in (1.21) mean respectively that
xk → x with f(xk)→ f(x) (f -attentive convergence [93]), and x∗k converges
to x∗ in the weak∗ topology of X∗. The elements of (1.21) are referred to in
[93] as general subgradients.

Evidently ∂̄f(x) is a weakly∗ sequentially closed set in X∗. In general it
is nonconvex. If f is strictly differentiable at x the set (1.21) reduces to the
derivative.

Using strict δ-subdifferentials one can rewrite the definition (1.21) in the
following way:

∂̄f(x) =
⋂
δ>0

cl ∗ ∂̂δf(x), (1.22)

where cl ∗ denotes the weak∗ sequential closure.
The following formula is valid:

∂̄f(x) = lim sup
u
f→x

∂f(u),

where lim sup denotes the sequential Kuratowski–Painlevé upper limit of the
multifunction ∂f(·) with respect to the norm topology in X and the weak∗

topology in X∗.
Other limiting objects (the limiting superdifferential, the limiting differ-

ential, the limiting normal cone, the singular limiting subdifferential, and the
limiting coderivative) can be defined in a similar way.

Thus the limiting normal cone to a closed set Ω is defined by the equality

N̄(x|Ω) =
⋂
δ>0

cl ∗ N̂δ(x|Ω). (1.23)

It coincides with the limiting subdifferential of the indicator function δΩ of
Ω. An analog of Corollary 1.31.1 is also valid:

∂̄f(x) = {x∗ ∈ X∗ : (x∗,−1) ∈ N̄(x, f(x)|epi f)}. (1.24)

If dimX < ∞ the limiting normal cone (1.23) coincides with the conju-
gate cone defined in [66] as a set of limits of proximal normals. Due to (1.24)
the limiting subdifferential (1.22) coincides in this case with the generalized
derivative from [66].

The limiting objects (1.22), (1.23) have been well investigated. They
possess good calculus. See [63, 67, 69] for the properties of these objects in
finite dimensions and [49, 53, 70, 75] for infinite dimensional generalizations.
Some examples of calculating limiting subdifferentials can be found in [63,
67].

18



The limiting subdifferentials and normal cones proved to be very effi-
cient for formulating optimality conditions in nonsmooth optimization (see
[50, 52, 62, 63, 67, 69, 70, 75]), especially in finite dimensions. When ap-
plying limiting subdifferentials in infinite dimensional spaces one must be
careful about nontriviality of limits in the weak∗ topology. Additional regu-
larity conditions are needed (compact epi-Lipschitzness [7], sequential normal
compactness, partial sequential normal compactness [75, 74, 77], etc.).

Many nice finite dimensional results in terms of limiting objects cannot
be extended to infinite dimensions in full generality (see examples in [11, 12]).
Such results can be formulated in infinite dimensional spaces in a fuzzy form
(see Section 2).

1.10 Fréchet ε-Subdifferentials

In some cases it is convenient to use the following modifications of subdiffer-
entials depending on a parameter ε ≥ 0:

∂εf(x) =

{
x∗ ∈ X∗ : lim inf

u→x

f(u)− f(x)− 〈x∗, u− x〉
‖u− x‖

≥ −ε
}
, (1.25)

∂+
ε f(x) =

{
x∗ ∈ X∗ : lim sup

u→x

f(u)− f(x)− 〈x∗, u− x〉
‖u− x‖

≤ ε

}
. (1.26)

They are called respectively a (Fréchet) ε-subdifferential and a (Fréchet) ε-
superdifferential of f at x [51, 53] (see also [95]).

When ε = 0 the sets above coincide with the sub- and superdifferential
defined by (1.1) and (1.3). Contrary to the sets (1.1) and (1.3) the ε-sub-
and ε-superdifferential (1.25) and (1.26) (when ε > 0) depend on the specific
norm in X.

Proposition 1.33. ∂εf(x) = ∩α>ε∂αf(x).

The following three propositions extend Propositions 1.2, 1.3 and 1.6
respectively.

Proposition 1.34. If f is convex then

∂εf(x) = ∂f(x) + εB∗ =

{x∗ ∈ X∗ : f(u)− f(x) ≥ 〈x∗, u− x〉 − ε‖u− x‖,∀u ∈ X}. (1.27)

Remark 1.3. The set (1.27) differs from the ε-subdifferential in the sense of
convex analysis which is usually defined [91] as the set of x∗ ∈ X∗ such that
f(u)− f(x) ≥ 〈x∗, u− x〉 − ε for all u ∈ X.
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Proposition 1.35. If x∗1 ∈ ∂ε1f(x), x∗2 ∈ ∂+
ε2
f(x), ε1 ≥ 0, ε2 ≥ 0 then

‖x∗1 − x∗2‖∗ ≤ ε1 + ε2.

Proposition 1.36. If f is strictly differentiable at x with a derivative ∇f(x)
then for any ε > 0 there exists δ > 0 such that

∇f(x) ∈ ∂εf(u) ∩ ∂+
ε f(u)

for all u ∈ Bδ(x).

Using the scheme described above one can define a set of ε-normals [51,
53, 62]

Nε(x|Ω) =

{
x∗ ∈ X∗ : lim sup

u
Ω→x

〈x∗, u− x〉
‖u− x‖

≤ ε

}
to Ω (it is not a cone when ε > 0) and an ε-coderivative

∂εF (x, y)(y∗) = {x∗ ∈ X∗ : (x∗,−y∗) ∈ Nε(x, y|gphF )}

to a multifunction F and extend to the case ε > 0 the corresponding state-
ments.

The next proposition generalizing Proposition 1.31 describes ε-normals
to the epigraph.

Proposition 1.37. The following assertions hold true:
(a) If x∗ ∈ ∂εf(x) then (x∗,−1) ∈ Nε(x, f(x)|epi f);
(b) If µ ≥ f(x) and (x∗, λ) ∈ Nε(x, µ|epi f) then λ ≤ ε;
(c) If λ < −ε in (b) then µ = f(x) and −x∗/λ ∈ ∂ε̂f(x) where ε̂ =

ε(1 + |λ|−1‖x∗‖∗)/(|λ| − ε).

ε-subdifferentials (1.25) can be used for defining a modified version of the
strict δ-subdifferential:

∂̂ε,δf(x) =
⋃

u∈Bδ(x)

|cl f(u)−f(x)|≤δ

∂ε(cl f)(u). (1.28)

The set (1.28) is called a strict (ε, δ)-subdifferential of f at x. A strict (ε, δ)-
superdifferential, a strict set of (ε, δ)-normals and a strict (ε, δ)-coderivative
can be defined in a similar way (see [60, 61, 63]).

In their turn strict (ε, δ)-subdifferentials (1.28) can be used for defining
a kind of a limiting subdifferential

∂̃f(x) =
⋂

ε>0, δ>0

cl ∗ ∂̂ε,δf(x). (1.29)

It follows from [75] that the sets (1.29) and (1.22) coincide on a broad
class of Banach spaces, namely on Asplund spaces.
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1.11 Other Subdifferentials

1.11.1 Subdifferentials based on directional derivatives

Let f be directionally differentiable at x, i. e. the limit

f ′(x)(z) = lim
t→+0

f(x+ tz)− f(x)

t

exists (possibly infinite) for any z ∈ X. The function f ′(x)(·) is positively
homogeneous. Its subdifferential at 0, i. e. the set

∂f(x) = {x∗ ∈ X∗ : f ′(x)(z) ≥ 〈x∗, z〉,∀z ∈ X}.

is sometimes taken as a subdifferential of f at x [47].
If f ′(x)(·) is convex then f is called locally convex at x [47]. In this case

the application of the convex analysis allows deriving some calculus for such
subdifferentials. If f ′(x)(·) is also proper and closed, then

f ′(x)(z) = sup{〈x∗, z〉 : x∗ ∈ ∂f(x)} (1.30)

for any z ∈ X and f is called quasidifferentiable at x [90].

Proposition 1.38. ∂f(x) ⊂ ∂f(x). If dimX < ∞ and f is Lipschitz
continuous near x then equality holds true in the inclusion.

Proposition 1.38 follows easily from Propositions 1.17 and 1.16.
The class of functions admitting the representation (1.30) is a subclass

of the more general class of functions admitting the following representation
[18, 19]:

f ′(x)(z) = sup{〈x∗, z〉 : x∗ ∈ ∂f(x)}+ inf{〈x∗, z〉 : x∗ ∈ ∂f(x)} (1.31)

for any z ∈ X with some pair of closed convex sets ∂f(x) and ∂f(x). This
pair, though not uniquely defined, plays the role of a derivative for such
functions.

Proposition 1.39. If f admits the representation (1.31) then

∂f(x)− ∂f(x) ⊂ ∂f(x),

∂+f(x)− ∂f(x) ⊂ ∂f(x).
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1.11.2 Weakly convex functions

A continuous function f defined on a finite dimensional space X is called
weakly convex [84, 85] if there exists a function r : X × X → R such that
r(x, u)/‖x − u‖ → 0 when u → x uniformly relative to x in any closed
bounded subset of X and the set

G(x) = {x∗ ∈ X : f(u)− f(x)− 〈x∗, u− x〉+ r(x, u) ≥ 0,∀u ∈ X}

is nonempty for any x ∈ X.
The class of weakly convex functions includes smooth and convex func-

tions, and functions of maximum type. Under assumptions made the set
G(x) is evidently closed, convex, and bounded. It was proved in [84, 85]
that the multifunction G(·) is upper semicontinuous, f is locally Lipschitz,
everywhere directionally differentiable and quasidifferentiable:

f ′(x)(z) = max{〈x∗, z〉 : x∗ ∈ G(x)},∀x, z ∈ X.

Proposition 1.40. If f is weakly convex then ∂f(x) = G(x) for all x ∈ X.

1.11.3 ε-support functionals

An element x∗ ∈ X∗ is called [26] an ε-support functional for f at x if there
exists δ > 0 such that

f(u)− f(x) ≥ 〈x∗, u− x〉 − ε‖u− x‖,∀u ∈ Bδ(x).

The set of all such elements is denoted Sεf(x) and is called an ε-support for
f at x. This set has properties very similar to those of the ε-subdifferential,
but it may be nonclosed.

Proposition 1.41. ∂εf(x) = ∩α>εSαf(x).

1.11.4 Screens and derivate containers

Let a set Uf(x) ⊂ X∗ has the following property: for any ε > 0, α > 0 there
exist δ ∈ (0, α] and a continuously finitely differentiable function g : X → R
such that |f(u)− g(u)| ≤ εδ and ∇g(u) ∈ Uf(x) for all u ∈ Bδ(x).

Let us recall that a function g is called finitely differentiable [33, 34, 82]
at x (with a derivative ∇g(x)) if for any finite dimensional subspace Z ⊂ X
the function z → f(x + z) : Z → R is differentiable at 0 and its derivative
coincides with the restriction of ∇g(x) to Z.

The set Uf(x) is a derivative-like object. It is not uniquely defined. If
f is continuous and can be represented as a uniform limit of a sequence
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of continuously finitely differentiable functions fi, i = 1, 2, . . ., then for any
δ > 0, j > 0 one can take

Uf(x) =
⋃

u∈Bδ(x)
i≥j

{∇fi(u)}.

Theorem 1.42. Let Uf(x) 6= ∅. Then ∂f(x) ⊂ clUf(x).

Proof. Let x∗ /∈ clUf(x). Then there exists η > 0 such that

‖x∗ − u‖∗ > η, ∀u ∈ Uf(x). (1.32)

Let us denote ε0 = η/4 and let us select a number δk and a function gk
in accordance with the definition of the set Uf(x) for ε = ε0/4 and α = 1/k.

Let us define, for some positive integer Nk, a finite set of points xi ∈ X,
i = 0, 1, . . . , Nk, from the following conditions:

(a) x0 = x, xi+1 = xi + hzi, i = 0, 1, . . . , Nk − 1,
(b) ‖zi‖ = 1, i = 0, 1, . . . , Nk − 1,
(c) h = δk/(2Nk),
(d) 〈x∗ −∇gk(xi), zi〉 > η, i = 0, 1, . . . , Nk − 1.
It is possible to find zi satisfying (d), because due to (a), (b), (c) one has

‖xi − x‖ ≤ Nkh =
δk
2
, i = 1, 2, . . . , Nk, (1.33)

g is finitely differentiable at xi, ∇g(xi) ∈ Uf(x) and (1.32) holds true.
The following estimate is valid for sufficiently large Nk :

gk(xNk)− gk(x)− 〈x∗, xNk − x〉 =

Nk−1∑
i=0

(

∫ h

0

〈∇gk(xi + tzi), zi〉dt− h〈x∗, zi〉) ≤

h

Nk−1∑
i=0

〈∇gk(xi)− x∗, zi〉+
ηδk
4
.

Taking into account (d) and (c) we have

gk(xNk)− gk(x)− 〈x∗, xNk − x〉 < −
ηδk
4

= −ε0δk. (1.34)

Now recall that gk is the approximation of the initial function f :

|f(u)− gk(u)| ≤ ε0

4
δk, ∀u ∈ Bδk(x). (1.35)
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It follows from (1.34), (1.35) and (1.33) that

f(xNk)− f(x)− 〈x∗, xNk − x〉 < −ε0
δk
2
≤ −ε0‖xNk − x‖. (1.36)

xNk → x as k →∞. The condition (1.36) means that x∗ /∈ ∂f(x).

Theorem 1.42 characterizes subdifferentials of functions which can be
approximated by smooth functions near the point under consideration. It
is easy to deduce from it the relation between the (Fréchet) subdifferential
and the screen of H. Halkin [36, 37].

Let f be a function defined on an open set U in Rn and taking values
in Rm. A set U ⊂ Rmn is called a screen of f at x ∈ U if for any ε > 0,
α > 0 there exist δ ∈ (0, α] and a continuously differentiable function g :
Bn
δ (x)→ Rm such that Bn

δ (x) ⊂ U , |f(u)−g(u)| ≤ εδ and ∇g(u) ∈ U+εBmn

for all u ∈ Bn
δ (x).

Let y∗ be an arbitrary vector in Rm. It is not difficult to see that if U is
a screen of f at x then a set y∗U = {y∗u : u ∈ U} satisfies all the properties
of the introduced above derivative-like object for the function 〈y∗, f〉.

Corollary 1.42.1. If U is a screen of f at x then ∂〈y∗, f〉(x) ⊂ cl (y∗U) for
any y∗ ∈ Rm.

A screen of a function is defined not uniquely. As it was noted in [36]
the examples of screens are the generalized gradient [15] (and the generalized
Jacobean [16]) of Clarke (see [17]) and the derivate container of Warga [97,
98].

In [99] J. Warga presented a modified definition of the directional derivate
container {Λεf(x) : ε > 0} for a function f : Ω → Y , where Ω is a convex
compact set in X and Y is a Banach space. Application of Theorem 1.42
makes possible to derive the following result.

Corollary 1.42.2. If {Λεf(x) : ε > 0} is a directional derivate container of
f at x and x ∈ intΩ then for any y∗ ∈ Y ∗, ε > 0 and η > 0 there exists δ > 0
such that ∂〈y∗, f〉(u) ⊂ {A∗y∗ : A ∈ Λεf(x)}+ ηB∗ for any u ∈ Bδ(x).

Remark 1.4. The assumption x ∈ intΩ in the statement of Corollary 1.42.2
is essential. Let us consider a function f : [0, 1]→ R : f ≡ 0. If we define f
outside of [0, 1] setting f(u) =∞, then evidently ∂f(1) = [0,∞). But at the
same time the singleton {0} is a directional derivate container of f at 1.
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2 Variational Principles and Fuzzy Calculus

2.1 Variational Principles

The variational analysis is based on some cornerstone results named varia-
tional principles (see [88, 93]). Nowadays several of them are known. But
the first and probably the most important one was certainly the variational
principle of Ekeland.

Theorem 2.1 (I. Ekeland [25]). Let f : X → R̄ be lower semicontinuous
and bounded below, ε > 0, λ > 0. Suppose that

f(v) < inf f + ε.

Then there exists x ∈ X such that
(a) ‖x− v‖ < λ,
(b) f(x) ≤ f(v),
(c) the function u→ f(u) + (ε/λ)‖u− x‖ attains a local minimum at x.

This theorem was proved in [25] for a more general setting of an arbitrary
complete metric space. Since then it has been widely used in variational
analysis and proved to be a very powerful tool of investigating extremal
problems. It makes possible to substitute an “almost minimal” point (up to ε)
by another point, arbitrary close to the initial one, which is a local minimizer
for a slightly perturbed (by adding a small norm-type term) function.

The only disadvantage of the conclusion of Theorem 2.1 for some appli-
cations is that the perturbation term in (c) is nonsmooth even if the norm
in X is differentiable on X\{0}. This disadvantage was eliminated in the
smooth variational principle of Borwein and Preiss at the cost of narrowing
the class of spaces where it is valid.

Let us say that X is Fréchet smooth if there exists an equivalent norm in
X which is Fréchet differentiable away from 0.

Theorem 2.2 (J. M. Borwein and D. Preiss [6]). Let X be Fréchet smooth,
f : X → R̄ be lower semicontinuous and bounded below, ε > 0, λ > 0.
Suppose that

f(v) < inf f + ε.

Then there exist a convex C1 function g on X and x ∈ X such that
(a) ‖x− v‖ < λ,
(b) f(x) ≤ f(v),
(c) the function u→ f(u) + g(u) attains a minimum at x,
(d) ‖∇g(x)‖∗ < ε/λ.
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Theorem 2.2 was also proved in [6] for a more general setting of an arbi-
trary Banach space. But the differentiability of the perturbation term g and
the estimate (d) is guaranteed only for Fréchet smooth spaces.

Both Theorems 2.1 and 2.2 can be considered as examples of “fuzzy”
results. All other “fuzzy” results are based on Theorems 2.1, 2.2 and their
modifications. The traditional approach of variational analysis consists in
applying some necessary optimality conditions to the “perturbed” function
and formulating some ε-optimality conditions for the initial problem at a
point close to the initial one.

Let us mention such important “fuzzy” results which follow from Theorem
2.2 as the Extremal principle and the Fuzzy sum rule (see below). It was
proved in [5] that they are actually equivalent to Theorem 2.2 (under the
assumption that the space is Fréchet smooth).

Other useful variational principles can be found in later publications
[9, 20, 21, 30, 80, 88]. There exist strong relations between differential prop-
erties of the perturbation (or supporting) function in the corresponding vari-
ational principles and the differential properties of the norm (or the “bump”
function) in the space under consideration (see [31]).

It is possible to obtain an estimate similar to (d) in Theorem 2.2 in
more general spaces. This time at the cost of eliminating mentioning the
perturbation function from the statement. The corresponding result is called
the Subdifferential variational principle.

Theorem 2.3 (B. S. Mordukhovich and B. Wang [80]). Let X be Asplund,
f : X → R̄ be lower semicontinuous and bounded below, ε > 0, λ > 0.
Suppose that

f(v) < inf f + ε.

Then there exist x ∈ X and x∗ ∈ ∂f(x) such that
(a) ‖x− v‖ < λ,
(b) f(x) ≤ f(v),
(c) ‖x∗‖∗ < ε/λ.

Let us recall that a Banach space is called Asplund [1] (see [88]) if any
continuous convex function on it is Fréchet differentiable on a dense set of
points. Asplund spaces form a rather broad subclass of Banach spaces. See
[21, 88] for various properties and characterizations of Asplund spaces. This
class includes e. g. all spaces which admit Fréchet differentiable bump func-
tions (in particular, Fréchet smooth spaces). Reflexive spaces are examples
of Fréchet smooth spaces.

Asplund spaces have proved to be very convenient for investigating differ-
ent properties of nonsmooth functions. Actually Asplund property of Banach
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spaces is not only sufficient but also a necessary condition for the fulfillment
of some basic results in nonsmooth analysis involving Fréchet normals and
subdifferentials (see [31, 32, 73, 79] and statements below).

If X is Fréchet smooth the statement above follows immediately from
Theorem 2.2 due to Corollary 1.12.3. It was actually contained in the state-
ment of the main result in [6].

It was also proved in [80] that the Subdifferential variational principle is
equivalent to the Extremal principle and cannot be extended to non-asplund
spaces.

2.2 Fréchet Subdifferentials in Differentiability Spaces

The equivalent representation of the Fréchet subdifferential given by Proposi-
tion 1.5 was presented in a general Banach space setting. Under an additional
assumption on the space X this statement can be strengthened.

Theorem 2.4. Let X be Fréchet smooth. Then x∗ ∈ ∂f(x) if and only if
there exists a function g : X → R such that

(a) g(u) ≤ f(u) for any u ∈ X, and g(x) = f(x),
(b) g is continuously Fréchet differentiable on X and ∇g(x) = x∗,
(c) g is concave.

Theorem 2.4 (without the condition (c)) was proved in [21]. The fact that
g can be chosen concave was added in [12]. Stronger versions of Theorem
2.4 were obtained in [31], where the necessity of smooth renorms (bump
functions) for the validity of variational principles was also proved.

Actually Theorem 2.4 establishes the equivalence (for the Fréchet smooth
case) between the Fréchet subdifferential and the viscosity Fréchet subdiffer-
ential (see [10, 12]).

Corollary 2.4.1. Let X be Fréchet smooth. Then x∗ ∈ N(x|Ω) if and only
if there exists a function g : X → R such that

(a) g(u) ≤ 0 for any u ∈ Ω and g(x) = 0,
(b) g is continuously Fréchet differentiable on X and ∇g(x) = x∗.
(c) g is concave.

Simple examples show that the subdifferential (1.1) can be empty (see
examples 1.1, 1.2, 1.4 above). Given an arbitrary lower semicontinuous func-
tion, it is important to know how large the set of points of subdifferentiability
is. To make this set rich enough one must again impose additional assump-
tions on the space X.
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A Banach space is called a subdifferentiability space [40] (for some kind of a
subdifferential) if any lower semicontinuous function on it is subdifferentiable
on a dense subset of its domain dom f = {u ∈ X : f(u) <∞}.

The following theorem states that for the Fréchet subdifferential the class
of subdifferentiability spaces coincides with Asplund spaces. It even says
more: in a non-asplund space there exists a lower semicontinuous function
which is nowhere Fréchet subdifferentiable.

Theorem 2.5. The following assertions are equivalent:
(a) X is an Asplund space;
(b) for any lower semicontinuous function f : X → R̄ the set {u ∈ X :

∂f(u) 6= ∅} is dense in dom f ;
(c) for any lower semicontinuous function f : X → R̄ there exists

x ∈ dom f such that ∂f(x) 6= ∅.

Some parts of Theorem 2.5 can be found in [26, 29, 31, 40]. It actually
shows that Fréchet subdifferentials can be considered appropriate for Asplund
spaces and that they are not very good in general Banach spaces.

Let us note that the implication (a)⇒ (b) in Theorem 2.5 follows imme-
diately from Theorem 2.3.

Condition (b) in Theorem 2.5 can be strengthened: the set {(u, f(u)) ∈
X × R : ∂f(u) 6= ∅} is dense in gph f .

Theorem 2.5 guarantees that for a lower semicontinuous function on an
Asplund space there exists a point of subdifferentiability in any neighborhood
of a given point in its domain. Other fuzzy results in Asplund spaces can be
found below in the rest of the section.

Using the notion of a strict δ-subdifferential one can formulate the fol-
lowing corollary of Theorem 2.5.

Proposition 2.6. The following assertions are equivalent:
(a) X is an Asplund space;
(b) ∂δf(x) 6= ∅ for any lower semicontinuous at x function f : X → R̄

and any δ > 0.

2.3 Sum Rules

As it was mentioned in the Introduction the direct calculus of Fréchet and
other “simple” subdifferentials is rather poor because their definitions do not
take into account “differential” properties of a function in a neighborhood
of a given point. Nevertheless, there exists a way of developing the calculus
for them either in the limiting (see [38, 49, 53, 67, 69, 75]) or in the “fuzzy”
form (see [12, 27, 28, 29, 39, 40, 42, 55, 104]).
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The central point of any subdifferential calculus is certainly the Sum rule
which allows to express elements of a subdifferential of the sum of functions
in terms of subdifferentials of initial functions.

After the Sum rule was first established in the limiting form in [49] (see
[53, 67]) most efforts have been devoted to deriving fuzzy sum rules (see
[10, 12, 22, 28, 29, 40, 44, 76]). Now two main versions of the fuzzy sum
rule are known. For simplicity they are formulated below in terms of strict
δ-subdifferentials.

Rule 2.1 (Weak fuzzy sum rule). Let f1, f2, . . . , fn : X → R be lower semi-
continuous in a neighborhood of x. Then

∂(
n∑
i=1

fi)(x) ⊂
n∑
i=1

∂̂δfi(x) + U∗.

for any δ > 0 and any weak∗ neighborhood U∗ of 0 in X∗.

Rule 2.2 (Strong fuzzy sum rule). Let f1, f2, . . . , fn : X → R be lower
semicontinuous in a neighborhood of x. Suppose that all fi but at most one
of them are Lipschitz in a neighborhood of x. Then

∂(
n∑
i=1

fi)(x) ⊂
n∑
i=1

∂̂δfi(x) + δB∗.

for any δ > 0.

Unfortunately, the above sum rules can fail in infinite dimensions. To
improve the situation one must again narrow the class of spaces. A Banach
space is called a trustworthy space [40] (for some kind of a subdifferential) if
Rule 2.1 is valid in it.

The following theorem proved by M. Fabian [29] states that for the Fréchet
subdifferential the class of trustworthy spaces coincides with Asplund spaces.

Theorem 2.7. The following assertions are equivalent:
(a) X is an Asplund space;
(b) Weak fuzzy sum rule 2.1 is valid in X;
(c) Strong fuzzy sum rule 2.2 is valid in X.

Both Rules 2.1, 2.2 are corollaries of the following Basic (or Null) sum
rule which is also valid in Asplund spaces only.
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Rule 2.3 (Basic fuzzy sum rule). Let f1, f2, . . . , fn : X → R be locally
uniformly lower semicontinuous at x. Suppose that

∑n
i=1 fi attains a local

minimum at x. Then

0 ∈
n∑
i=1

∂̂δfi(x) + δB∗.

for any δ > 0.

Let us recall that lower semicontinuous in a neighborhood of x functions
f1, f2, . . . , fn : X → R are called locally uniformly lower semicontinuous
[10, 12] at x if

inf
u∈Bδ(x)

n∑
i=1

fi(u) ≤ lim
η→+0

inf
‖ui−uj‖≤η
ui,uj∈Bδ(x)

i,j=1,2,...,n

n∑
i=1

fi(ui)

for some δ > 0.
The following proposition gives two important sufficient conditions for

the local uniform lower semicontinuity property. It explains the way how
Rules 2.1, 2.2 follow from Rule 2.3.

Proposition 2.8. The functions f1, f2, . . . , fn : X → R are locally uniformly
lower semicontinuous at x if one of the following conditions holds true:

(a) all fi but at most one of them are uniformly continuous in a neigh-
borhood of x;

(b) at least one of fi has compact level sets in a neighborhood of x.

The main argument used when deducing Rules 2.1 and 2.2 from Rule 2.3
is the following: if x∗ ∈ ∂(

∑n
i=1 fi)(x) then for any ε > 0 the sum of n + 2

functions f1, f2, . . . , fn+2 attains a local minimum at x, where fn+1(u) =
−〈x∗, u〉, fn+2(u) = ε‖u− x‖.

In case of Rule 2.2 the functions f1, f2, . . . , fn but at most one of them
are uniformly continuous in a neighborhood of x. So are the functions
f1, f2, . . . , fn+2. Local uniform lower semicontinuity follows from Proposi-
tion 2.8 (a).

In case of Rule 2.1 to make the functions locally uniformly lower semi-
continuous at x one must add one more function δL – an indicator function
of some finite dimensional subspace L of X containing x. Evidently it has
compact level sets in a neighborhood of x and makes the whole collection of
functions locally uniformly lower semicontinuous due to Proposition 2.8 (b).
The presence of this last function in the system explains the necessity to
consider a weak∗ neighborhood of 0 in the statement of Rule 2.1.
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To prove Rule 2.3 one must first allow somehow each function in
∑n

i=1 fi
to have its own argument. In the Fréchet smooth case it is usually done by
considering the following sequence of penalized functions on Xn:

vk(u1, u2, . . . , un) =
n∑
i=1

fi(ui) + k

n∑
i,j=1

‖ui − uj‖2 + ‖un − x‖2.

The penalty terms are differentiable. Application of the smooth variational
principle (Theorem 2.2) at the point (x, x, . . . , x) gives all the desired esti-
mates.

To prove Rule 2.3 in the Asplund case the separable reduction technique
is used (see [27, 29]).

Weak fuzzy sum rule yields the following representation of Fréchet nor-
mals to the intersection of closed sets.

Proposition 2.9. Let X be Asplund, Ωi, i = 1, 2, . . . , n be closed sets in X.
Then

N(x,
n⋂
i=1

Ωi) ⊂
n∑
i=1

N̂δ(x,Ωi) + U∗.

for any δ > 0 and any weak∗ neighborhood U∗ of 0 in X∗.

All the sum rules formulated above could be called local fuzzy sum rules :
they are related to some point x. There exists a nonlocal version of the sum
rule [103]. It is not related to any point, and strict δ-subdifferentials are not
appropriate for the formulation. The rule is formulated below in terms of
“simple” subdifferentials.

Let us define a constant

µ0 = lim
η→0

inf
diam (u1,...,un)<η

n∑
i=1

fi(ui) −

some extended minimal value for the sum of functions. Here we use the
denotation: diam (Ω) = sup{‖ω1 − ω2‖ : ω1, ω2 ∈ Ω}.

Rule 2.4 (Nonlocal fuzzy sum rule). Let f1, f2, . . . , fn : X → R be lower
semicontinuous in a neighborhood of x. Suppose that µ0 <∞. Then for any
δ > 0 there exist xi ∈ X, i = 1, 2, . . . , n, such that diam (x1, . . . , xn) < δ,∑n

i=1 fi(xi) < µ0 + δ, and

0 ∈
n∑
i=1

∂fi(xi) + δB∗.
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It was proved in [104] that the nonlocal fuzzy sum rule is equivalent to
the local one (anyone of them) and it is one more characterization of Asplund
spaces.

Other fuzzy calculus results (chain rules, formulas for maximum-type
functions, mean value theorems, etc.) for functions and multifunctions can be
deduced from (some form of) the sum rule (see [12, 42, 46, 55, 56, 70, 76, 103]).

2.4 Extremal Principle

And now one more fuzzy result – the Extremal principle. It continues the
line of variational principles (see subsection 2.1) and is in a sense equivalent
to them and to sum rules from subsection 2.3.

Let Ω1, Ω2 be closed sets in X.

Definition 2.1. A system of sets Ω1, Ω2 is called extremal if Ω1 ∩ Ω2 6= ∅
and there exist sequences {aik} ∈ X, i = 1, 2, such that aik → 0 when
k →∞ and

(Ω1 − a1k) ∩ (Ω2 − a2k) = ∅, k = 1, 2, . . . . (2.1)

This definition means that 1) the two sets have nonempty intersection
and 2) their intersection can be made empty by an arbitrarily small shift
of the sets. Both sets are shifted in the definition above. It is not difficult
to show that it can be reformulated equivalently with a single sequence and
only one set being shifted.

Definition 2.2. A system of sets Ω1, Ω2 is called locally extremal near
x ∈ Ω1 ∩ Ω2 if there exists a neighborhood U of x such that the system of
sets Ω1 ∩ U , Ω2 ∩ U is extremal.

This is equivalent to replacing condition (2.1) in the original definition
by the following one:

(Ω1 − a1k) ∩ (Ω2 − a2k) ∩ U = ∅, k = 1, 2, . . . .

The notion of an extremal set system was introduced in [62, 63] for the
case of n sets (which can be easily reduced to the case of two sets). It char-
acterizes mutual arrangement of sets in space and represents rather general
notion of extremality: some (locally) extremal system corresponds to a (lo-
cal) solution of any optimization problem (see various examples in [52, 62, 67]
and the recent survey paper [71]). A simple example of an extremal system
is provided by the pair {x},Ω, where x is a boundary point of Ω.

Following [57], let us introduce a constant

θ(Ω1,Ω2) = sup{r ≥ 0 : Br ⊂ Ω1 − Ω2}, (2.2)
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describing the rate of “overlapping” of Ω1 and Ω2. The difference of sets
in (2.2) is understood in the algebraic sense: Ω1 − Ω2 = {ω1 − ω2 :
ω1 ∈ Ω1, ω2 ∈ Ω2}. When Ω1 ∩ Ω2 = ∅ we suppose that θ(Ω1,Ω2) = −∞.

Using this constant makes the definition of an extremal system simpler.

Proposition 2.10. A system of sets Ω1, Ω2 is extremal if and only if
θ(Ω1,Ω2) = 0.

Now let us define for ω1 ∈ Ω1, ω2 ∈ Ω2 and ρ > 0 one more constant
based on (2.2):

θ̃Ω1,Ω2(ω1, ω2, ρ) = θ([Ω1 − ω1] ∩Bρ, [Ω2 − ω2] ∩Bρ). (2.3)

It is a local constant related to some ω1 ∈ Ω1, ω2 ∈ Ω2. It is nondecreasing
as a function of ρ. When ω1 = ω2 = x one evidently has

θ̃Ω1,Ω2(x, x, ρ) = θ(Ω1 ∩Bρ(x),Ω2 ∩Bρ(x))

and we immediately come to the following equivalent definition of the locally
extremal system.

Proposition 2.11. A system of sets Ω1, Ω2 is locally extremal near
x ∈ Ω1 ∩ Ω2 if and only if there exists ρ > 0 such that θ̃Ω1,Ω2(x, x, ρ) = 0.

The constant (2.3) will be used in Section 3. It is important that the
points ω1, ω2 are allowed to be different.

Both Definitions 2.1 and 2.2 (and their equivalent representations given
by Propositions 2.10 and 2.11) – are primal space conditions. Now let us
consider some dual space conditions expressed in terms of Fréchet normals.

Definition 2.3. Let us say that the generalized Euler equation holds true
at x ∈ Ω1 ∩ Ω2 if for any δ > 0 there exist such elements x∗1 ∈ N̂δ(x|Ω1),
x∗2 ∈ N̂δ(x|Ω2) that

‖x∗1 + x∗2‖∗ < δ,

‖x∗1‖∗ + ‖x∗2‖∗ = 1.

Definition 2.3 describes a fuzzy form of the separation property. In finite
dimensions it can be equivalently reformulated in terms of limiting normals.

As the following Extremal principle says the generalized Euler equation
is closely related to the notion of the extremal set system described above.

Extremal principle. If a system of sets Ω1, Ω2 is locally extremal near
x ∈ Ω1 ∩ Ω2 then the generalized Euler equation holds true at x.

33



The Extremal principle was first proved in [62] (see also [52, 63, 67]) for
the case of n sets in a Fréchet smooth space (and in terms of ε-normals). The
following theorem proved in [73] says that it is valid in an arbitrary Asplund
space and can be considered as an extremal characterization of Asplund
spaces.

Theorem 2.12. The following assertions are equivalent:
(a) X is an Asplund space;
(b) The Extremal principle is valid in X.

Due to Theorems 2.7, 2.12 the Extremal principle is equivalent to Sum
rules. It is also equivalent to some other basic results of nonsmooth analysis
(see [12, 104]).

The Extremal principle can be viewed as a certain generalization of the
classical separation theorem for convex sets with no interiority-like assump-
tions. The generalized Euler equation characterizes extremal properties of
set systems. It was used in [52, 62, 63, 67, 75] as a main tool for deducing
calculus formulas and necessary optimality conditions.

The stronger version of the Extremal principle (for extended extremal
systems) will be proved in Section 3.

As it was noticed in [73] considering the extremal system provided by the
pair {x},Ω, where x is a boundary point of a closed set Ω makes possible
to deduce from Theorem 2.12 the following nonconvex generalization of the
well-known Bishop-Phelps theorem (see [88]).

Corollary 2.12.1. Let X be Asplund, Ω be closed and let x ∈ bd Ω. Then
for any δ > 0 there exists x∗ ∈ N̂δ(x|Ω) such that ‖x∗‖∗ = 1.

3 Extended Extremality

This section is devoted to extending traditional primal space extremality
notions. The goal is to formulate the weakest possible conditions (definitions
of extremality) for which known dual space necessary conditions expressed
in a fuzzy or limiting form remain valid. On this way we come to, in a sense,
“fuzzy” primal space conditions, and dual space necessary conditions become
also sufficient.

Several results of this kind will be discussed below. We will start with the
definition of covering for a multifunction which was from the very beginning
defined in a fuzzy form (see [23]).
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3.1 Covering (Metric Regularity)

Let us consider a multifunction F : X ⇒ Y from X into another Banach
space Y with a closed graph gphF and let (x, y) ∈ gphF .

Definition 3.1. F covers near (x, y) if there exist a > 0 and neighborhoods
U of x and V of y such that

Baρ(F (u) ∩ V ) ⊂ F (Bρ(u))

for any u ∈ U , ρ > 0 with Bρ(u) ⊂ U .

This property is sometimes referred to as covering or openness at a linear
rate. It is equivalent to the following metric or pseudo regularity property.

Definition 3.2. F is metrically regular near (x, y) if there exist c > 0 and
neighborhoods U of x and V of y such that

dist (u, F−1(v)) ≤ c dist (v, F (u))

for any u ∈ U , v ∈ V .

Both covering and metric regularity are equivalent to the pseudo Lips-
chitzness of the inverse mapping F−1.

Definition 3.3. F is pseudo Lipschitzian near (x, y) if there exist l > 0 and
neighborhoods U of x and V of y such that

F (u1) ∩ V ⊂ F (u2) + ‖u1 − u2‖

for any u1, u2 ∈ U .

The three properties defined above play a very important role in nons-
mooth analysis (see [23, 45, 64, 65, 68, 72, 77, 87]).

Theorem 3.1. The following assertions are equivalent:
(a) F covers near (x, y);
(b) F is metrically regular near (x, y);
(c) F−1 is pseudo Lipschitzian near (y, x).

Let us introduce some constants describing the covering property.

θF (x, y, ρ) = sup{r ≥ 0 : Br(y) ⊂ F (Bρ(x))}, (3.1)

θ̂F (x, y) = lim inf
(u,v)

gphF
→ (x,y)

ρ→+0

θF (u, v, ρ)

ρ
. (3.2)

Definition 3.1 can now be reformulated equivalently in the following way.
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Proposition 3.2. F covers near (x, y) if and only if θ̂F (x, y) > 0.

Let us note that the constant θ̂F (x, y) is defined by (3.2) “in a fuzzy way”:
it incorporates other constants calculated in nearby points.

The absence of the covering property, i. e. the case θ̂F (x, y) = 0, cor-
responds to, in a sense, extremal (singular) behavior of F . Optimality in
extremal problems can be treated as extremality (noncovering) for some mul-
tifunctions and the Covering theorem (Theorem 3.3 below) can serve as a tool
for deducing optimality conditions. E. g. the Extremal principle (Section 2)
can be deduced from Theorem 3.3.

In general, the above definition of covering transforms into definitions of
“extended extremality” and the Covering theorem leads to necessary and suf-
ficient extremality conditions. This explains why this property was selected
to start the current section.

The following constant defined in terms of dual space elements is used for
characterizing the covering property:

bF (x, y) = sup
δ>0

inf{‖x∗‖∗ : x∗ ∈ ∂̂δF (x, y)(y∗), ‖y∗‖∗ = 1}. (3.3)

Theorem 3.3 (Covering Theorem). Let X, Y be Asplund spaces. F covers
near (x, y) if and only if bF (x, y) > 0.

An analog of Theorem 3.3 was proved in [54] for the case of a Fréchet
smooth space Y and with no assumptions on X. It was formulated in terms
of ε-coderivatives.

Using the result of M. Fabian [29] (see Theorem 2.7) instead of applying
the variational principle of Ekeland [25] (Theorem 2.1) makes it possible to
derive the Covering Theorem as it is stated here. We will prove below the
following statement which yields Theorem 3.3.

Proposition 3.4. θ̂F (x, y) ≤ bF (x, y). If bF (x, y) > 0 and X, Y are Asplund
spaces then θ̂F (x, y) > 0.

Proof. Let us suppose for simplicity that the maximum-type norm is used in
X ×Y : ‖u, v‖ = max(‖u‖, ‖v‖). Let x∗ ∈ ∂F (u, v)(y∗) and ‖y∗‖∗ = 1. Then
due to the definition of the coderivative one has

lim
ρ→+0

sup
(u′,v′)∈gphF

‖(u′,v′)−(u,v)‖≤ρ

〈x∗, u′ − u〉 − 〈y∗, v′ − v〉
‖(u′, v′)− (u, v)‖

≤ 0

and it follows from (3.1) that ‖x∗‖∗ ≥ lim infρ→+0 θF (u, v, ρ)/ρ. Taking into

account definitions (3.2) and (3.3) we conclude that bF (x, y) ≥ θ̂F (x, y).
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Now let θ̂F (x, y) = 0 and θ̂F (x, y) = limk→∞ θF (uk, vk, ρk)/ρk for

some sequences (uk, vk)
gphF→ (x, y), ρk → +0. We can suppose that

θF (uk, vk, ρk) <∞. Then there exists wk ∈ Y such that

θF (uk, vk, ρk) < ‖wk − vk‖ < θF (uk, vk, ρk) + ρ2
k

and wk /∈ F (Bρk(uk)). Thus ‖v − wk‖ > 0 for any (u, v) ∈ gphF such that
‖u− uk‖ ≤ ρk and it follows from the variational principle of Ekeland (The-
orem 2.1) that there exists (xk, yk) ∈ gphF such that ‖(xk, yk)− (uk, vk)‖ ≤
ρk/(1 + ρk) and the function

(u, v)→ ‖v − wk‖+ ρ−1
k (1 + ρk)‖wk − vk‖ · ‖(u, v)− (xk, yk)‖

attains at (xk, yk) a local minimum on gphF .
So (xk, yk) is a local minimizer for the sum of three functions f1(u, v) =

‖v − wk‖, f2(u, v) = ρ−1
k (1 + ρk)‖wk − vk‖ · ‖(u, v) − (xk, yk)‖, f3(u, v) =

δgphF (u, v) on X × Y . The first two functions are convex and Lips-
chitz and the third one is lower semicontinuous. One can apply the
Strong fuzzy sum rule 2.2. There exist (xik, yik) ∈ X × Y and
(x∗ik, y

∗
ik) ∈ ∂fi(xik, yik), i = 1, 2, 3, such that ‖(xik, yik)− (xk, yk)‖ ≤ ρk,

(x3k, y3k) ∈ gphF , ‖
∑3

i=1(x∗ik, y
∗
ik)‖∗ ≤ ρk.

Evidently x∗1k = 0, ‖(x∗2k, y∗2k)‖∗ ≤ ρ−1
k (1 + ρk)‖wk − vk‖. Without loss of

generality we can assume that ‖y1k−yk‖ < ‖wk−yk‖. Hence ‖y1k − wk‖ > 0
and ‖y∗1k‖∗ = 1. Consequently ‖x∗3k‖∗ ≤ ρ−1

k (1 + ρk)‖wk − vk‖ + ρk <
(1 + ρk)(θF (uk, vk, ρk)/ρk +ρk)+ρk and ‖y∗3k‖∗ ≥ 1−ρ−1

k (1+ρk)‖wk − vk‖−
ρk > 1− (1 + ρk)(θF (uk, vk, ρk)/ρk + ρk)− ρk > 0 if k is large enough.

Let us denote x∗k = x∗3k/‖y∗3k‖∗, y∗k = −y∗3k/‖y∗3k‖∗. Then ‖y∗k‖∗ = 1,
x∗k ∈ ∂F (u3k, v3k)(y

∗
k) and ‖x∗k‖∗ → 0 as k → ∞. This means that

bF (x, y) = 0.

In case of an ordinary (single-valued) continuous mapping f : X → Y the
following constants are used in the definition of the covering property instead
of (3.1), (3.2):

θf (x, ρ) = sup{r ≥ 0 : Br(f(x)) ⊂ f(Bρ(x))},

θ̂f (x) = lim inf
u→x
ρ→+0

θf (u, ρ)

ρ
,

and under additional Lipschitzness assumption in the dual covering criterion
instead of (3.3) one can use the constant

bf (x) = sup
δ>0

inf{‖x∗‖∗ : x∗ ∈ ∂̂δ〈y∗, f〉(x), ‖y∗‖∗ = 1}.
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Theorem 3.5. Let X, Y be Asplund spaces and let f be Lipschitz continuous
near x. f covers near x if and only if bf (x) > 0.

Various fuzzy criteria and constants for covering (metric regularity) prop-
erties were obtained in [72] in Asplund (something in Banach) spaces.

3.2 Extended Extremal Principle

The Extremal principle (Section 2) says that the generalized Euler equation is
a necessary condition for (local) extremality of a set system. At the same time
the generalized Euler equation can be true for sets not necessary satisfying
Definition 2.2. There exists a way of extending the definition in such a way
that the necessary condition remains valid (it even becomes sufficient). It is
more convenient to do it starting from the equivalent definition of extremality
given by Proposition 2.11 (see [58, 60, 61]).

Let us introduce for closed sets Ω1, Ω2 in X and x ∈ Ω1 ∩ Ω2 one more
local constant based on (2.3):

θ̂Ω1,Ω2(x) = lim inf
ω1

Ω1→x, ω2
Ω2→x

ρ→+0

θ̃Ω1,Ω2(ω1, ω2, ρ)

ρ
. (3.4)

The definition (3.4) is very similar to (3.2) and as it will be shown below
the notion of extended extremality of sets corresponds exactly to the notion
of covering of multifunctions.

Definition 3.4. A system of sets Ω1, Ω2 is extended extremal (e-extremal)
near x ∈ Ω1 ∩ Ω2 if θ̂Ω1,Ω2(x) = 0.

The condition θ̂Ω1,Ω2(x) = 0 is weaker than the one used in Proposi-
tion 2.11 for characterizing local extremality: if θ̃Ω1,Ω2(x, x, ρ) = 0 for some

ρ > 0 then, of course, θ̂Ω1,Ω2(x) = 0.

Proposition 3.6. If a system of sets Ω1, Ω2 is locally extremal near x, then
it is e-extremal near x.

Contrary to the condition in Proposition 2.11 Definition 3.4 does not
impose strict “nonoverlapping” of sets but up to an arbitrarily small defor-
mation. Second, the sets do not need to “nonoverlap” in x: it is sufficient
that in any its neighborhood there exist such points ω1 ∈ Ω1, ω2 ∈ Ω2, that
the sets Ω1 − ω1, Ω2 − ω2 “almost nonoverlap”.

Definition 3.4 leads to Extended extremal principle.
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Extended extremal principle. A system of sets Ω1, Ω2 is e-extremal near
x ∈ Ω1 ∩ Ω2 if and only if the generalized Euler equation holds true at x.

The next theorem extends Theorem 2.12.

Theorem 3.7. The following assertions are equivalent:
(a) X is an Asplund space;
(b) The Extremal principle is valid in X;
(c) The Extended extremal principle is valid in X.

Due to Proposition 3.6 the only implication which needs to be proved is
(a) ⇒ (c). The direct proof of this statement can be found in [61]. Below
this implication is deduced from the Covering theorem (Theorem 3.3).

Proof of (a) ⇒ (c). Let us consider a function F : X ×X → X defined by
the relations: F (ω1, ω2) = ω1 − ω2 if ω1 ∈ Ω1, ω2 ∈ Ω2, and F (ω1, ω2) = ∅
otherwise. It is continuous on Ω1 ×Ω2 and its graph gphF is a closed set in
X ×X ×X. If ω1 ∈ Ω1, ω2 ∈ Ω2, ρ > 0 then

θF (ω1, ω2, ω1 − ω2, ρ) =

sup{r ≥ 0 : Br(ω1 − ω2) ⊂ Ω1 ∩Bρ(ω1)− Ω2 ∩Bρ(ω2)} =

sup{r ≥ 0 : Br ⊂ [Ω1 − ω1] ∩Bρ − [Ω2 − ω2] ∩Br} = θ̃Ω1,Ω2(ω1, ω2, ρ).

Hence θ̂F (x, x, 0) = θ̂Ω1,Ω2(x) and extended extremality of Ω1,Ω2 near x is
equivalent to the absence of the covering property for F near (x, x, 0).

Let Ω1, Ω2 be extended extremal near x. Due to Theorem 3.3
this yields bF (x, x, 0) = 0, i. e. for any δ > 0 there exist ω1 ∈ Ω1,
ω2 ∈ Ω2, v∗1, v

∗
2, y
∗ ∈ X∗ such that ‖ω1 − x‖ ≤ δ, ‖ω2 − x‖ ≤ δ, ‖y∗‖∗ = 1,

‖(v∗1, v∗2)‖∗ ≤ δ and (v∗1, v
∗
2) ∈ ∂F (ω1, ω2, ω1 − ω2)(y∗). The last condition

yields two inclusions: v∗1 − y∗ ∈ N(ω1|Ω1), v∗2 + y∗ ∈ N(ω2|Ω2). Without
loss of generality we can suppose that δ ≤ 1/2. Then α = ‖v∗1 − y∗‖∗ +
‖v∗2 + y∗‖∗ ≥ 1. Let us denote x∗1 = (v∗1 − y∗)/α, x∗2 = (v∗2 + y∗)/α. Then one
has x∗1 ∈ N(ω1|Ω1), x∗2 ∈ N(ω2|Ω2), ‖x∗1 + x∗2‖∗ ≤ δ, ‖x∗1‖∗ + ‖x∗2‖∗ = 1, i. e.
the generalized Euler equation is true.

Conversely, let the generalized Euler equation hold true at x: for any
δ > 0 there exist x1 ∈ Ω1, x2 ∈ Ω2, x∗1 ∈ N(x1|Ω1), x∗2 ∈ N(x2|Ω2) such that
‖x1 − x‖ ≤ δ, ‖x2 − x‖ ≤ δ, ‖x∗1 + x∗2‖∗ ≤ δ, ‖x∗1‖∗ + ‖x∗2‖∗ = 2. Then the
norm of one of the elements x∗1 and x∗2, say x∗1, is not less than 1. Let us
denote y∗ = x∗1/‖x∗1‖∗, v∗ = x∗2/‖x∗1‖∗. Then ‖y∗‖∗ = 1, ‖y∗ + v∗‖∗ ≤ δ,
y∗ ∈ N(x1|Ω1), y∗ ∈ Nδ(−x2| − Ω2). Hence

lim sup

ω1
Ω1→x1, ω2

Ω2→x2

〈y∗, (ω1 − ω2)− (x1 − x2)〉
‖(ω1, ω2)− (x1, x2)‖

≤ δ (3.5)
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and F does not cover near (x, x, 0), because otherwise the upper limit in
the left-hand side of (3.5) is greater than some fixed positive a if δ is small
enough. The system Ω1, Ω2 is extended extremal near x and consequently
the Extended extremal principle is valid in X.

Let us note that the sufficient part of the Extended extremal principle
was proved above without using the asplundity assumption. It is valid in
arbitrary Banach space.

Similarly to the initial definition of an extremal system the notion of an
extended extremal system can be expanded for the case of n sets.

Definition 3.5. A system of n closed sets Ωi, i = 1, 2, . . . , n, is e-extremal
near x if the system of two sets Ω̃1 =

∏n
i=1 Ωi and Ω̃2 = {(ω, ω, . . . , ω) ∈ Xn}

is e-extremal near (x, x, . . . , x) ∈ Xn.

Proposition 3.8. Let I = {1, 2, . . . , n}, j ∈ I. A system of sets Ωi,
i ∈ I, is e-extremal near x if the system of sets Ω̃1 =

∏
i∈I\{j}Ωi and Ω̃2 =

{(ω, ω, . . . , ω) ∈ Xn−1 : ω ∈ Ωj} is e-extremal near (x, x, . . . , x) ∈ Xn−1.

The following theorem gives a dual criterion of e-extremality (the gener-
alized Euler equation).

Theorem 3.9. Let X be an Asplund space. A system of sets Ωi,
i = 1, 2, . . . , n, is e-extremal near x if and only if for any δ > 0 there ex-
ist such elements x∗i ∈ N̂δ(x|Ωi), i = 1, 2, . . . , n, that

||x∗1 + x∗2 + · · ·+ x∗n||∗ < δ,

||x∗1||∗ + ||x∗2||∗ + · · ·+ ||x∗n||∗ = 1.

The proof of Theorem 3.9 reduces to calculating the cones N(x̃|Ω̃1) and
N(x̃|Ω̃2).

3.3 Extended (f,Ω,M)-Extremality

One more abstract scheme of deducing (extended) extremality conditions is
developed below. It is in a sense a counterpart of extended extremal principle
and is equivalent to it.

Let Ω and M be closed sets in Banach spaces X and Y respectively and
f be a function from Ω into Y . Let x ∈ Ω, f(x) ∈M .

We will suppose that f is M -closed, i. e. the graph gphF of the multi-
function

F (u) = f(u)−M, u ∈ Ω, (3.6)
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is closed in X × Y .
If M = {0} the last condition means that f is continuous (on Ω). If

Y = R and M = R− (M = R+) then f is lower (upper) semicontinuous.
Ω, M and f are treated here as elements of an abstract extremal prob-

lem characterized by the multifunction (3.6), (the absence of) the covering
property of the latter multifunction playing the crucial role in analysis of the
problem.

The constants (3.1), (3.2) in case of (3.6) take the following form:

θΩ,M,f (x, y, ρ) = θ(f(Ω ∩Bρ(u))− y,M), (3.7)

θ̂Ω,M,f (x) = lim inf
(u,v)

gphF
→ (x,0)

ρ→+0

θF (u, v, ρ)

ρ
. (3.8)

It is supposed in (3.7) that y ∈ F (x) and (3.8) corresponds to the case y = 0.
Surely, 0 ∈ F (x) due to the assumption that f(x) ∈M .

Definition 3.6. x is extended (f,Ω,M)-extremal if θ̂Ω,M,f (x) = 0.

The above definition is a modification of the corresponding definitions
from [52, 54, 61]. Contrary to the known abstract notions of extremality
there are no assumptions on the set M in Definition 3.6: it does not need to
be convex and/or to have nonempty interior.

Definition 3.6 gives a rather general notion of (extended) extremality,
embracing different optimality notions in optimization problems. If e. g. x
is a local solution of the nonlinear programming problem

minimize f0(u)
subject to fi(u) ≤ 0, i = 1, 2, . . . ,m,

fi(u) = 0, i = m+ 1, . . . , n,
u ∈ Ω,

where Ω is a closed set, m,n are nonnegative integers, m ≤ n, func-
tions fi are lower semicontinuous for i = 0, 1, . . . ,m and continuous
for i = m+ 1, . . . , n, then x is extended (f,Ω,M)-extremal if one takes
f = (f0 − f0(x), f1, f2, . . . , fn) : X → Rn+1, M = Rm+1

− × 0.
Application of the Covering theorem (Theorem 3.3) to the multifunction

(3.6) leads to the following statement.

Theorem 3.10. Let X, Y be Asplund. x is extended (f,Ω,M)-extremal if
and only if for any δ > 0 there exists an element y∗ ∈ Y ∗, such that ||y∗||∗ = 1
and

∂̂δF (x, 0)(y∗) ∩Bδ 6= ∅. (3.9)
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The above theorem gives general extremality conditions. The element y∗

can be viewed as an analog of the Lagrange multipliers vector in the classical
problem of nonlinear programming. (3.9) yields the inclusion

y∗ ∈ N̂δ(f(x)|M), (3.10)

generalizing conditions on signs of multipliers and complementarity slackness
conditions.

The following statement is a corollary of Theorem 3.10 under the addi-
tional Lipschitzness assumption.

Theorem 3.11. Let X, Y be Asplund and let f be Lipschitz continuous near
x. x is extended (f,Ω,M)-extremal if and only if for any δ > 0 there exists
an element y∗ ∈ Y ∗ such that ||y∗||∗ = 1,

∂̂δ〈y∗, f〉(x) ∩Bδ 6= ∅ (3.11)

and (3.10) holds true.

The inclusion (3.11) generalizes the classical Lagrange multipliers rule.
Some examples of necessary optimality conditions, derived from Theo-

rem 3.11, can be found in [57].

3.4 Extended minimality

This subsection is devoted to an extended notion of minimality of a real-
valued function introduced in [61].

Let ϕ : X → R̄ be lower semicontinuous and ϕ(x) <∞. Let us denote

θϕ(x, ρ) = inf
u∈Bρ(x)

ϕ(u)− ϕ(x),

θ̂ϕ(x) = lim sup
u
ϕ
→x

ρ→+0

θϕ(u, ρ)

ρ
.

Surely, both constants are nonpositive.

Definition 3.7. x is a point of extended minimum (e-minimum) of ϕ if
θ̂ϕ(x) = 0.

It is a particular case of Definition 3.6: one can take f(u) = ϕ(u)−ϕ(x),
Ω = domϕ, M = R−.

The following statement is an easy consequence of the definition: it cor-
responds to the case θϕ(x, ρ) = 0 for some ρ > 0.
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Proposition 3.12. If x is a point of local minimum of ϕ then it is a point
of e-minimum of ϕ.

Application of Theorem 3.10 leads to the following result.

Proposition 3.13. Let X be Asplund. x is a point of e-minimum for ϕ if
and only if ∂̂δϕ(x) ∩Bδ 6= ∅ for any δ > 0.

In the smooth case a set of e-minimal points coincides with a set of station-
ary points (in Asplund spaces this statement follows from Proposition 3.13).

Proposition 3.14. Let ϕ be strictly differentiable at x. x is a point of e-mi-
nimum for ϕ if and only if ∇ϕ(x) = 0.

In general the notion of extended minimality is closely related to some
extended notion of stationarity introduced by B. Kummer [65].

Definition 3.8. x is a stationary point of ϕ (with respect to minimization) if
it is a limit of local ε-Ekeland points xε of ϕ for ε→ +0 (ϕ(u) + ε‖u−xε‖ ≥
ϕ(xε) for all u in some neighborhood of xε) with ϕ(xε)→ ϕ(x).

Following the approach of the current paper this definition can be rewrit-
ten equivalently using some constants:

τϕ(x, ρ) = inf
u∈Bρ(x)\{x}

min(
ϕ(u)− ϕ(x)

‖u− x‖
, 0), (3.12)

τ̂ϕ(x) = lim sup
u
ϕ
→x

ρ→+0

τϕ(u, ρ). (3.13)

Proposition 3.15. x is a stationary point of ϕ (with respect to minimiza-
tion) if and only if τ̂ϕ(x) = 0.

The following theorem says that both definitions 3.7 and 3.8 are actually
equivalent.

Theorem 3.16. x is a point of extended minimum of ϕ if and only if x is a
stationary point of ϕ (with respect to minimization).

Proof. The sufficient part is evident because τϕ(x, ρ) ≤ θϕ(x, ρ)/ρ ≤ 0 for
any ρ > 0. The necessity was proved by B. Kummer1 using the Ekeland’s
variational principle. If x is a point of extended minimum of ϕ then θ̂ϕ(x) = 0
and consequently there exist sequences {uk} ⊂ X, {ρk} ⊂ R+ such that

uk
ϕ→ x, ρk → 0 and ϕ(u)−ϕ(uk) ≥ −ρ2

k for all u ∈ B2ρk(uk). Then it follows
from Theorem 2.1 that there exists xk ∈ Bρk(uk) such that ϕ(xk) ≤ ϕ(uk) and

ϕ(u)−ϕ(xk) ≥ −ρk‖u−xk‖ for all u near xk. Surely, xk
ϕ→ x, τϕ(xk, ρ) ≥ −ρk

if ρ is sufficiently small, and τ̂ϕ(x) = 0.

1Personal communication
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It is worth noting one more relation of the extended minimality notion.
If one takes a limit in (3.12) as ρ → +0 then one more constant comes into
life:

τ̃ϕ(x) = lim inf
u→x

min(
ϕ(u)− ϕ(x)

‖u− x‖
, 0).

It coincides up to a sign with a slope |∇ϕ|(x) of ϕ at x, which was used in
[45] for characterizing metric regularity properties of multifunctions.

Taking into account (3.13) one has

τ̂ϕ(x) = lim sup
u
ϕ→x

τ̃ϕ(u) = − lim inf
u
ϕ→x

|∇ϕ|(u). (3.14)

The lower limit in the right-hand side of (3.14) could be called a strict slope
of ϕ at x. It is this constant which (without being defined explicitly) actually
works in [45].

The last statement of the section shows that the definition of extended
minimality is stable relative to small deformations of the data.

Proposition 3.17. Let ψ be strictly differentiable at x with ∇ψ(x) = 0. If
x is a point of e-minimum for ϕ then it is a point of e-minimum for ϕ+ ψ.

Let us take for example a problem of unconditional minimization of a
real valued function ϕ(u) = u2 defined on a real line. u = 0 is obviously a
point of minimum. If we add to ϕ an indefinitely small (in a neighborhood of
u = 0) function ψ(u) = −|u|3/2, then u = 0 is no longer a point of minimum
(Actually it is a point of local maximum of ϕ+ψ). When using the extended
definition of minimality, u = 0 remains a point of minimum for ϕ+ ψ as far
as it is a point of minimum for ϕ and ∇ψ(0) = 0.

Some other examples of extended minimal points can be found in [61].
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