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Abstract. We exhibit natural classes of Polish topological groups G such
that every continuous action of G on a compact space has a fixed point, and
observe that every group with this property provides a solution (in the nega-
tive) to a 1969 problem by Robert Ellis, as the Ellis semigroup E(U) of the
universal minimal G-flow U , being trivial, is not isomorphic with the greatest
G-ambit. Further refining our construction, we obtain a Polish topological
group G acting freely on the universal minimal flow U yet such that S(G) and
E(U) are not isomorphic. We also display Polish topological groups acting
effectively but not freely on their universal minimal flows. In fact, we can pro-
duce examples of groups of all three types having any prescribed infinite weight.
Our examples lead to dynamical conclusions for some groups of importance in
analysis. For instance, both the full group of permutations S(X) of an infinite
set, equipped with the pointwise topology, and the unitary group U(H) of an
infinite-dimensional Hilbert space with the strong operator topology admit no
free action on a compact space, and the circle S1 forms the universal minimal
flow for the topological group Homeo +(S1) of orientation-preserving homeo-
morphisms. It also follows that a closed subgroup of an amenable topological
group need not be amenable.

Introduction

As was shown by Veech [38], every locally compact group admits a free action
on a compact space. (Earlier Ellis proved this for discrete groups [7].) Little seems
to be known to date about the existence of free actions on compacta for other
kinds of topological groups. At the same time, this topic is linked to the following
problem posed by Ellis in his 1969 Lectures on Topological Dynamics [8, Ch. 7]
and readvertised by J. Auslander in the book [2, p. 120] and by de Vries in his
recent monograph [40, Note IV.7.4.13]: is the canonical morphism from the greatest
ambit (universal pointed compact G-flow) S(G) onto the Ellis semigroup E(U) of
the universal minimal flow U = U(G) an isomorphism of ambits for a topological
group G?

One obvious necessary condition for the answer to be positive is that G act
effectively on U , and a natural way to establish this is to prove that G admits a
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4150 V. G. PESTOV

free action on a compact space or, equivalently, acts freely on the greatest ambit.
In this case, G must act freely on the universal minimal flow, which is embedded
into the greatest ambit. On the other hand, it is natural to ask if G can behave in
the ‘opposite’ way, that is, can it happen that every action of a topological group
G on a compact space has a fixed point?

This question appears in the 1970 paper of Mitchell [25]. The existence of a
fixed point in every compact G-space is in fact an extremely strong version of
amenability (cf. [11], Sec. II.4), which is why topological (semi)groups with this
property have been called extremely amenable [16]. It appears that the first example
of such a topological group was constructed in 1975 by Herer and Christensen [19]
quite independently of the problematics of topological dynamics (in particular, the
authors were unaware of either Mitchell’s or Ellis’s problems), and their paper,
in turn, remains to date virtually unknown to topological dynamicists. At the
same time, the existence of extremely amenable topological groups means that in
general Ellis’s problem is answered in the negative. Indeed, for any such group G
the enveloping semigroup of the universal minimal G-flow is trivial, E(U) = {e},
while the greatest ambit of every topological group G contains a topological copy
of G and is therefore nontrivial if G is. Apparently, this is the first time such an
observation has been made.

While the example from [19] looks more like a genuine counter-example con-
structed with a particular purpose in mind, we exhibit vast classes of extremely
amenable topological groups which are very natural.

5.4. Main Theorem. Let G be a group of automorphisms of an infinite linearly
ordered set X acting transitively on n-subsets of X for each n. Equip G with the
topology of pointwise convergence. Then every continuous action of the topological
group G on a compact space has a fixed point. Equivalently, the universal minimal
G-flow is a singleton: U(G) ∼= {∗}.

Even if our examples were directly motivated by Ellis’s problem, they appear
to be of considerable interest on their own. Indeed, they lead to dynamical conse-
quences for some topological groups having great prominence in analysis. According
to the above result, the topological group Aut (Q,≤) is extremely amenable. Among
topological groups containing it as a topological subgroup are the full symmetric
group S(X) of an infinite set X endowed with the topology of simple convergence,
the unitary group U(H) of an infinite-dimensional Hilbert space equipped with the
strong operator topology, and the group of self-homeomorphisms of the Hilbert
cube, Homeo (Iω), with the compact-open topology. Our result means that none
of these groups acts freely on any compact space. At the same time, the groups
Homeo (Iω) and S(X) act effectively on their universal minimal flows. Such exam-
ples seem to be the first of their kind.

The property of extreme amenability is shared by the group Homeo +(I) of
all orientation-preserving homeomorphisms of the closed unit interval with the
compact-open topology, as well as by the group Homeo +(R). As another con-
sequence, the universal minimal flow of the topological group Homeo +(S1) is iso-
morphic to S1 itself. Such instances where a topological group lends itself to an
explicit description of the universal minimal flow are uncommon (indeed, possibly
this is the first such example ever).
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As yet another corollary of our major result, we observe that the class of topolog-
ical groups acting freely on compacta is not closed under formation of topological
quotient groups and therefore does not form a variety in the sense of [26].

Also, we show that the discrete free group F2 on two generators is contained in
Aut (Q,≤) as a closed topological subgroup. Therefore, a closed subgroup of an
amenable topological group in general need not be amenable, in sharp contrast to
the well known result for locally compact groups. (Cf. e.g. [17], Th. 3.2.2.)

A natural question to ask in view of the existence of extremely amenable topo-
logical groups is whether or not the ambits S(G) and E(U) are isomorphic when
the action of G on S(G) is free. We show that the answer to this is also nega-
tive: through refining the previous construction, we obtain an example of a Polish
topological group acting freely on its greatest ambit yet such that S(G) and E(U)
are non-isomorphic. There are examples of such topological groups having any
prescribed infinite weight.

After the present paper was circulated in August 1996 as a Victoria University
of Wellington research report, the author learned from Eli Glasner that examples
of extremely amenable topological groups had been known to him for quite a while,
and also — again, independently — to H. Furstenberg and B. Weiss, but never
published. Since then, Glasner’s examples were written up and made public [13].
Those examples, which are different from but can be linked to that in [19], are
of a totally different nature from ours and include even monothetic topological
groups. Later on I was made aware of a recent solution by Glasner [12], [13] of
Ellis’s problem in the negative for the acting group G = Z, which is of course the
pre-eminent case.

For the most part, we restrict our attention to the special case where a topological
group G has a neighbourhood basis formed by open subgroups — or, equivalently,
the greatest ambit S(G) is zero-dimensional. In passing, we single out a class of
topological groups which are typically very far from being locally compact and yet
act freely upon their greatest ambits: the so-called P -groups, characterized by the
property that every Gδ subset is open [5]. This result is surprising, as P -groups
have been used for producing ‘nasty’ counter-examples [30]–[32].

It is important to realize that the reported results (those by Herer and Chris-
tensen [19], Glasner [12], [13], and the present author) do not ‘close’ Ellis’s problem
but rather reshape it, giving substance to further open questions. We discuss them
at the end of the article.

1. Preliminaries and conventions

All topological groups in this article are assumed to be Hausdorff, all topological
spaces Tychonoff (completely regular T1), and all uniform spaces (X,U) separated
(
⋂ U = ∆X). The full symmetric group of a set X is denoted by S(X). Any action

τ : G→ S(X) of a group G on a set X is interpreted as an action on the left, that
is, we associate to it a map G×X → X, (g, x) 7→ gx ≡ τgx. By a G-flow we mean
a compact G-space. The group Homeo (X) of all homeomorphisms of a locally
compact space X onto itself is always equipped with the compact-open topology.
For an orientable topological manifold X , Homeo +(X) denotes the subgroup of
orientation-preserving homeomorphisms.

Let (X,U) be a uniform space. For a cover γ of X , set γ̃ =
⋃{W ×W : W ∈

γ} ⊆ X2. We say that γ is subordinated to V ∈ U if γ̃ ⊆ V . Recall that γ is
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uniform [21, p. 199] if γ̃ ∈ U . We denote by C∗U the finest totally bounded unifor-
mity on X contained in U . It is the coarsest uniformity making each f ∈ C∗(X,U)
uniformly continuous, where C∗(X,U) stands for the algebra of all bounded uni-
formly continuous real-valued functions on (X,U). The completion of (X, C∗U) is a
compactum, called the Samuel compactification of (X,U). In particular, the Stone-
C̆ech compactification βX of a topological space X is the Samuel compactification
of (X,UX), where UX is the finest compatible uniformity.

If X is compact, then UX is the unique compatible uniformity, and every finite
open cover γ is automatically uniform [21, Th. 6.33]. A compactum X is zero-
dimensional if and only if a basis of UX is formed by entourages of the form γ̃,
where γ are finite disjoint open covers of X .

Let G be a topological group. For a subset V ⊆ G we denote

V� = {(x, y ∈ G2 |xy−1 ∈ V }
and

V� = {(x, y ∈ G2 |x−1y ∈ V }.
(Here the subscripts � and � conveniently indicate the position of the inversion
symbol in the expressions xy−1 and x−1y, respectively.) The uniformity U�(G)
with a base formed by all sets V�, as V runs over neighbourhoods of eG, is called
the left uniform structure by some authors [2], [8], [38], [39] and the right uniform
structure by others [20], [21], [6]. We will denote by C∗

� (G) the algebra formed
by all bounded U�-uniformly continuous real-valued functions on G, that is, the
bounded f : G→ R with

∀ε > 0, ∃V 3 eG, ∀x, y ∈ G, (xy−1 ∈ V )⇒ |f(x)− f(y)| < ε.

Every continuous action τ of a topological group G on a uniform space (X,U) by
uniform homeomorphisms extends uniquely to an action of G on the Samuel com-
pactification (X̂, Ĉ∗U). The extended action is continuous if τ is motion equicon-
tinuous in the sense that for every V ∈ U the set {g ∈ G | ∀x ∈ X, (x, gx) ∈ V }
forms a neighbourhood of unity in G [4, Th. 3.1]; [39]. (See also [23] for a more
general result.)

An ambit is a compact G-space X with a distinguished point x ∈ X such that
the orbit G ·x is everywhere dense in X . Since U�(G) is motion equicontinuous with
respect to the left action of G on itself (τgh = gh), the Samuel compactification
of (G,U�(G)) forms an ambit with eG as the distinguished point. It is denoted by
S(G) and called the greatest ambit for G. The choice of name is justified by the
following universal property. For every G-ambit (X, x) the orbit map g 7→ gx is
U�-uniformly continuous and therefore extends to a unique continuous map (onto)
S(G)→ X sending eG to x and commuting with the action of G [35], [4], [2], [40].

The canonical action of a topological group G on the greatest ambit S(G) is
evidently effective. In fact, it enjoys a stronger property which would be best
expressed by the unused adjective ‘topologically effective.’

1.1. Proposition. (Teleman [35]; see also [4, Th. 3.2].) For any topological group
G, the canonical action of G on the greatest ambit S(G) is an isomorphism of G
with a topological subgroup of HomeoS(G).

By Zorn’s Lemma, S(G) contains a minimal compact G-invariant subset, U ,
which forms a universal minimal G-flow in the sense that for every minimal G-flow
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X there exists a continuous equivariant surjection U → X . The universal minimal
flow U = U(G) is unique up to an isomorphism for any topological group G. (See
[8], [2], [40].)

The Ellis, or enveloping, semigroup E(X) of a compact G-space X is the closure
of the image of G in XX in the pointwise topology. It forms a G-ambit with the
distingushed point Id X and the action of G defined by τg(f) = g ◦ f (loc. cit.).
Ellis’s problem which stimulated the present investigation is whether the canonical
morphism S(G)→ E(U) is an isomorphism of ambits for a topological group G [7],
[2], [40].

By Ĝ we denote the completion of a topological group G with respect to the two-
sided uniform structure [6, Sec. 2.1]. The following is a straightforward corollary
of Teleman’s result (1.1) and the well-known completeness of the group Homeo (X)
in the two-sided uniform structure.

1.2. Assertion. Let G be a topological group. Then S(G) is canonically isomor-
phic with S(Ĝ), and U(G) is isomorphic with U(Ĝ).

2. Generalia on free actions and fixed points

2.1. Proposition. For a topological group G and a subgroup H < G the following
are equivalent.
(i) H has a fixed point in S(G);
(ii) H has a fixed point in every compact G-space;
(iii) H has a fixed point in every minimal compact G-space;
(iv) H has a fixed point in the universal minimal compact G-space, U(G);
(v) for every finite collection g1, g2, . . . , gd ∈ H, d ∈ N, and every V ∈ C∗U�(G)
there is a b ∈ G with (b, gib) ∈ V for all i = 1, 2, . . . , d.

Proof. As (iv)⇔ (iii)⇔ (ii)⇔ (i) ⇒ (v) are obvious, only (v)⇒ (i) needs a proof.
Assume (v) is satisfied and fix an arbitrary finite collection g1, g2, . . . , gd ∈ H . For
each V ∈ C∗U�(G), choose an element bV ∈ G such that (bV , gibV ) ∈ V for all
i = 1, 2, . . . , d. Since S(G) is compact, the net {bV : V ∈ C∗U�(G)} has a cluster
point [21, Th. 5.2], say p ∈ S(G). We claim that p is a common fixed point for
all gi. Indeed, let U be any neighbourhood of p in S(G). Find a V ∈ C∗U�(G)
with V 2[p] ⊆ U . Since gi are (uniform) self-homeomorphisms of S(G), there exists
a W ∈ C∗U�(G) such that W 2 ⊆ V and (gix, giy) ∈ V whenever (x, y) ∈ W . Since
p is a cluster point, there is a W ′ ∈ C∗U�(G) with W ′ ⊆ W and bW ′ ∈ W [p]. Now
one has (p, bW ′) ∈ W , (bW ′ , gibW ′) ∈ W ′ ⊆ W , and (gibW ′ , gip) ∈ V . Therefore,
(p, gip) ∈ W ◦W ◦ V ⊆ V 2 and gip ∈ U . Since U is an arbitrary neighbourhood
of p, we have established that every finite collection of points of H has a common
fixed point in S(G).

For any finite subset K ⊆ H denote by ΦK the set of all common fixed points
for K in S(G); it is closed and nonempty. The collection F = {ΦK : K ∈ Pω(H)}
forms a prefilter, because ΦK ∩ΦL = ΦK∪L. Since S(G) is compact,

⋂F 6= ∅, and
any element of this intersection is a common fixed point for all of H .

The two most important particular cases are those where H = G and where H
is a cyclic subgroup generated by a g ∈ G. They lead to the following corollaries.

2.2. Corollary. For a topological group G the following are equivalent.
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(i) G has a fixed point in S(G);
(ii) G has a fixed point in every compact G-space;
(iii) the universal minimal G-flow is trivial;
(iv) every minimal compact G-space is trivial;
(v) for every finite collection g1, g2, . . . , gd ∈ G, d ∈ N, and every V ∈ C∗U�(G)
there is a b ∈ G with (b, gib) ∈ V for all i = 1, 2, . . . , d.

2.3. Corollary. For a topological group G the following are equivalent.
(i) G acts freely on the greatest ambit, S(G);
(ii) G admits a free action on a compact space;
(iii) G acts freely on some minimal compact space;
(iv) G acts freely on the universal minimal compact space U(G);
(v) for every g ∈ G, g 6= eG, there is a V ∈ C∗U�(G) such that for all x ∈ G, one
has (x, gx) /∈ V .

Denote by FC the class of all topological groups admitting free actions on com-
pact spaces. (Equivalently: G ∈ FC iff G acts freely on S(G).) The main result of
Veech [38] states that FC contains all locally compact groups. Here is a summary
of some simple properties of the class FC.
2.4. Proposition. (i) If a topological group H admits a continuous monomor-
phism into a group G ∈ FC, then H ∈ FC. In particular, the class FC is closed
under formation of topological subgroups.

(ii) The class FC is closed under the infinite direct products equipped with the
Tychonoff topology.

(iii) If a topological group G contains an open normal subgroup H belonging to
FC, then G ∈ FC.
Proof. (i) and (ii) are obvious. (iii) follows from two facts: (a) the discrete group
H\G is in FC; (b) the restriction of C∗U�(G) to H coincides with C∗U�(H).

2.5. Corollary. Every maximally almost-periodic group is in FC. In particular,
if X is a Tychonoff topological space, then the free topological group F (X) (see [1],
[14], [10], [20]) is in FC.
Proof. Every free topological group is MAP, as was observed by Gelbaum [10]. (His
note [10] is flawed, cf. [27], but not so far as this result is concerned.)

2.6. Corollary. The class FC is not closed under formation of topological factor-
groups and therefore does not form a variety of topological groups in the sense of
[26].

Proof. Every topological group G is a factor-group of the free topological group
F (G) on the underlying space of G [14]. At the same time, as will be shown
in Section 5 — or as follows from the results of [19] — FC does not contain all
topological groups.

3. Greatest ambits having dimension zero

3.1. Assertion. Let U be a uniformity on a set X having a basis of entourages
consisting of equivalence relations on X. Let V ∈ C∗U . Then there are an equiv-
alence relation R ∈ U and a finite disjoint cover γ of X by R-saturated subsets,
subordinated to V . Moreover, γ̃ ∈ C∗U .
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Proof. Since C∗U is totally bounded, there is a finite U-uniform open cover
{W1, . . . , Wk} of X , subordinated to V . For some equivalence relation R ∈ U
and every x ∈ X , R[x] ⊆ Wi for a suitable i. Set Ui = {x ∈ X : R[x] ⊆ Wi};
the collection {U1, . . . , Uk} is an open cover of X , and for each i, Ui = π−1

R πR(Ui),
where πR : X → X/R is the factor-map. Refine {πRU1, . . . , πRUk} to a disjoint
cover {V ′

1 , . . . , V ′
k} of the discrete uniform space X/R and set γ = {π−1

R (V ′
i ) : i =

1, . . . , k}. It remains to notice that the finite disjoint cover γ of X by R-saturated
subsets is automatically C∗U-uniform, because γ̃−1 ◦ γ̃ = γ̃.

3.2. Corollary. Let G be a topological group with a neighbourhood basis consisting
of open subgroups. A basis for the uniformity C∗U�(G) is formed by finite covers of
the form {π−1

H (Vi), i = 1, 2, . . . , n}, where H is an open subgroup of G, πH : G →
H\G is the factor map (g 7→ Hg), n ∈ N, and {Vi : i = 1, 2, . . . , n} is a finite
disjoint cover of the right factor-space H\G.

Proof. Equivalence relations of the form H� form a basis for U�(G), so Assertion
3.1 can be applied.

3.3. Corollary. Let G be a topological group in which open subgroups form a neigh-
bourhood basis. Then the greatest ambit of G is canonically homeomorphic to the
limit of the projective spectrum,

S(G) = lim←−Hβ(H\G),

taken over all open subgroups H < G.

Proof. It follows from Corollary 3.2 that under a natural embedding, (G, C∗U�(G))
is a uniform subspace of the limit of the projective spectrum of uniform spaces,

lim←−H(H\G, C∗UH\G),

where UH\G denotes the finest uniformity on the discrete factor-space.

3.4. Proposition. Let G be a topological group. The greatest ambit S(G) is zero-
dimensional if and only if open subgroups form a neighbourhood basis in G.

Proof. ⇒: Assume dimS(G) = 0. Then a basis of the unique uniform structure on
S(G) is formed by equivalence relations of the form γ̃, where γ runs over all finite
disjoint open covers of X . For any such γ, the set

{g ∈ G : ∀x ∈ X, (x, gx) ∈ γ̃}
clearly is a subgroup of G, and such sets produce a neighbourhood basis for G
(Proposition 1.1).
⇐ follows from Corollary 3.3.

3.5. Remark. I was informed by Michael Megrelishvili and Scarr Tzvi of Bar-Ilan
University (Israel) that Proposition 3.4 was known to them but never published.

4. A new class of groups acting freely on compacta

Here we show that the class of topological groups admitting free actions on
compact spaces extends beyond that formed by locally compact groups and their
immediate derivatives (like MAP groups, subgroups of products, etc.).

A P -space is a topological space X with the property that the intersection of
every countable family of open subsets is open. A P -group is a topological group
G that is a P -space [5]. Evidently, only discrete P -groups are locally compact, and
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overall the class of P -groups is rather exotic. Yet from the dynamical viewpoint
P -groups form a generalisation of discrete groups which is both natural and non-
trivial. Indeed, since each P -group G evidently has a neighbourhood basis formed
by open subgroups, the greatest ambit of such a group is zero-dimensional (Propo-
sition 3.4) and, as we prove below, the action of G on S(G) is free. At the same
time, P -groups need not have equivalent left and right uniformities [30], [31] and
ipso facto can behave very much unlike discrete groups.

4.1. Examples. 1. If G is any topological group, then the ultrapower GI
U of G

formed with respect to an ultrafilter U on a set I is the factor-group of GI by the
equivalence relation

x
U∼ y ⇔ {i ∈ I : xi = yi} ∈ U ,

equipped with the factor-topology of the box product topology on GI . If U is a
δ-incomplete free ultrafilter, then GI

U is a P -group; it is non-discrete whenever G
is [3], [31].

2. If K is an ordered field of an uncountable cofinality type and n ∈ N, then
GL(K, n) forms a P -group with respect to the natural product topology coming
from Kn2

, if K is equipped with the order topology. The topologo-algebraic prop-
erties of such groups can be rather nontrivial [30]–[32].

3. There exist P -groups admitting no nontrivial continuous homomorphisms to
locally compact groups. Let X be an uncountable set. An alternating subgroup,
A(X), of the full symmetric group S(X) consists of products of an even number
of transpositions of pairs of elements of X . All subgroups of A(X) of the form
SM =

⋂
x∈M Stx, leaving each element of an arbitrary countable subset M ⊂ X

stable, form a basis for a non-discrete P -group topology on A(X). Let f be a
non-trivial homomorphism from A(X) to a locally compact group G. Since A(X)
is simple [6, p. 216], f is a monomorphism. Since A(X) contains a subgroup
isomorphic to the group Sfin(X) of all finite permutations of X , it means the
existence of a locally precompact group topology on Sfin(X), which is impossible
in view of Gaughan’s results [9]; [6], Th. 7.1.9 and Ex. 7.8.2.

Other examples and properties of P -groups can be found in [5].

4.2. Theorem. Every P -group acts freely on its greatest ambit.

Proof. Let g ∈ G. Fix an open subgroup H ′ ⊆ G with H ′ 63 g. The subgroup
H =

⋂
n∈Z gnH ′g−n is open in G and H 63 g. Since for each x ∈ G one has g[x] ≡

g(Hx) = (gH)x = (Hg)x = H(gx) ≡ [gx], the right factor-space H\G admits a
natural left action of the cyclic subgroup 〈g〉 = {gn : n ∈ Z}. Since any two different
〈g〉-orbits either coincide or are disjoint, one can choose a function f : H\G →
Z3 = {0, 1, 2} such that for each [x] ∈ H\G, f [x] 6= f(g[x]), by constructing it for
each orbit separately. (Observe that by the choice of H , g[x] = [x] would imply
g = (gx)x−1 ∈ H .) The function f̃ = πH ◦ f : G → R, where πH : G → H\G
is the factor-map, is constant on all right cosets [x] ≡ Hx; therefore xy−1 ∈ H
implies |f(x) − f(y)| = 0, which means that f ∈ C∗

� (G). For every x ∈ G one has
|f̃(gx) − f̃(x)| = |f(g[x]) − f [x]| ≥ 1. It remains to define V ∈ C∗U�(G) by letting
(x, y) ∈ V ⇔ |f̃(x) − f̃(y)| < 1, and to apply Corollary 2.3.

4.3. Corollary. Every P -group acts freely on its universal minimal flow.
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5. Groups having trivial minimal flows

Let X = (X,≤) be a linearly ordered set. Denote by Aut (X) the group of
all order automorphisms of X , equipped with the topology of pointwise (simple)
convergence on X . A neighbourhood basis at unity consists of all open subgroups
of the form

StM = {g ∈ Aut (X) : ∀i = 1, . . . , n, g(mi) = mi},
where M = {m1, m2, . . . , mn} ⊂ X is an arbitrary finite subset, n ∈ N. This
topology makes Aut (X) into a topological group – in fact, a closed topological
subgroup of the symmetric group S(X) equipped with the pointwise topology [6,
Sec.7.1]. Since the latter group is complete in its two-sided uniformity (loc. cit.),
so is Aut (X).

Let us say that a group G of automorphisms of a linearly ordered set X is ω-
transitive if every finite subset of X can be mapped onto any other subset of the
same cardinality by an order automorphism g ∈ G. Call a linearly ordered set X
ω-homogeneous if Aut (X) acts ω-transitively on X . Such sets exist in profusion,
as the next simple result shows.

5.1. Assertion. Every linearly ordered skew field (division algebra) [29] is ω-
homogeneous as a linearly ordered set.

Proof. If x1 < x2 < · · · < xn and y1 < y2 < · · · < yn are two collections of elements
of a linearly ordered skew field F , the following piecewise linear transformation of
F onto itself does the job:

f(x) =


x + y1 − x1, if x ≤ x1,
yi + yi+1−yi

xi+1−xi
(x− xi), if xi ≤ x ≤ xi+1, i = 1, 2, . . . , n,

x + yn − xn, if x ≥ xn.

An example is the set Q of rational numbers with the usual order. Notice also
that a group of automorphisms of an ω-homogeneous linearly ordered set X is
ω-transitive if and only if it is everywhere dense in Aut (X).

5.2. Assertion. Let G be an ω-transitive group of automorphisms of an infinite
linearly ordered set X. Let M = {m1, m2, . . . , mn} be an arbitrary finite subset of
X, where n ∈ N. The right factor space StM\G is naturally homeomorphic to the
set Pn(X) of all n-subsets of X, equipped with the discrete topology. Namely, the
mapping

StM\G 3 [x] ≡ StMx
in7→ {x−1(m1), . . . , x−1(mn)} ∈ Pn(X)

is a correctly defined homeomorphism.

Proof. If [x] = [y], then yx−1 ∈ StM and for all i = 1, 2, . . . , n one has yx−1(mi) =
mi, which means x−1(mi) = y−1(mi). Since x is a bijection, x−1(mi) and x−1(mj)
are different whenever i 6= j, and therefore in is correctly defined. Assuming
in[x] = in[y], one deduces from x and y being order-preserving maps that x−1(mi) =
y−1(mi) for all i, and therefore y−1x ∈ StM and [x] = [y]. This means that in is
into. Now let k1 < k2 < · · · < kn be elements of an arbitrary n-subset of X . By the
finite transitivity of G, there exists an x ∈ G with x(ki) = mi for all i = 1, 2, . . . , n.
Hence in is onto. Finally, StM\G is discrete because StM is open in G.
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5.3. Lemma. Let G be an ω-transitive group of automorphisms of an infinite lin-
early ordered set X. Then for every finite collection g1, g2, . . . , gd ∈ G and any
entourage V ∈ C∗U�(G) there exists b ∈ G with (b, gib) ∈ V for all i = 1, 2, . . . , d.

Proof. Find a disjoint finite cover γ, subordinated to V and consisting of open
subsets Vi ≡ StM ·Vi, i = 1, 2, . . . , k, where M = {m1, m2, . . . , mn} ⊆ X (Corollary
3.2). Denote by γ′ = {V ′

1 , V ′
2 , . . . , V ′

k} the corresponding finite partition of StM\G.
Identify StM\G with Pn(X) as in 5.2. According to Infinite Ramsey’s Theorem
(see, e.g., [15, Th. 6.2.2]), there exists an infinite B ⊆ X such that Pn(B) ⊆ V ′

i for
some i.

Let K = {g−1
i (mj) : i = 1, . . . , d, j = 1, . . . , n} ∪M . Write K = {κ1, . . . , κt},

where κ1 < κ2 < · · · < κt. Since B is infinite, there exist β1, β2, . . . , βt ∈ B with
β1 < β2 < · · · < βt. Due to the ω-transitivity of G, there is an order automorphism
b ∈ G with b(β1) = κ1, b(β2) = κ2, . . . , b(βt) = κt.

The fact that b−1(mj) ∈ B for all j = 1, 2, . . . , n means that [b] ∈ Pn(B) ⊆ V ′
i

and therefore b ∈ Vi. Let i = 1, 2, . . . , d be arbitrary. One has (gib)−1(mj) =
b−1 ◦ g−1

i (mj) ∈ B for all j = 1, 2, . . . , n by the choice of b, and therefore [gib] ∈
Pn(B) ⊆ V ′

i and gib ∈ Vi.
Since {Vi} is subordinated to V , it follows that (b, gib) ∈ V , as required.

Lemma 5.3 and Proposition 2.2 imply the major result of our article.

5.4. Main Theorem. Let G be an ω-transitive group of automorphisms of an
infinite linearly ordered set X, equipped with the pointwise topology. Then every
continuous action of G on a compact space has a fixed point. Equivalently, the
universal minimal G-flow is a singleton: U(G) ∼= {∗}.
5.5. Corollary. For any infinite cardinal α, there exists a topological group G of
weight α such that every continuous action of G on a compact space has a fixed
point.

Proof. It is well known that the purely transcendental extension of degree α of the
field Q can be made into an ordered field [22]; denote it by F . It obviously has
cardinality α and, according to Assertion 5.1, forms an ω-homogeneous set. The
group Aut (F ) is easily verified to have weight α.

The following in itself is not a new result, cf. [19], but the example appearing in
it, which is entirely new, will be seen soon to have considerable interest on its own.

5.6. Corollary. There exists a non-trivial Polish (that is, separable completely
metrizable) topological group G such that every continuous action of G on a compact
space has a fixed point.

Proof. Such is Aut (Q,≤).

5.7. Remark. It is well known that a topological group G is amenable if and only
if every affine action of G on a compact convex set has a fixed point [2, th. 1.2.9].
A topological group is called strongly amenable if every proximal action of G on a
compact space has a fixed point [11, Sec. 2.3]. In view of this, we find it natural to
adopt the terminology proposed by Granirer [16] and call a topological (semi)group
G extremely amenable if every action of G on a compact space has a fixed point.
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6. Dynamical consequences for some known groups

6.1. Assertion. Let i : G → H be a continuous monomorphism of topological
groups with an everywhere dense image. If G is extremely amenable, so is H.

Proof. The composition of the action τ : H → Homeo X with i is an action of G
and therefore has a fixed point, whose stabiliser in H contains the image of G and
thus coincides with H .

6.2. Theorem. Each of the following topological groups is extremely amenable:
(i) Homeo +(I);
(ii) Homeo +(R);
(iii) the stabilizer of any point s ∈ S1 in the group Homeo +(S1).

Proof. Each of the three groups in question can be viewed as an ω-transitive au-
tomorphism group of a linearly ordered set: X = (0, 1), R, and S1 \ {s} ordered
counter-clockwise, respectively. By the Main Theorem 5.4, these groups are ex-
tremely amenable if equipped with the topology Ts of simple convergence on the
discrete set X . In each case it is easy to see that the compact-open topology is
(strictly) coarser than Ts. Assertion 6.1 finishes the proof.

6.3. Theorem. None of the following topological groups acts freely on any compact
space:
(i) the full symmetric group S(X) of an infinite set X with the topology of simple
convergence,
(ii) the unitary group U(H) of an infinite-dimensional Hilbert space with the strong
operator topology,
(iii) the group of all self-homeomorphisms of the Hilbert cube, Homeo (Iω), with the
compact-open topology.

Proof. According to Proposition 2.4(i) and Theorem 5.4, a topological group G
admitting a continuous monomorphism from Aut (Q) cannot act freely on a compact
space. At the same time, one has

Aut (Q) < S(ω) < U(l2) < Homeo (Iω),

where < denotes being a closed topological subgroup. (For the second inclusion
see, e.g., [6, p. 263], and for the third [36].) Finally, S(ω) embeds into S(X) as a
closed topological subgroup, and similarly U(l2) embeds into U(H).

6.4. Remark. The topological group Homeo Iω acts effectively on its universal min-
imal flow, because it acts effectively on the minimal flow Iω. This gives us an ex-
ample of a topological group whose action on its universal minimal flow is effective
but not free.

Here is one more such result.

6.5. Theorem. The topological group S(X) acts effectively on its universal mini-
mal flow.

Proof. Let σ be a transposition interchanging two fixed distinct elements x1 and x2

and leaving the rest of X unchanged. Let H = Stx1 ∩ Stx2 . The right factor-space
H\S(X) can be naturally identified with the set X(2) of all ordered pairs of distinct
elements of X , equipped with the discrete topology. The cyclic subgroup 〈σ〉 of
order two, generated by σ, acts upon H\S(X) ∼= X(2) on the left by interchanging
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the coordinates (σ(Hx)
def
= Hσ(x)). This action is obviously free. One can therefore

construct a function f : H\S(X) → Z2 such that for all [x] ∈ H\S(X), one has
f [x] 6= f(σ[x]). The composition f̃ of f with the factor-map S(X) → H\S(X) is
U�-uniformly continuous. Therefore, V = {(x, y) ∈ S(X)2 : |f̃(x) − f̃(y)| < 1} is
an element of C∗U�(S(X)), and for each x ∈ S(X), (x, σx) /∈ V . Proposition 2.1
(the easy implication (iv) ⇒ (v)) means that σ has no fixed points in the universal
minimal flow of S(X). Therefore, the kernel of inefficiency of the action of S(X)
on U(S(X)) does not contain σ. Since S(X) has no non-trivial closed normal
subgroups [6, Prop. 7.1.2(b)], this action is effective.

Here is another interesting example: the group Homeo +(S1), even though obvi-
ously not amenable, lends itself to a complete description of the universal minimal
flow.

6.6. Theorem. The universal minimal flow for the topological group Homeo +S1

is S1 itself.

Proof. Let X be a minimal Homeo +S1-flow. According to Theorem 6.2(iii), there
is an x ∈ X with Sts · x = x. Therefore, the orbit map Homeo +S1 → X , h 7→
hx factors through the left factor-space Homeo +S1/Sts, which is isomorphic as a
Homeo +S1-flow to S1. The emerging continuous map S1 → X is equivariant and
onto.

6.7. Theorem. The Ellis problem is solved in the negative for the topological group
Homeo +S1.

Proof. The Ellis semigroup E(S1) is identified with the set of all orientation-preserv-
ing maps S1 → S1 (continuous or not), and the unique uniform structure on E(S1)
is that of pointwise convergence (induced from (S1)S1

). We will accomplish our
proof by constructing a U�-uniformly continuous function f : Homeo +S1 → C that
is not uniformly continuous with respect to the pointwise uniformity. (Notice that
Homeo +S1 canonically embeds into E(S1) as a left Homeo +S1-flow.)

For each ε > 0, ε < 1, and any t ∈ [0, 1], denote by lε : [0, 1]→ [0, 1] the mapping
sending 0 to 0, ε to 1− ε and 1 to 1 and whose restriction to each of the intervals
[0, ε] and [ε, 1] is linear. Now set hε(e2πit) = e2πilε(t). Clearly, hε is a correctly
defined orientation-preserving homeomorphism of S1.

The uniformity U�(Homeo +S1) is determined by the basic entourages of the
form {(g, h) : ∀s ∈ S1, |gh−1(s)− s| < ε} for ε > 0, or, equivalently, the entourages
Vε = {(g, h) : ∀s ∈ S1, |h(s) − g(s)| < ε}. (Here we identify S1 with the unit
circle in C.) For any m, n ∈ N, m < n, the distance between h2−n(e2πi2−n

) and
h2−n(e2πi2−n

) is easily seen to exceed 1/4, which means that (h2−n , h2−m) /∈ V 1
4
.

Therefore, the family H = {h2−n : n ∈ N} is right uniformly discrete in Homeo +S1.
Since the latter group is separable and completely metrizable, any bounded right
uniformly continuous function on H extends to a similar function on Homeo +S1.
Fix a bounded right uniformly continuous f : Homeo +S1 → C with f(h2−n) =
n mod 2 ∈ {0, 1} for all n ∈ N.

Now let {x1, x2, . . . , xn} be any finite collection of elements of S1, and let ε > 0.
Let xi = e2πiti for all i, 0 ≤ ti < 1. For any m, n ≥ log2 min{t1, t2, . . . , tn, ε}
one clearly has |hn(xi) − hm(xi)| < ε for all i = 1, 2, . . . , n. At the same time,
|f(hm) − f(hn)| = 1 whenever m and n are of different parity. This means that
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f is not uniformly continuous with respect to the uniform structure induced on
Homeo +S1 from (S1)S1

, as required.

6.8. Corollary. There exists a Polish group G acting ‘topologically effectively’ on
its universal minimal flow U (i.e., the action establishes an isomorphism of G with
a topological subgroup of HomeoU) yet such that the G-ambits S(G) and E(U) are
not isomorphic.

6.9. Remark. It may be worth recalling other remarkably odd dynamical properties
of the same group: the Homeo +(S1)-flow S1 is not linearizable [23], [24], and the
embedding of the stabilizer of any point s ∈ S1 into Homeo +(S1) is an epimorphism
of topological groups without dense range [37]. (A close link between two such kinds
of properties is established in [33].)

7. Groups G acting freely on S(G) with S(G) � E(U)

7.1. Lemma. In an ordered skew field X every interval of the form (a, b), (−∞, a),
or (b,∞) is order-isomorphic to X.

Proof. The interval (0, 1) is order-isomorphic to (1,∞) via the map x 7→
(1 − x)−1 and to (−∞,−1) via x 7→ −x−1. Now the desired isomorphisms are
patched together from the above maps composed with dilatations and transla-
tions.

The following was inspired by a similar result for the full permutation groups
due to Shakhmatov [34].

7.2. Proposition. For every infinite cardinal α, there exist a linearly ordered set
X of cardinality α and a free subgroup (of rank α) of Aut (X) acting ω-transitively
on X.

Proof. The free group F (α) of rank α is linearly orderable [28, Cor. 3.3] and
therefore embeds into the multiplicative subgroup S∗

+ of positive elements of a
linearly ordered skew field, S [29, Th. 5.9]. Fix any such embedding and denote
by X the (underlying ordered set of) the miminal sub-skew-field of S containing
F (α). The group F (α) acts freely on X by order automorphisms through the
left multiplication, F (α) 3 a : x 7→ ax ∈ X . The cardinality of X is α, and
so is the cardinality of the set P of all pairs (A, B) of finite subsets of X with
CardA = CardB. Establish a bijection (A, B) 7→ a(A,B) between P and a free
basis in F (α).

Let (A, B) ∈ P be arbitrary. Fix a y(A,B) ∈ X with y(A,B) > A ∪ B, and set
x(A,B) = max{y(A,B), a

−1
(A,B)y(A,B)} + 1. Using Lemma 7.1 and the finite transi-

tivity of X (Proposition 6.1), one can construct piecewise an order isomorphism
τ(A,B) : X → X such that

1. τ(A,B)(−∞, y(A,B)) = (−∞, y(A,B)),
2. τ(A,B)(A) = B,
3. τ(A,B)(y(A,B), x(A,B)) = (y(A,B), a(A,B)x(A,B)),
4. if x > x(A,B), then τ(A,B)(x) = a(A,B)x.
The resulting mapping τ : a(A,B) 7→ τ(A,B) from a free basis in F (α) to Aut (X)

lifts to a homomorphism τ̂ : F (α)→ Aut (X). Clearly, the image of F (α) is every-
where dense in Aut (X). Also, τ̂ is one-to-one, because the image in Aut (X) of
any irreducible word a = aε1

(A1,B1)
aε2
(A2,B2) . . . aεn

(An,Bn) 6= e acts non-trivially on any
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x ∈ X with x > max{x(A1,B1), x(A2,B2), . . . , x(An,Bn)}. Namely, a finite induction
using the above condition (4) shows that τ̂ (a)(x) = ax 6= x, where a is understood
as an element of F (α) < X∗ and the product is computed in X .

7.3. Theorem. Let G be a group admitting an ω-transitive effective action on a
linearly ordered set. Denote by T the topology of pointwise convergence correspond-
ing to such an action. Let G also support a profinite group topology, S. Then the
topological group G = (G, T ∨ S) acts freely on its greatest ambit S(G), yet the
canonical morphism S(G)→ E(U) is not an isomorphism of G-ambits. Moreover,
S(G) and E(U) are not isomorphic as G-flows.

Proof. The greatest ambit of the precompact topological group (G, S) is isomor-
phic to the compact group ĜS, the completion of (G, S) on which G acts on the
left, obviously freely; as a corollary, (G, T ∨S) acts freely upon its greatest ambit
(Proposition 2.4.1). Denote by π1 and π2 the canonical morphisms from S(G, T∨S)
onto S(G, T) and onto S(G, S) ≡ ĜS, respectively. We aim to show that the prod-
uct morphism π1×π2 : S(G, T∨S)→ S(G, T)× ĜS is one-to-one and therefore an
embedding of G-ambits. This would mean that any minimal subset U of S(G, T∨S)
is contained in the product of ĜS and a minimal subset of S(G, T), that is, a single-
ton; cf. Th. 5.4. Consequently, U is isomorphic to ĜS. Since the Ellis semigroup
of the latter flow is isomorphic, as a G-ambit, to ĜS itself, it follows that E(U) and
S(G, T∨S) are non-isomorphic as G-flows. (Because, for example, the former flow
is equicontinuous, while the latter is not, cf. [2, Ch. II, Prop. 1(ii) and Lemma 3].)

It suffices to show that for each x ∈ ĜS, the restriction of π1 to π−1
2 (x) is one-to-

one. Let y, z ∈ π−1
2 (x), y 6= z. For some continuous f : S(G, T ∨S)→ Z2 one has

f(y) = 0, f(z) = 1. According to Corollary 3.2, f |G factors through some function
H\G→ Z2, where H is a T ∨S-open subgroup of G; one can assume without loss
in generality that H = F1 ∩ F2, where F1 is T-open and F2 is S-open in G. Since
π2(y) = π2(z), the elements y and z belong to the compact S(G, T ∨S)-closure of
the same F2-coset, say F2g, of G.

We claim that F2g is T-everywhere dense in G, or equivalently, that so is F2.
Assuming it were not, the T-closure of F2 would form a proper T-closed subgroup
D of finite index in G, leading to a nontrivial minimal left (G, T)-flow G/D, in
contradiction with Th. 5.4.

As a corollary, the restriction of the standard factor-map (F1 ∩ F2)\G → F1\G
to the image of F2g is a bijection onto F1\G, and f |F2g further factors through a
function F1\G→ Z2 and is therefore C∗U�(G, T)|F2g-uniformly continuous. In view
of this and because F2g is T-everywhere dense in G, the function f |F2g uniquely
extends to a C∗U�(G, T)-uniformly continuous function f̃ on G, and further to a
continuous function f̄ : S(G, T)→ Z2. It only remains to observe that f̄(π1(y)) = 0,
f̄(π1(z)) = 1. Indeed, f |F2g = (f̄◦π1)|F2g, and the values of any continuous function
f : S(G, T ∨S)→ Z2 at y and z are completely determined by the restriction of f
to F2g.

7.4. Corollary. For every infinite cardinal α, there exists a topological group G of
weight α, acting freely on its greatest ambit S(G) (and therefore on the universal
minimal flow U(G)) yet such that S(G) and E(U) are not isomorphic as G-flows.

Proof. By Proposition 7.2, the free group F (α) of rank α admits an ω-transitive
effective action on a linearly ordered set of cardinality α. It is well known that F (α)
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can be given a profinite group topology (cf. e.g. [27], Th. 1.4), and a standard
machinery (see [1], Th. 2) enables one to extract from it a coarser profinite group
topology of weight α. Now Theorem 7.3 applies.

Applying Assertion 1.2 to Corollary 7.4 in the case α = ω, we obtain another
major result of the present article.

7.5. Corollary. There exists a Polish group G acting freely on its greatest ambit
S(G) (and therefore on the universal minimal flow U(G)) yet such that S(G) and
E(U) are not isomorphic as G-flows.

7.6. Remark. The above examples exhibit yet another combination of dynamical
properties: the action of G on the universal minimal flow U(G) is not ‘topologically
effective’ even if it is free.

8. Non-amenable closed subgroups of amenable groups

Every closed subgroup of an amenable locally compact group is amenable ([17],
Th. 2.3.2), and indeed this is one of the basic properties of amenability in the locally
compact (in particular, discrete) setting. Here we show that for more general — in
fact, even for Polish — topological groups this result is no longer true.

8.1. Theorem. The free group F2 on two generators, equipped with the discrete
topology, is isomorphic to a closed topological subgroup of Aut (Q).

Proof. Choose S and X as in the first paragraph of the proof of Proposition 7.2,
putting α = 2. Since the action of F2 on X by order automorphisms is free, the
topology induced on this group from Aut (Q) is discrete. (E.g., St{0} ∩ F2 = {e},
where 0 stands for the zero element of the skew field S.) Being a discrete subgroup,
F2 is automatically closed in Aut (Q). The linearly ordered set X is obviously a
countable η-set, and therefore it is order isomorphic to Q. (The classical reference
for η-sets is [18].)

8.2. Corollary. A closed subgroup of an extremely amenable Polish topological
group need not be amenable.

Concluding Remarks

The diversity of known examples of topological groups G for which Ellis’s prob-
lem is answered in the negative suggests the following.

Conjecture. Let G be a topological group. The canonical morphism from the great-
est ambit S(G) to the Ellis semigroup of the universal minimal G-flow E(U(G)) is
an isomorphism if and only if G is precompact.

Our examples substantiate the problem of describing in intrinsic terms those
topological groups G whose actions on universal minimal flows are effective —
or, better still, ‘topologically effective.’ The following question by Glasner [13] is
of profound interest: does there exist a minimally almost periodic non-extremely
amenable monothetic group? We do not know whether U(l2) (with the strong
operator topology) acts effectively on its universal minimal flow. Theorem 6.6
tends to suggest that the Hilbert cube Iω might serve as the universal minimal flow
for the group Homeo (Iω). In view of Corollary 8.2, we ask: is every topological
group isomorphic with a subgroup of an (extremely) amenable topological group?
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35. S. Teleman, Sur la représentation linéaire des groupes topologiques, Ann. Sci. Ecole Norm.

Sup. 74 (1957), 319–339. MR 20:3927
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