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Abstract In this paper we use the conformal teleparallel
gravity to study an isotropic and homogeneous Universe
which is settled by the Friedmann–Robertson–Walker metric.
The conformal symmetry demands the existence of a scalar
field which works as a dark field for this model. We solve
numerically the field equations then we obtain the behavior
of some cosmological parameters such as the scale factor, the
deceleration parameter and the energy density of the perfect
fluid which is the matter field of our model. The field equa-
tions, which we called modified Friedmann equations, allow
us to define a dark fluid, with dark energy density and pres-
sure, responsible for the acceleration in the Universe, once
we defined an equation of state for the dark fluid.

1 Introduction

The accelerated expansion of the Universe is a cosmologi-
cal phenomenon that has recently been confirmed by several
observational data, such as Supernovae Ia [1,2], large scale
structure [3,4], the baryon acoustic oscillations [5], cosmic
microwave background radiation [6–11], and weak lensing
[12]. In order to explain this phenomenon, there are two ways
which are being investigated in the literature. The first intro-
duces an exotic fluid, called dark energy, with negative pres-
sure in the theory of general relativity. The second possibility
consists in modifying general relativity, known as modified
theories of gravity. For instance we can cite f (R) theories
and Brans–Dicke gravitation [13].

Among the various theories of modified gravity, here we
will use teleparallel gravity as formulated in [14,16]. The
main advantage of using teleparallel gravity is that in its
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framework it is possible to define well-behaved expressions
for energy, momentum and angular momentum of the gravi-
tational field [17–19]. Therefore it seems natural to general-
ize such a theory to include the conformal invariance which
is a fundamental symmetry of spacetime. Scale invariance
is a desirable feature of physical properties, thus confor-
mal invariance can be understood as a generalization of it. It
should be noted that in this case the conformal factor should
depend on the coordinates. In order to understand what is a
conformal transformation we consider a spacetime (M, gab),
where M is a smooth n-dimensional manifold and gab is a
metric in M. The conformal transformation

g̃ab = e2θ(x)gab(x), (1)

where e2θ(x) is a smooth non-vanishing function of the coor-
dinates, is a point-dependent rescaling of the metric. Thus
e2θ(x) is called a conformal factor. It is well known that
such transformations preserve angles and change distances
between two points which are described by the same coor-
dinate system. Scale transformations are recovered when
θ = const. A field theory which is invariant under these
transformations is named a conformal field theory (CFT),
i.e., the physics of the theory looks the same at all length
scales.

The conformal transformation given by Eq. (1) can have
different interpretations depending on whether the metric is a
fixed background metric, or a dynamical background metric.
If the metric is dynamical background, the transformation
is a diffeomorphism; this is a gauge symmetry, and if the
background is fixed, the transformation should be thought of
as a physical symmetry, taking the point xα to point x̃α . A
review of conformal field theory can be found in [20] and
several details in the textbooks [21–23]. In recent years, sev-
eral works involving conformal transformations have been
developed. For example, in [24–28] inflationary cosmology
was studied in this context; the phenomenon of asymptotic
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conformal invariance was analyzed in [29,30]; gravitational
theories including higher order terms of the curvature tensor
with respect to the conformal symmetry have been studied
in [31–33], while in [34–36] it is discussed the possibility of
a conformal theory of gravity being a candidate for quantum
gravity.

There are at least two ways to write a gravitational the-
ory invariant under conformal transformations. The first way
is choosing a lagrangian with the quadratic term of Weyl
tensor and the second one is adding a scalar field φ to
the Hilbert–Einstein action, together with a suitable kinetic
term for the scalar field. In this paper we will investigate
the second option, following the theory presented in [14]
where teleparallel gravity with conformal symmetry was
constructed. Recently, this gravitational model with confor-
mal invariance is the subject of several investigations. For
instance, in [37] it is shown an equivalence between the con-
formally invariant teleparallel theory and a particular Weyl
teleparallel theory, in [38] it is demonstrated that, in extended
teleparallel gravity with a conformal scalar field, a power-law
of the de Sitter expansions of the Universe can occur. In [39]
some cosmological aspects of conformal teleparallel gravity
are also studied. Thus conformal teleparallel gravity has been
extensively used to understand cosmological models.

The structure of this paper is as follows. In the next section
we analyze the construction of conformal teleparallel gravity.
In the Sect. 3 we will investigate the FRW metric in this
gravitational model and we solve the field equations. We
conclude our discussion in Sect. 4.

Notation Spacetime indices μ, ν, ρ, . . . run from 0 to 3,
where (μ = 0), (i = 1, 2, 3) are the time coordinate and
space of spacetime, a, b, c, . . . run from 1 to 3 or (0), (i)
are the indices representing SO(3, 1). In addition, we adopt
units where G = h̄ = c = 1, unless otherwise stated.

2 Conformal teleparallel gravity

The teleparallel equivalent to general relativity (TEGR) is
a well-defined theory of gravitation. It started with Einstein
himself in an attempt to unify electromagnetism and gravita-
tion [40]. TEGR is formulated in the framework of Weitzen-
böck geometry which is endowed with the Cartan connec-
tion [41], �μλν = ea μ∂λeaν , where ea μ is the tetrad field. It
is similar to what happens in the riemannian geometry which
is endowed with the Christoffel symbols 0�μλν . However,
the dynamical variables are the tetrads rather than the metric
tensor components. The tetrad field is related to the metric
tensor by means of the well-known relation gμν = ea μeaν .
In the riemannian geometry the manifold is characterized by
the curvature and has a vanishing torsion, on the other hand
in the Weitzenböck geometry the manifold is characterized

by the torsion, T a
λν = ∂λea ν −∂νea λ, and it has a vanishing

curvature. Thus the two descriptions seem to be opposite, but
they are in fact equivalent. Such an equivalence is settled by
the following mathematical identity:

�μλν = 0�μλν + Kμλν , (2)

where

Kμλν = 1

2

(
Tλμν + Tνλμ + Tμλν

)
(3)

is the contortion tensor. Thus one could calculate the scalar
curvature from Christoffel symbols in terms of the torsion of
the Weitzenböck geometry using Eq. (2). It reads

eR(e) ≡ −e

(
1

4
T abcTabc + 1

2
T abcTbac − T aTa

)

+2∂μ(eTμ), (4)

where e is the determinant of the tetrad field, Ta = T b
ba ,

and Tabc = eb μec νTaμν . Therefore there is an analog of the
Hilbert–Einstein lagrangian density, which is defined in the
riemannian geometry, in the Weitzenböck spacetime. This is
the TEGR lagrangian density; it is given by

L(eaμ) = −ke

(
1

4
T abcTabc + 1

2
T abcTbac − T aTa

)
, (5)

once the total divergence dropped out, since it does not alter
the field equations. The coupling constant is k = 1

16π
. Hence

a theory obtained from such a lagrangian density is dynam-
ically equivalent to general relativity. However, it is not the
same theory since it is possible to define a gravitational
energy-momentum tensor in the realm of TEGR [18,42],
which cannot be done in general relativity.

The choice of the tetrad field establishes the observer
which is true even in the context of the tetrad formulation
of general relativity [43,44]. Such a feature settles the issue
of the degrees of freedom of the tetrad field. The metric tensor
has 10 independent components, due to its symmetry, while
the tetrad field has 16 components. These six remaining com-
ponents are established by the reference frame choice. Thus
for each metric we have infinitely many possible tetrad fields.

It should be noted that the lagrangian density (5) can be
rewritten as

L(eaμ) = −ke�abcTabc , (6)

where

�abc = 1

4

(
T abc + T bac − T cab

)
+ 1

2

(
ηacT b − ηabT c

)
.

(7)
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We notice that it is not invariant under conformal transforma-
tions since gμν → g̃μν = e2θ(x)gμν , eaμ → ẽaμ = eθ(x)eaμ

and e → ẽ = e4θe. Here the parameter θ = θ(x) is arbitrary.
Therefore in order to have a conformal teleparallel gravity

we need an invariant lagrangian density. Maluf showed that
the above lagrangian density should be modified to accom-
plish such a task. Here we follow the proposition presented by
Maluf in [14]. Thus the complete lagrangian density invariant
under conformal transformations is given by

L(eaμ, φ) = ke
[ − φ2�abcTabc + 6gμν∂μφ∂νφ

− 4gμνφ(∂μφ)Tν

] + Lm , (8)

where φ is a scalar field and Lm is the lagrangian density
of the matter fields. We point out that the transformation
property of the scalar field, given by φ → φ̃ = e−θφ, leaves
invariant the above lagrangian density.

If we perform a variation of the lagrangian density (8) with
respect to φ, then the field equation reads

∂ν(eg
μν∂μφ) + 1

6
φ

[
e�abcTabc − 2∂μ(eTμ)

]

= 1

12k

δLm

δφ
, (9)

which can be rewritten as

∂ν(eg
μν∂μφ) − 1

6
eφR(e) = 1

12k

δLm

δφ
, (10)

once we use the relation
[
e�abcTabc − 2∂μ(eT ν)

]

≡ −eR(e).
Similarly if we perform a variational derivative of the

lagrangian density (8) with respect to the tetrad field eaμ,
it will yield the following field equations:

∂λ(eφ
2�aμλ) − eφ2(�bλμT a

bλ − 1

4
eaμ�bcdTbcd

)

− 3

2
eeaμgσν∂σ φ∂νφ

+ 3eeaνgσμ∂σ φ∂νφ + eeaμgσνTνφ(∂σ φ)

− eφeaσ gμν (Tν∂σ φ + Tσ ∂νφ)

− egσνφ(∂σ φ)Tμa
ν − ∂ρ

[
egσμφ(∂σ φ)eaρ

]

+ ∂ν

[
egσνφ(∂σ φ)eaμ

] = 1

4k

δLm

δeaμ

, (11)

where

δLm

δeaμ

= eea νT
νμ .

We note that these equations reduce to those of TEGR when
φ = 1. In addition, if we take the trace of Eq. (11) and
combine with Eq. (10), then it yields

φ
δLm

δφ
= eT, (12)

where T = gμνT νμ is the trace of the energy-momentum
tensor. Hence a traceless energy-momentum tensor just van-
ishes in the right-side of Eq. (10). Such a feature is necessary
in a conformal theory to preserve the symmetry, as happens
in electromagnetism, and the continuity equation for instance
when applied to a perfect fluid in the context of conformal
Einstein equations [15].

3 Isotropic and homogeneous Universe

In this section we’ll analyze an isotropic and homogeneous
Universe in the context of conformal teleparallel gravity. It is
settled by the Friedmann–Robertson–Walker (FRW) metric,
which is given by

ds2 = −dt2 +a2(t)

[
dr2

(1 − kr2)
+ r2dθ2 + r2 sin2 θdφ′2

]
,

(13)

where a(t) is the scale factor and k assumes the values
(−1, 0, 1) depending on the features of the Universe we want
to work with. Let us choose a reference frame adapted to a
stationary observer, thus the tetrad field is given by

eaμ =

⎛

⎜
⎜⎜
⎝

−1 0 0 0
0 a

(1−kr2)
1
2

0 0

0 0 ar 0
0 0 0 ar sin θ

⎞

⎟
⎟⎟
⎠

. (14)

We calculate the components of the tensors T abc =
ebμecνT a

μν and �abc in order to obtain the field equations. It
is worth recalling that these components are skew-symmetric
in the last two indices, thus the non-vanishing components
T abc read

T (1)(1)(0) = T (2)(2)(0) = T (3)(3)(0) = ȧ

a
,

T (2)(2)(1) = T (3)(3)(1) = − (1 − kr2)
1
2

ar
, (15)

T (3)(3)(2) = −cot θ

ar
,

and the non-vanishing components �abc are given by

�(0)(0)(1) = − (1 − kr2)
1
2

ar
,

�(1)(1)(0) = �(2)(2)(0) = �(3)(3)(0) = − ȧ

a
,

�(0)(0)(2) = �(1)(2)(1) = −1

2

cot θ

ar
,

�(2)(2)(1) = �(3)(3)(1) = 1

2

(1 − kr2)
1
2

ar
.

(16)

123



167 Page 4 of 8 Eur. Phys. J. C (2016) 76 :167

Fig. 1 k = 0, ω = 1

Fig. 2 k = 0, ω = −1

In addition we need the components Tμ which can be written
in the following form: Tμ = (− 3ȧ

a ;− 2
r ;− cot θ; 0). There-

fore we get

�abcTabc = 6

(
ȧ

a

)2

− 2
(1 − kr2)

a2r2 .

We must work with a traceless energy-momentum tensor.
Thus if we assume that φ = φ(t) then Eq. (10) reads

φ̈ + 3

(
ȧ

a

)
φ̇ +

[
ä

a
+

(
ȧ

a

)2

+ k

a2

]

φ = 0. (17)

In Eq. (11) we choose the conformal perfect fluid energy-
momentum tensor which is given by

Tμν = (ρ̃ + p̃)UμU ν + p̃gμν. (18)

Thus the feature of trace-free yields the equation of state
ρ̃ = 3 p̃, since UμUμ = −1.

We have just two independent components of Eq. (11),
they are for μ = 0 and a = (0)

3

[
k

a2 +
(
ȧ

a

)2
]

+ 3

(
φ̇

φ2

) [
φ̇ + 2φ

(
ȧ

a

)]
= 8πρ, (19)
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Fig. 3 k = 1, ω = 1

Fig. 4 k = 1, ω = −1

where ρ = ρ̃/φ2, and for μ = 1 and a = (1)

−
[

2

(
ä

a

)
+

(
ȧ

a

)2

+ k

a2

]

− 4

(
φ̇

φ

) (
ȧ

a

)

+
(

φ̇

φ

)2

− 2

(
φ̈

φ

)

= 8πp, (20)

where p = p̃/φ2. The above equations are the modified
Friedmann equations. It should be noted that the conformal
energy and pressure are related to the quantities of the ordi-
nary perfect fluid.

In view of Eq. (19) we can define an energy density whose
source is the scalar field which is necessary to establish the
conformal invariance in the theory. This is given by

ρD = 1

8π

[

3

(
φ̇

φ

)2

+ 6

(
φ̇

φ

) (
ȧ

a

)]

(21)

and from Eq. (20) we have an extra pressure due to the scalar
field, it reads

pD = 1

8π

[

−2

(
φ̈

φ

)
+

(
φ̇

φ

)2

− 4

(
φ̇

φ

) (
ȧ

a

)]

. (22)
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Fig. 5 k = −1, ω = 1

Fig. 6 k = −1, ω = −1

These extra terms are responsible by an acceleration of the
Universe, in other words they have the same features as the
so-called dark energy. Thus we associate them to a dark fluid.

Next we solve numerically the field equations. However,
it should be noted that there are two independent field equa-
tions and three unknown variables, since Eqs. (19) and (20)
combined yield the trace equation. Thus in order to solve
them we have to impose an equation of state for the dark
fluid as pD = ωρD . Such an imposition on the dark fluid is
similar of that in general relativity for the perfect fluid. We
also use the trace-free equation of state for the perfect fluid
of the form p = ρ/3. Then we present our numerical results
in Figs. 1, 2, 3, 4, 5, and 6. First of all, it should be noted that

the field equations could be written in terms of H(t), a(t)

and β(t) = φ̇
φ

, hence it is necessary initial conditions only
for those variables. As a natural consequence the model is
independent of the choice of φ(0); however, for convenience
we set it as −1. We have chosen H(0) = a(0) = 1 in order to
get normalized deviation from those parameters. In this way
the redshift defined as 1 + z = a(0)

a(t) is approximatively given
by z ≈ t for expansions around t = 0. We plot the cosmo-
logical quantities in terms of the redshift always next to those
in terms of time. We excluded from these panels a(z) since
it is given by the definition already written. For consistence
with field equations β(0) = −1 for k = 0, thus we use such
a value as a reference for all models. The next interesting
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feature displayed in the panels that should be noted is the
dependence of the cosmological quantities with the model
parameter ω. Another feature that should be noted is that the
density of the ordinary fluid is slightly different from zero,
thus the responsible by any acceleration is the very field φ.
From Figs. 1 and 2 we see, for k = 0, two different behaviors.
For ω = −1 we note an Universe expanding and accelerat-
ing, on the other hand for ω = 1 we see a decelerating and
expanding Universe. From Figs. 3 and 4 we observe the same
two behaviors as before for k = 1. The difference is that for
ω = 1 there is a point where the Universe experiences an
accelerated expansion which does not occur for ω = −1
with just an expansion with deceleration. From Figs. 5 and
6 we see for k = −1 that there is a change in the decelera-
tion parameter from positive to negative for ω = −1, which
indicates a change in the regime of expansion of the Uni-
verse. For ω = 1 we see only a decelerating and expanding
Universe.

4 Conclusions

In this article we have used the conformal teleparallel gravity
to analyze an isotropic and homogeneous Universe. In such
a theory the scalar field was introduced in order to have field
equations invariant under conformal transformations. Then
we have derived an equation for the scalar field in terms of
the scalar curvature and the modified Friedmann equations.
Such equations have extra terms when compared to the usual
ones, thus we associate them to dark energy density and dark
pressure, since they drive an acceleration in the Universe.
They are written in terms of the scalar field which was intro-
duced in a natural way. We supposed an equation of state for
the dark fluid and we solved numerically the field equations
p = ρ/3, we also chose ω = 1. In addition we worked with
the three values of k. We find a deceleration parameter com-
patible with the observed accelerating Universe at least for a
particular choice of the parameters of the theory.

It is important to make clear the difference between
our approach and current literature. Thus, as stated before,
conformal teleparallel gravity has been used to understand
cosmological models. In Ref. [38] the conformal symme-
try is introduced by Weyl tensor, we do it by means a
scalar field and the modification of the Teleparallel gravity
Lagrangian density. Maybe there is a relation between these
two approaches in the general case but it is not clear yet.
In Ref. [45] the authors use the same approach as we do to
deal with conformal symmetry. However, the introduction of
matter fields is different from our proposal, which deals with
trace-null energy-momentum tensor. As a consequence we
have to assume an equation of state for what we called dark
fluid.

It is worth to point out the important role of the field φ in
the accelerated expansion of the Universe. Here the differ-
ence between our theory and general relativity is ensured by
such field. At the same time φ is responsible by the confor-
mal symmetry and as an effective density and pressure. This
last statement is clear since the density of the fluid, which
represents the matter fields, is always very close to zero for
any choice of the parameters of our model. Therefore the
introduction of conformal symmetry in Teleparallel gravity
allows for the explanation of an accelerating and expanding
Universe.
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