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We present an order-extensional, order (or inequationally) fully

abstract model for Scott's language pcf. The approach we have taken is

very concrete and in nature goes back to S. C Kleene (1978, in ``General

Recursion Theory II, Proceedings of the 1977 Oslo Symposium,'' North-

Holland, Amsterdam) and R. O. Gandy (1993, ``Dialogues, Blass Games,

Sequentiality for Objects of Finite Type,'' unpublished manuscript) in one

tradition, and to G. Kahn and G. D. Plotkin (1993, Theoret. Comput. Sci.

121, 187�278) and G. Berry and P.-L. Curien (1982, Theoret. Comput.

Sci. 20, 265�321) in another. Our model of computation is based on a

kind of game in which each play consists of a dialogue of questions and

answers between two players who observe the following principles of

civil conversation:

1. Justification. A question is asked only if the dialogue at that

point warrants it. An answer is proffered only if a question expecting it

has already been asked.

2. Priority. Questions pending in a dialogue are answered on a

last-asked-first-answered basis. This is equivalent to Gandy's no-

dangling-question-mark condition.

We analyze pcf-style computations directly in terms of partial strategies

based on the information available to each player when he or she is about

to move. Our players are required to play an innocent strategy: they play

on the basis of their view which is that part of the history that interests

them currently. Views are continually updated as the play unfolds. Hence

our games are neither history-sensitive nor history-free. Rather they are
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view-dependent. These considerations give expression to what seems to

us to be the nub of pcf-style higher-type sequentiality in a (dialogue)

game-semantical setting. ] 2000 Academic Press

Key Words: higher-type sequential computation; full abstraction; pcf;

*-calculus; game semantics.
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Organization of the Paper

This paper has three parts. Part I begins with a brief survey of the full abstraction
problem of PCF tracing its roots to old foundational problems in (higher-type)
recursion theory and sequential computation considered by Platek and also by
Kleene and others. We study the model theory of PCF in the light of standard ideas
from both categorical logic and categorical type theory. We take a (concrete) model
of PCF to be a c-fix category (cartesian closed with conditionals and fixed points)
equipped with what we call a simple object of numerals. In the same categorical
spirit the notion of observational equivalence is analysed. Given a notion of observ-
ables on a symmetric monoidal closed category C (e.g., a model of PCF), we give
a precise definition for the induced observational preorder (over homsets of C) and
study the associated quotient construction C[C� . These analyses yield a general
categorical setting within which it is possible to articulate and reason about
the standard (though hitherto concretely understood) properties of adequacy,
order-extensionality (equivalently the context lemma), and full abstraction.
In Part II we formalize the class of dialogue games in which the two players

involved are required to observe the disciplines of justification and priority
mentioned above. We make a category CA out of such games: objects are
computational arenas which are a kind of environment for such dialogue games,
and maps are innocent strategies. The main result of Part II is that the category CA

is cartesian closed and enriched over dI-domains. With respect to an intrinsic
notion of observables, CA satisfies the context lemma; equivalently the associated
observational quotient CA@ is order-extensional.
The category CA is considered as a model of PCF and P��an extension of PCF

by definition-by-cases constructs��in Part III. We prove a strong definability
theorem: there is an order-isomorphism between compact elements of the model
and a class of finite canonical forms of P (ordered by 0-matching). As a corollary
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the observational quotient CA@ of CA is an order-extensional, order fully abstract
model for PCF. The strong definability result extends to a universality theorem for
CA; modulo observational equivalence, all recursive innocent strategies are PCF-
definable. We conclude this paper with a discussion of and comparison with related
work. Directions for further research are identified.

Part I: Models, Observables, and the Full Abstraction Problem

1. INTRODUCTION

Historical remarks. In the early 1940s, Go� del considered a notion of primitive
recursive functionals of finite type, which we now call Go� del's system T, in connec-
tion with what came to be known as the dialectica interpretation [32, 33]. Go� del
presented his results as a contribution to a liberalized version of Hilbert's
programme.1 Go� del's work was later extended to the bar recursive functionals by
Spector [71] who used them to give a constructive consistency proof for classical
analysis. However, the first full-blown generalization of ordinary recursion theory
to higher types was made by Kleene in the late 1950s (see [45, 46] for a formula-
tion in terms of computation schemes). In Kleene's theory, a notion of a partial
recursive function of higher type is defined over a total type structure. Recursion is
introduced by a computation scheme which essentially encapsulates the second
recursion theorem. In this theory, partial recursive functions are not closed under
substitution, and a natural formulation of the first recursion theorem fails. Kleene
exhibited these features in [46] where he also observed in passing that a theory
involving application of (partial) functions to partial functions might be possible.
A succinct account of Kleene's theory and of its attendant difficulties is contained
in Gandy [29].
An attempt was made by Platek in his thesis [59] to develop a recursion theory

on partial functions of higher type which avoids the problems of the Kleene theory.
The type structure Platek considers is that of hereditarily order-preserving partial
functions over the natural numbers. (This type structure is close in spirit to that of
the hereditarily order-preserving functions over the flat cpo of natural numbers; but
there is a difference and its computational significance has been analyzed by van
Draanen [76].) Platek couched his theory in terms of computation schemes, and
recursion is introduced by a scheme amounting to the first recursion theorem. The
essentials of the theory are definition by cases and least fixed points, and Platek
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1 Hilbert had set out to justify classical mathematics systematically in terms of notions which should
be as intuitively clear as possible. A focus of his program was the consistency of classical number theory;
he wanted to find these basic notions in the domain of finitary mathematics. Bernays subsequently
pointed out that in order to prove the consistency of classical number theory, it was necessary to extend
Hilbert's finitary standpoint by admitting abstract concepts of a certain kind in addition to the
combinatorial concepts relating to symbols. Go� del introduced System T, which is essentially the simply-
typed *-calculus augmented by primitive recursion, as a vehicle for expressing the abstract notion. He
believed that System T would be the key to making Hilbert's program viable in the modified sense.



does introduce a *-calculus formulation which can be regarded as a precursor
to PCF.
The formal system PCF was introduced by Scott in a famous paper [69] which

remained an unpublished manuscript for a long time until its recent appearance in
the Bo� hm Festschrift. The syntax2 of PCF is simple enough: it is essentially the
simply-typed lambda calculus augmented by general recursion in the form of a
fixed-point operator at every type and definition by cases at ground types and
further augmented by basic arithmetic operations. Scott intended PCF to be a
``logical calculus (or algebra)'' for studying program equivalence and other
algebraic and logical properties of programs by using (simple) type theory [20].
A major theme of Scott's work is the relationship between the logical types which

are the higher types and the data types which are the ground and first-order types.
The former are used to study the latter; the theory of data types requires the higher-
type objects��the computable functionals��for its formalization, as emphasized by
Scott. Of course, Scott had in mind a semantics in terms of what we now call Scott
continuous functions and for this interpretation, a quite straightforward operational
semantics is appropriate: we can think of all the computations as being finite.
Hence the theory introduced by Scott is in principle implementable and has been
the focus of much attention in computer science. Another theme in Scott's paper is
completeness, about which he asked several questions. One such question concerns
the power of expression of the language with respect to the continuous function
space model��in a word, definability. What came to be known as the full abstrac-
tion problem for PCF was adumbrated: Scott observed that parallel or is not
definable in the language and that an implementation on a sequential machine
would require a dovetailing strategy. System T and PCF (as a formal system in the
sense of Scott's original presentation as opposed to a programming language) are
similar in various ways, though there is an important difference: Scott's approach
admits (representations of) partial functions whereas Go� del's is only concerned with
total functions.

1.1. The Programming Language PCF

In [61] Plotkin presented PCF explicitly as a programming language and
studied the relationship between its operational semantics and its denotational
semantics which is based on the Scott continuous function space model. Types of
the language are just Church's simple types [20]. In the following we shall also
refer to them as PCF-types. They are defined as follows:

A ::=@ natural numbers

| o booleans

| AOA arrow or function type.

We use the meta-variable ; to range over ground types @ and o. As usual O

associates to the right: A1 OA2 OA3 is read as A1 O (A2 OA3). Note that with
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n�0, each simple type can be uniquely expressed as A1 OA2 } } } OAn O;, which
we abbreviate as (A1 , ..., An , ;), where ; is a ground type. For example the type
((@O @)O @O @)O @O @ is abbreviated as (((@, @), @, @), @, @). The height ht(A) of a type
A is defined by recursion as follows:

ht(;) =
def

0

ht(AOB) =
def

max(ht(A)+1, ht(B)).

We say that an object is type-n if it has type of height n. Intuitively height measures
how higher-order a type really is. In general the mathematical difficulties associated
with the higher-order objects stem from nesting of the arrow on the left.
For each type A, we fix a denumerable set of variables. Raw PCF-terms are

defined by the following grammar,

s ::=0A undefined term

| cA constant

| x variable

| (s } s) application

| (*x : A .s) abstraction

| YA(s) general recursive term, or Y-term,

where cA ranges over the set A of basic arithmetic constants which we will intro-
duce shortly. Whenever type information is irrelevant, we omit type labels and write
0A, cA, x : A, and YA(&)simply as 0, c, x, and 0&, respectively. We shall write
(s } t) simply as st. As usual, application associates to the left: st1 } } } tn abbreviates
( } } } ((st1) t2) } } } tn), and we routinely omit as many parentheses as we safely can.
PCF-terms are raw terms that are well typed. The phrase s: A means that the type
of the term s is A, derived according to the following rules:

0A : A cA : A

s: AOA

YA(s) : A
s: A1OA2 t : A1

(s } t) : A2

s : A2

(*x : A1 .s): A1OA2

.

The set A of basic arithmetic constants is presented together with their types as
follows:

n : @ numerals, for each natural number n�0

t, f : o booleans: truth and falsity

succ : @O @ successor

pred : @O @ predecessor

zero? : @O o test for zero

cond@ : oO @O @O @ natural number conditional

condo : oO oO oO o boolean conditional.
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The notion of free and bound variables is completely standard; a closed term is a
term without any free variables. We write the term substitution (as opposed to con-
text substitution) operation as s[t�x] which means ``in s, substitute the term t for
every free occurrence of x,'' taking care to rename bound variables where necessary
so as to avoid variable capture. See, for example, [6, p. 27] for a formal definition.

Operational semantics. Programs of PCF are just closed terms of ground type.
(For this reason we shall often refer to a ground type as a program type.) Values
are *-abstractions and constants (less 0); values are ranged over by the
meta-variable v. Following the function paradigm, to compute a program in PCF
is to evaluate it. We present the operational semantics of PCF in terms of a
Martin�Lo� f style evaluation relation. Formally we define a relation - between
closed terms and values inductively over the following rules. We read s - v as ``the
closed term s evaluates to the value v.''

v - v
u[t�x] - v
(*x .u) t - v

s - v vt - v$
st- v$

s - t u - v

cond; suu$ - v
s - f u$ - v
cond; suu$ - v

sYA(s) - v
YA(s) - v

s - n

succs - n+1
s- n+1
preds - n

s - 0
preds- 0

s - 0
zero? s - t

s - n+1
zero? s - f

We further define the following: for any program s

s- =
def

_v .s - v,

s� =
def c[s - ].

Remark. Evaluation may be implemented by a process of one-step reduction.
(Indeed we could have presented the operational semantics equivalently in terms of
a small-step, Plotkin-style transition relation.) According to this notion of reduc-
tion, terms are reduced following the left-most reduction strategy, ;-contraction is
carried out in a call-by-name fashion, and no reduction is permitted under a
lambda.

There is an operational notion of program equivalence which programmers
understand well: two program fragments are equivalent if they can always be inter-
changed without affecting the visible or observable outcome of the computations.
This criterion of sameness which is called observational equivalence is expressed in
terms of invariance of observable outcome under all program contexts. Let s and
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t be PCF-terms of the same type. We say that s observationally approximates t,
written s C&tt, if for every type-compatible program context C[X ] such that both
C[s] and C[t] are programs and, for any value v, if C[s] - v then C[t] - v. (To
our knowledge the idea of a preorder on terms defined by a universal quantification
over contexts goes back to Morris' thesis [55].) Two program fragments s and t
are said to be observationally equivalent if both s C&tt and t C&ts. We write program
contexts as C[X ] where the hole represented by X is to be thought of as a kind
of meta-variable. As usual, C[s] means the term which is obtained from the context
C[X ] by substituting s for every occurrence of X in C[X ]. Note that variable
capture is possible (and intended) in context substitution.

1.2. The Type Theory PCF

The operational semantics for PCF encapsulates a deterministic reduction or
computation strategy for the programming language, but also it reflects an intuitive
understanding of the meaning of the terms. In this view the reductions are justified
as the replacement of a term by an equal term. Thus the intuitive semantics can be
given expression in an equational theory. In the case of PCF this amounts to a type
theory related to Scott's original formulation. Our (core) type theory for PCF T is
given as follows. We take the typing rules already given and define a relation s=t
on typed terms (in context) by taking, in addition to the usual rules for equality,
the following:

(*x : A .s) t=s[t�x] *x : A .sx=s (if x not free in s)

cond;tst=s cond;fst=t

s(YA(s))=YA(s)

succ n=n+1 pred n+1=n pred 0=0

zero? 0=t zero? n+1=f.

It is important that there be a good relation between the reduction relation - of
the operational semantics and the equality of the type theory. This is given by the
following proposition.

Proposition 1.1. For any programs s and t, if s and t are equal in the type theory
T then for any ground value v

s - v� t - v.

Proof. A more or less straightforward application of the Church�Rosser
theorem and a standardization theorem following, for example, the treatment in
[60]. K

Corollary 1.1. For any program s in the type theory and ground value v,

s=v in the type theory if and only if s - v.
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What is commonly called a denotational semantics for PCF is essentially some
kind of interpretation of (model for) the type theory which we have just introduced.
The usual form of a model for PCF is that the types are interpreted as domains and
the terms as continuous (or stable continuous) maps between domains. In this
introduction we shall restrict attention to these traditional models. Later in the
paper, however, we shall introduce a more abstract categorical notion of model for
PCF; this provides a more appropriate context in which to understand our results.

The standard model. In [69] Scott gave a denotational semantics for PCF.
Program types (booleans and the natural numbers) are interpreted by the respec-
tive flat CPOs and function types by Scott continuous function space. We shall call
this model the standard (continuous) model of PCF. Continuity is used to deter-
mine the way fixed point operators are interpreted, i.e., standardly as the least
upper bound of the |-increasing chain of successive iterates; see: e.g., [75]. Note
that the standard model is order-extensional 3 in the sense that function types are
interpreted by sets of functions which are ordered pointwise.

Adequacy and full abstraction. More generally, writing the denotation of a
program s as �s�, we say that the denotational semantics �&� is adequate if for
every pair of type-compatible terms s and t,

�s� C= �t�O s C&t t.

If, in addition, the converse is also valid, that is to say,

�s� C= �t� � s C&t t,

then the denotational semantics is said to be order (or inequationally) fully abstract
for the language. To our knowledge the notion of full abstraction is due to Milner
[51], though it seems implicit in work in the pure lambda calculus by Plotkin,
Morris [55], Wadsworth [77, 78], Hyland [37], and others. (The definition of
adequacy and full abstraction which we have just given is the traditional one. In the
following, we shall present the same notions in a more general, categorical setting.)
Adequacy and full abstraction tell us how well the operational and the denotational
views of program equivalence relate to each other. They are indications of how
reliable or how ``fitting'' the denotational model is in relation to the language. More
specifically, adequacy assures us that the model is reliable enough for affirming
observational equivalence between two terms since denotational equality suffices,
but the model is not necessarily reliable for refuting equivalence for which we need
full abstraction. Adequacy is often easy to establish, but this is not so for full
abstraction. A model is not fully abstract usually because it is in some sense too
rich a structure for the language: it contains semantic objects which ``cannot be
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computed'' by the programming language. Conversely, a model which is fully
abstract for a language provides a very satisfactory characterization of (the
observational equivalence of) the language in terms of the denotational model.
Plotkin showed in [61] that the standard model is adequate but not fully

abstract for PCF. He also pointed out the reason for the failure of full abstraction.
The mismatch may be explained, in a nutshell, by the fact that while PCF-
programs correspond to sequential algorithms, the standard Scott-continuous func-
tion space model contains parallel functions or, more precisely, functions which can
only be implemented by parallel algorithms (e.g., parallel or). This point was made
explicit by Plotkin in [61] (see also [65] and [67] where the relation between
extensions of PCF by various parallel constructs is studied) as follows.

Theorem 1.1. (Plotkin and Sazonov). The standard Scott-continuous function
space model is fully abstract for the programming language which is obtained by
extending PCF by a parallel conditional constant.

An important conceptual advance was made by Plotkin and Milner in under-
standing full abstraction. They identified a necessary and sufficient condition for full
abstraction.

Theorem 1.2. (Plotkin and Milner). Any continuous, order-extensional model of
PCF which follows the standard 4 interpretation is a system of Scott domains. Further,
such a model is fully abstract if and only if all compact elements of the model are
PCF-definable.

Plotkin and Milners' result leaves open the question of whether there is a denota-
tional model which is fully abstract for PCF proper. This was quickly answered by
Milner [52]:

Theorem 1.3. (Milner). There is a unique (up to isomorphism) continuous,
order-extensional fully abstract model for PCF.

1.3. The Full Abstraction Problem for PCF

While there seems to be a consensus that the full abstraction problem for PCF
is difficult, there is much less agreement on what the problem is. At one level this
question seems superfluous, for we already know that there is a unique fully
abstract model for PCF��witness Milner's construction. In our view the thrust of
the problem has to do with the (philosophical) question of what a good model is.
A good model enlightens; it gives a new perspective on the behavior or operational
semantics of the programming language in question. There is no doubt that
Milner's result settles an important question and his construction is a valuable
contribution, at least from a mathematical point of view. Nonetheless because his
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construction is essentially a term model, it does not much increase our understand-
ing of PCF beyond what can already be gleaned directly from the syntax. One way
to formulate the problem which, we believe, strikes at the root of the issue is the
following:

The full abstraction problem for PCF. Give an abstract, synthetic account of the
unique order-extensional, fully abstract model of PCF as identified by Milner.

It is worth expanding on the two operative words. By an abstract model, we
mean a model which is constructed without recourse to the syntax or operational
semantics of the language. In fact the more computationally neutral the model is in
its conception, the more apposite it is as a solution. By synthetic description, we
mean a constructive, axiomatic explanation of the function space which interprets
the PCF function types (in terms of the respective interpretation of the com-
ponents). For example, these criteria rule out Milner's construction even though the
model is fully abstract. In contrast the interpretation of a program as a continuous
function is evidently abstract. The synthetic description of the Scott continuous
function space model of PCF is also satisfactory in every way: the category of Scott
domains (say) and continuous functions is cartesian closed and may be presented
constructively.
Since the crux of the full abstraction problem is the characterization of sequential

computations, we may reformulate the full abstraction problem for PCF as the
problem of finding an abstract, synthetic characterization of higher-type, sequential,
PCF-definable functionals. Formulated in this way, we highlight the epistemologi-
cal difficulties inherent in the problem, for we do not have a proper definition of
higher-type sequentiality from first principles. At any rate, to date there is certainly
no notion of higher-type sequentiality which can be said to be canonical in any
sense. In fact it is unclear whether there are various inequivalent notions of
higher-type sequentiality, all of them equally appealing, or whether, as is the case
for effective computability, there is just one notion under different guises.

Some criteria. The full abstraction problem for PCF in the above qualitative
sense is by its nature incapable of being precisely specified because the underlying
considerations are philosophical and so more or less subjective in nature. Therefore,
it seems all the more important to lay down a few criteria which should be as objec-
tive as possible so that progress in understanding the problem may to some extent
be calibrated and be seen in perspective.
A continuous model of PCF is a CPO-enriched cartesian closed category of a

certain kind (the exact nature is spelt out in the paper). In view of Theorem 7.1, we
might say that one weak form of the full abstraction problem for PCF boils down
to the following:

Observational abstraction for PCF. Find a CPO-enriched cartesian closed
category of Scott domains (providing a standard interpretation of PCF) all of
whose compact elements are PCF-definable.

Note that there is no intrinsic reason why the denotation of a PCF-program in
such a model must be a set-theoretic function.
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In [41] Jung and Stoughton seek ``a weak but precise minimal condition that a
semantic solution of the full abstraction should satisfy.'' The second criterion, which
we call the Jung�Stoughton criterion, imposes an effectivity constraint on the way
the fully abstract model is presented. It seeks an effective construction of the fully
abstract model restricted to finitary PCF, i.e., that part of PCF which is generated
from the boolean base type.
The third criterion is the hardest to satisfy. It asks for an axiomatic characteriza-

tion of higher-type, PCF-sequential functions. By way of comparison, if it is right
to think of the first two criteria as contributions to the representation theory of
higher-type sequentiality, then the third is in the business of giving it a definition.
One appealing way to characterize PCF-definable functions is to express it in terms
of an appropriate preservation property in an order-theoretic framework, for
example, in the style of Bucciarelli and Ehrhards' strongly stable functions [16, 17].
Another way is to characterize it topologically say, as a refinement of the Scott
topology. Such an approach is likely to be very hard, if it is at all feasible.

1.4. Quest for a Solution: A Survey

This sets the scene for a line of research motivated by the quest for a solution to
the full abstraction problem (in the qualitative sense) for PCF. As Plotkin already
intimated in [61], the key to the solution is an abstract characterization of sequen-
tial computation. To give that, one needs a proper understanding of sequentiality.
The matter is straightforward in the case of first-order computation. Milner and
others have already obtained satisfactory abstract description of first-order sequen-
tial functions. Intuitively the meaning of sequential computation is clear enough: it
is to do ``one thing at a time'' at any intermediate stage of the computation, and
possibly in a specific order. The real difficulty lies in describing sequential, func-
tional computation at higher types.
The first major contribution was made by Kahn and Plotkin and reported in a

technical report written in French. Like the papers of Scott and Plotkin mentioned
previously, a revised version of the paper [43] in English has also appeared in the
recently published Bo� hm Festschrift. They introduce a class of mathematical
structures known as concrete data structures (CDS). A CDS is an elaborate struc-
ture specially designed to articulate sequential computations. The framework of
CDSs and Kahn�Plotkin sequential functions is a highly innovative conceptual
advance in understanding higher-type sequentiality. Their framework does not give
rise to a cartesian closed category. (This is hardly surprising since it was not their
aim to carry out a systematic analysis of higher-type functional computation in that
paper. Its primary objective was to examine the behavior of stream-like computa-
tion.)
The search for a cartesian closed category of ``sequential functions'' became the

focus of research. Historically the research bifurcated at this point. The crux of the
matter is the abstract characterization of sequential, functional computation at
higher type. The sticking point lies in an apparent trade-off between the two
essential features: on the one hand, sequential computation which is an inherently
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intensional notion and on the other, the requirement that such computations inter-
act with each other in a functional or extensional way. So to characterize sequential
functions is to find an appropriate setting in which both properties can be held in
tension. Unfortunately, based on the work of Berry and Curien in the late 1970s,
it would seem that in order to get a cartesian closed category of sequential
functions, one of the two criteria has to give.
One major effort consisted in relaxing the constraints of sequentiality but staying

within the framework of functions. This led Berry to the notion of stability [8]. The
appropriate maps are stable functions which are continuous functions that preserve
greatest lower bounds of consistent (or upper bounded) subsets, and the objects are
dI-domains��Scott domains which satisfy a distributivity property and axiom (I)
meaning that every compact element can only dominate finitely many elements.
Stable functions are not ordered by the standard extensional (or point-wise) order-
ing5 but by a new ordering called stable ordering. A major result is that the
category of dI-domains and stable functions is cartesian closed.
The other approach builds on the central ideas behind the framework of CDS

and Kahn�Plotkin sequential function but sacrifices extensionality. Thus, Berry and
Curien introduced sequential algorithms over CDSs [10] (see also Curien's book
[24] for a comprehensive introduction). Sequential algorithms may be thought of
as intensional refinements or ``implementations'' of Kahn�Plotkin sequential
functions. There are two reasons why this way of thinking is appropriate. First it
is possible to express each sequential algorithm as a pair of the form ( f, ,) where
f is just a Kahn�Plotkin sequential function, and ,, referred to as the associated
computation strategy, is a partial function that picks out a sequentiality index at
each stage of the computation. Second, it is a theorem that the quotient of the CPO
of sequential algorithms by the extensional equality is isomorphic to the CPO of
Kahn�Plotkin sequential functions with respect to the stable ordering. Remarkably,
unlike Kahn�Plotkin sequential functions, sequential algorithms do give rise to a
cartesian closed category.
Each of the approaches gives rise to a CPO-enriched cartesian closed category

and provides a continuous model for PCF but none leads to a solution of the full
abstraction problem for PCF. In the case of the stable function space model, a sim-
ple reason6 is that the ordering in question is not the extensional ordering but
rather the stable ordering. In the case of the model associated with sequential algo-
rithms, the morphisms are not even functions.
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functions. We use the adjective extensional simply to mean the property of being a function as opposed
to, say, an algorithm which is an intensional thing. However, even if the maps of an order-enriched
category are extensional, they are not necessarily order-extensional, i.e., ordered extensionally. The
category of dI-domains and stable functions is a case in point.

6 A deeper explanation has to do with a subtle point about the extensional way in which PCF
functionals interact with function arguments. Curien has shown that there is no PCF-term of type
(oO oOo)O o which distinguishes between the left-or and right-or (say). However, sequential
algorithms are more intensional: there is a sequential algorithm which discriminates between two
computations which only differ intensionally in the above sense.



Recently, drawing on their intuitions as programmers, Cartwright, Felleisen, and
Curien [18, 19] introduced a continuous, order-extensional model for PCF which
is based on what they call observably sequential functions. Curien [22] immediately
realized that the observably sequential functions were a natural extensional refine-
ment of sequential algorithms. This is remarkable because the sequential algorithms
being considered in the extended setting, which are called observable algorithms, are
still very much intensional in nature and are most succinctly represented as a kind
of decision tree. The key to this surprising development is that the concrete data
structures are now equipped with error values. To ensure a well-behaved
mechanism of function application, observable algorithms are required to
``percolate errors to the top'' when they are applied to arguments. A main result is
that the category of DCDSs with error values and observable algorithms is car-
tesian closed. The associated model is not fully abstract for PCF, but it is for a
language called SPCF which is PCF extended by error values and escape handling
control facilities much resembling the catch facility in some versions of the
programming language Lisp.
Kahn�Plotkin sequentiality and Berry and Curiens' sequential algorithm are

both formulated within the rather concrete setting of CDS. Kahn, Plotkin, Winskel
[79, 80], and others have proved various representation theorems. One result
shows that this approach applies to a (rather) restricted class of CPOs known as
concrete domains. Can these two leading ideas in the understanding of higher-type
sequentiality be generalized to a more abstract setting? In a series of papers [16,
17, 27], Bucciarelli and Ehrhard set out to answer this question systematically.
They propose an abstract framework called a sequential structure which is a pair
(X

*
, X*) where

v X
*
, the collection of ``data'' or ``answers,'' is a dI-domain, and

v X* is the collection of (a kind of) linear maps (``questions'') from X
*
to the

two-point dI-domain (=<�). An element of X* should be thought of as a linear
property of elements of X

*
.

Think of a sequential structure as a concrete data structure made abstract. Their
key idea was to replace cells with a class of linear maps. States of a CDS then
correspond to points of the data space X

*
. Remarkably, in this abstract setting,

sequential algorithms can be defined quite naturally as pairs ( f, ,) where f, a
sequential function, describes the input�output behaviour of the algorithm and ,,
a partial function, describes its intensional properties. The enabling relation in a
CDS which formalizes a notion of immediate reachability or adjacency in the order-
ing also has a natural, abstract representation in the setting of sequential structure.
Ehrhard and Bucciarelli show that a cartesian closed category of sequential struc-
tures with enabling and sequential algorithms can be constructed; and furthermore,
into this category, the category of dcdss and sequential algorithms can be fully and
faithfully embedded. Thus the goal of extending sequential algorithms to an
abstract setting is achieved.
Bucciarelli and Ehrhard [15, 16] also introduced the notion of strong stability.

They were motivated by the observation that for dcdss, Kahn�Plotkin sequential
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functions can be given an equivalent description in more algebraic terms. According
to this definition, a sequential function is a continuous function preserving a certain
class of meets. They then cast this idea in a more abstract setting. The ``domains''
are dI-domains D equipped with a collection C(D) of finite subsets of D satisfying
a number of axioms. Call the collection C(D) a coherence and any of its elements
a coherence property. A continuous function f : D�E between dI-domains with
coherence is said to be strongly stable if

v it preserves coherence properties, i.e., f (A) is in C(E) whenever A is in
C(D), and

v it preserves greatest lower bound of coherence properties, i.e., f (@A)=
@ f (A) for any A in C(D).

Their result is that the category of dI-domains with coherence and strongly stable
functions is cartesian closed. We know that the associated model is not fully
abstract for PCF, but how closely does it model sequential functions? At first order,
strong stability coincides with Kahn�Plotkin sequentiality. However, at higher
order, we find ourselves at a loss conceptually for we are faced with a fundamental
question: is there a standard or canonical definition for higher-type sequentiality?
In [27] Ehrhard shows that any strongly stable function which arises from the

model is the ``extensional component'' of a sequential algorithm. More precisely a
cartesian closed category is constructed whose objects are triples (E, X, ?) . In such
a triple, E is a sequential structure, X is a hypercoherence, and ? is a function from
E
*
(the space of points of E ) to qD(X ), the qualitative domain induced by X. The

function ? is required to be linear, strongly stable (with respect to both the linear
coherence induced by E* on E

*
, and the coherence induced by the hypercoherence

X on qD(X )), and onto. (Hypercoherence (see [26]) is a simplified framework for
dealing with strong stability. A hypercoherence is a hypergraph that gives rise
naturally to a qualitative domain equipped with a coherence.) The intuition is this:
E
*
is the space of sequential algorithms, qD(X ) is a space of strongly stable func-

tions, and ? is the ``forgetful'' operation which sends any sequential algorithm onto
its generalized extensional component. In this setup, the force of the function ?
being onto is that any strongly stable function is in some sense the extensional
component of a sequential algorithm.
Brookes and Geva [14] have adopted a topological approach in an attempt to

characterize sequentiality. They propose a general definition of sequential functions
on Scott domains, characterized by a generalized notion of topology. This notion
of sequential function turns out to coincide with the Kahn�Plotkin notion of
sequential function when restricted to distributive concrete domains, but it con-
siderably expands the class of domains for which sequential functions may be
defined. Ordered stably, the sequential functions between two dI-domains form a
dI-domain (the analogous property fails for Kahn�Plotkin sequential functions).
However, the category of dI-domains and sequential functions is not cartesian
closed because application is not sequential.

Kleene's approach. Persisting in the background of these developments is a
deeper, more philosophical question of whether there is such a thing as a canonical
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notion of sequential computation at higher type. Clearly, the kind of computation
defined by PCF is at least a contender for such a standard, but it seems to us that
there is no compelling evidence (yet) that PCF-style computation is the only
acceptable notion of higher-type sequentiality. The problem of characterizing
higher-type sequentiality should be thought of in connection with a problem which
Kleene posed in [47] (see also [48]).

Kleene's problem. Find ``a class of functions which shall coincide with all the
partial functions which are `computable' or `effectively decidable', so that Church's
1936 Thesis will apply with the higher types included.''

In fact in this paper, Kleene initiated what is in effect an attack on the full
abstraction problem for PCF. The series of four papers by Kleene are all concerned
with an attempt to give meaning to PCF (or rather to Kleene's own preferred ver-
sion of Platek's recursion in terms of schemes) in terms of rules for a dialogue.
Kleene's idea of a dialogue developed in parallel with and independent of the work
on CDSs. While Kleene was not able to obtain a definitive characterization at
higher types, the general game-theoretic perspective, a version of which we present
in this paper, is already present in his work.
Kleene's initiative was followed up by Robin Gandy and his student Giovanni

Pani. Unlike Kleene and Platek, who considered only monotonic functions, Gandy
and Pani have been working in the continuous framework usual in computer
science. Their work is not published, but they have investigated a number of
possible approaches and have accumulated numerous (counter)examples. One of us
(Hyland) has talked informally with Gandy and Pani about their ideas on a
number of occasions. In particular, Gandy first pointed out the importance of his
``no dangling question mark'' condition for an explanation of PCF-style computa-
bility. (The account of approach currently favored by Gandy which we have seen
leads us to believe that it differs from that which we present.) A more detailed
comparison of our approach with Gandy's will be given in Section 9. We also
discuss there the little known work of Sazonov who in the mid 1970s produced a
machine-oriented characterization of the PCF-definable functionals. (The algo-
rithmic work of the ``Siberian school'' was roughly contemporaneous with but inde-
pendent of the early work of Milner and Plotkin.)
The question of higher-type sequentiality and Kleene's seemingly more general

problem are of fundamental importance to computer science. They certainly deserve
further investigation. For a survey of the full abstraction problem of PCF, see e.g.,
[11, 23, 57]. Curien's book (second edition) [24] provides an excellent account of
the main body of research inspired by the full abstraction problem of PCF.

1.5. Outline of the Paper

In the next section, we study the model theory of PCF in the light of standard
ideas from both categorical logic and categorical type theory. We take a (concrete)
model of PCF to be a c-fix category (cartesian closed with conditionals and fixed
points) equipped with what we call a simple object of numerals. In the same
categorical spirit the notion of observational equivalence is analyzed. Given
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a notion of observables on a symmetric monoidal closed category C (e.g., a model
of PCF), we give precise definition for the induced observational preorder (over
homsets of C) and study the associated quotient construction C[C� . These
analyses yield a general categorical setting within which the standard (though
hitherto concretely understood) properties of adequacy, order-extensionality
(equivalently the context lemma), and full abstraction may be articulated and
reasoned about.
In Part II we formalize the class of dialogue games in which the two players

involved are required to observe the disciplines of justification and priority
mentioned above. We make a category CA out of such games: objects are computa-
tional arenas which are a kind of environment for such dialogue games and maps
are innocent strategies. The main result of Part II is that this category CA is
cartesian closed and enriched over dI-domains. With respect to an intrinsic notion
of observables, CA satisfies the context lemma; equivalently, CA is order-exten-
sional.
The category CA is considered as a model of PCF and P��an extension of PCF

by definition-by-cases constructs��in Part III. We prove a strong definability
theorem: there is an order-isomorphism between compact elements of the model
and a class of finite canonical forms of P (ordered by 0-matching). As a corollary
the observational quotient CA@ of CA is an order-extensional, order fully abstract
model for P. The strong definability result extends to a universality theorem for
CA: modulo observational equivalence, all recursive innocent strategies are PCF-
definable. We conclude this paper with a discussion of and comparison with related
work. Directions for further research are identified.

Chronology. The results presented here were first announced in a message
entitled ``Dialogue games and innocent strategies: an approach to (intensional) full
abstraction for PCF'' in the Types and Linear e-mail lists in July 1993 in con-
junction with a preliminary announcement of Abramsky, Jagadeesan, and
Malacaria entitled ``Games and full abstraction of PCF.''

2. MODELS OF PCF

2.1. Categorical Semantics

The categorical perspective. Aspects of the models of PCF which we present in
this paper do not fit quite naturally into the context of denotational semantics as
traditionally conceived. Hence we think it worth describing in outline one notion
of the model for PCF from the point of view of categorical logic and categorical
type theory. (These are distinct traditions and we borrow from each.)
Standard references for models of simple type theories are [21, 49]. Usually we

have a category (or better, a 2-category) of categories equipped with a certain
structure. These categories are equivalent (in a sense which needs to be made
precise) to type theories of a certain kind and thus can be identified with type
theories.
Typically we are interested in one particular type theory T and thus in the corre-

sponding category T constructed from its syntax. The perspective of categorical
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logic is that models of T in an arbitrary category C of the sort in question are given
by structure preserving functors M: T�C from the classifying category T to C.
(These matters are explained carefully in [21] where T is called generic.)

Notations and conventions. We shall write the composition of maps f: A�B and
g: B�C as f; g: A�C. We stress at once that we shall take a relaxed attitude
toward notation. In principle we can distinguish between

(i) the syntax of some type theory T,

(ii) the interpretation of the syntax in the (syntactic) classifying category T,
and

(iii) the interpretation of the syntax in some arbitrary model M: T�C.

In categorical type theory, (i) and (ii) may harmlessly be identified, but the inter-
pretation of syntax in some specific model is usually indicated by semantic brackets
(see [21]). However, we prefer to overload notation by dropping the semantics
brackets and allow the context to disambiguate what we write. Thus we shall
systematically describe maps in our semantic categories using a mixed syntax con-
sisting of the syntax of our type theory (PCF) augmented by names for individual
objects and maps in the model (or we can think of the syntax of C in the sense of
categorical type theory). Our convention will be to let a term t of type B with free
variables (amongst the) x1 , ..., xn of types A1 , ..., An , respectively, denote a map

t:A1_ } } } _An�B.

We develop a theory of models for PCF along the general lines of categorical
type theory. Some of the material is quite routine, but there are a number of points
of interest and we take the opportunity to recast the standard notions of denota-
tional semantics in the more general framework.

Extensionality and order-extensionality. There are a couple of items which we
may as well make precise now. We assume for the purpose of this discussion that
our categories are equipped with a terminal object 1 and that the global sections
functor is appropriately thought of as giving the elements of types. (So we set aside
models of linear logic.) In general such categories will not be concrete in the natural
way; that is, the global sections functor will not be faithful. When it is, that is when

f=g: A�B� \a: 1�A .a; f=a; g: 1�B,

we say that the model is extensional. Similarly in the common order-enriched situa-
tion we may ask whether the global sections functor regarded as a Poset-enriched
functor to the enriching category Poset (which is enriched over itself) is faithful.
When it is, that is when

f�g: A�B� \a: 1�A .a; f�a; g: 1�B,

we say that the model is order-extensional. Category theorists often talk of the
category (enriched category) having enough points.

301ON FULL ABSTRACTION FOR PCF: I, II, AND III



Computational soundness and adequacy. Like the standard domain theoretic
models, categorical models of a functional programming language are static: they
are essentially models of equational theories. In particular we shall model the
programming language of PCF given in Section 1.1 by modeling the equational
theory from Section 1.2. Thus the question arises of what should be the equational
theory associated with a programming language.
An operational semantics for a (typed) functional programming language

typically provides:

v a distinguished collection of program types P;

v for each program type P a distinguished collection VP of (closed) terms v : P
called values;

v for each program type P a relation of convergence to value s - v between
arbitrary (closed) terms s : P and values v : P.

As usual we write s - for _v .s - v. (Note that this outline encompasses untyped
languages which can be regarded as having a single (program) type.)
Consider for the moment a model of T (of some unspecified kind); we write �&�

for the interpretation function. In the model we should be able to distinguish a
collection of values as the ``elements'' of the interpretation �P� of each program
type P. Then the model is said to be

v computationally sound just when for any s : P, if s- then the interpretation
�s� is a value in �P�;

v computationally adequate just when for any s : P, if the interpretation �s� is
a value in �P� then s - .

These notions clearly admit stronger versions. We say that the model is

v strongly computationally sound just when s - v : P implies �s� is a value in
�P� and that �s�=�v� # �P�;

v strongly computationally adequate just when �s� is a value in �P� implies
s- v for some v with �s�=�v� # �P�.

Remark. (i) In practice models which are computationally sound and
adequate are strongly so. (In the presence of suitable equality tests this will be
automatic, but it holds in their absence.) Of course strong computational soundness
and computational adequacy imply strong computational adequacy.

(ii) One might be tempted by a condition of the form

�s�=�v� # �P�O s - v : P,

but this fails for traditional models of lazy languages where abstractions are
regarded as values.
Since the point of our models is that the process of computation should be seen

as the replacement of equals by equals, we clearly want models to be strongly
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computationally sound. This can be ensured by insisting that the (initial, syntactic)
classifying model is so, in other words by insisting that

s-v : PO s=v

in a corresponding equational theory. Also we should at least be able to consider
computationally adequate models where computation to value is faithfully reflected.
This requires that the classifying model be computationally adequate; in other
words that s=v in the equational theory implies s - v: P. Thus the natural
requirement on an equational theory associated with a programming language is
that

s - v: P� s=v in the theory. (-)

(In general there will be many theories satisfying this requirement.)
Now consider the specific case of PCF. It seems natural in view of Section 1.1 to

regard PCF as having two program types @, o. The values of type o are the booleans
t, f and those of type @ are the numerals. So we see that Corollary 1.1 says that the
requirement (-) is satisfied in the case of PCF by the equational theory which we
presented in Section 1.2. As a result the (initial, syntactic) classifying model T for
PCF will be (strongly) computationally sound and adequate.

2.2. C-fix Categories

We start by establishing a very general categorical context for recursion theory.
We adopt what we take to be Platek's original conceptions [59] and make higher
types, the conditional (or definition by cases) at all types and fixed points at all
types the basis for our discussion.
Note that in contrast with the usual formulation of PCF, we take a conditional

at all types as a basic rather than a defined construction; this seems more natural
from a semantic point of view and does not7 entail a substantial change of the
programming language or type theory.

Definition 2.1. A c-fix category is a cartesian closed category C equipped with
the following additional structure:

(i) The conditional. An object B, two maps t: 1�B, f: 1�B, and a family of
maps

#A : B_A_A�A
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for each object A of C with the property that

commutes.

(ii) Fixed points. A family of maps for each object A of C

YA : AOA�A

with the property that the diagram

YA

(AOA)_(AOA)ww�

1_YA (AOA)_A

2
ev

AOA A

commutes.

Remark.

(i) #A interprets the conditional at type A and the commutative diagram
gives the two usual equations:

cond(t, x, y)=x

cond(f, x, y)=y.

Category theorists might expect to see the requirement that # be a natural
transformation which would give the naturality equation

h(cond(b, x, y))=cond(b, h(x), h( y)).

However, we do not need to insist on this as part of the general theory.

(ii) YA interprets the fixed-point operator at type A and the commutative
diagram gives the standard fixed-point equation:

f (YA( f ))=YA( f ).

In examples, we shall often have familiar properties of Y (dinaturality, Bekic�Scott
property for products), but again we do not need to insist on them as part of the
general theory. (Indeed we do not know a complete list of equational properties of
the fixed-point operator in categories of domains.)
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(iii) Note that we do not say that t and f are distinct. However, if they are
the same, then for every A in C, the two projections fst, snd: A_A�A are identi-
cal. It follows at once that A is subterminal (the unique map A� 1 is monic). But
the fixed-point operator provides at least one element (global section) for any A. So
in case t and f are equal, the c-fix category is equivalent to the (one-object-one-
map) category 1.

Many of our c-fix categories will be order-enriched and some will be enriched in
some category of structured domains. The standard reference for enriched category
theory is [44]. We need to make clear what we mean by an enriched c-fix category.

Definition 2.2. Suppose that V is a symmetric monoidal category. By a c-fix
category enriched over V we mean the following: a category C enriched over V,

(i) which is cartesian closed in the enriched sense, so that the natural
isomorphisms characterizing the products and function spaces in C are maps
between the appropriate hom-objects in V, and

(ii) whose underlying category is an ordinary c-fix category.

Note that as things stand there is no interaction between the enrichment and the
conditional or the fixed points.

Maps of c-fix categories. As maps between c-fix categories we should take
suitable structure preserving functors. We spell this out in the following definition.

Definition 2.3. Suppose C and D are c-fix categories. A functor F: C�D is a
map of c-fix categories (or just a map when the context is obvious) under the
following conditions:

(i) F preserves products and function spaces in the usual up-to-isomorphism
sense: the canonical maps

F (1)�1

F (A_B)�F (A)_F (B)

are isomorphisms, and the resulting canonical map

F (AOB)�F (A)OF (B)

is also an isomorphism.

(ii) F preserves the conditional in the sense that the canonical map

B�F (B)

is an isomorphism. (It follows that modulo isomorphism, #F (A) is F (#A) and so on.)
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(iii) F preserves fixed points in the sense that

"
F (YA)

F (A)OF (A) ww�

YF (A) F (A)

$

F (AOA) F (A)

commutes.

The basic setting for our categorical semantics is the category of c-fix categories
and maps (of c-fix categories). Of course the usual notion of natural transformation
make this naturally a 2-category, but for the most part we are able to suppress this.
For completeness, we make clear what we mean by a map of c-fix categories in

the enriched setting.

Definition 2.4. Suppose that C and D are c-fix categories enriched over the
symmetric monoidal category V. A map of enriched c-fix categories F: C�D (or
just map when the context is obvious) is an enriched functor F: C�D whose
underlying ordinary functor is a map of ordinary c-fix categories.

2.3. Models of PCF

In the previous section, we defined structure on a category which models the
basic processes of definition (typed *-calculus, conditionals, and fixed points) in
PCF, but we have yet to consider how to model the arithmetical structure on the
basic data type of individuals. We choose to regard this as a question of a different
kind: we treat @ separately from o. Note that o has a dual role: it is a data type but
it is first introduced to give a basic recursion-theoretic construction, the conditional.
One equational theory for arithmetic was presented in [69], but here we concen-
trate on the categorical interpretation of the weak equational theory of Section 1.2
which reflects Plotkin's operational semantics.
As a preliminary consider a category C with terminal object 1. Suppose that we

have an object N of C equipped with maps

1 �
0
N N �

s
N.

Then (overloading notation) we can define maps n: 1�N for n a natural number
inductively: the map 0: 1�N is already given and we set n+1: 1�N equal to the
composite

1 �
n
N �

s
N.

We refer to the maps n: 1�N thus defined as numerals. Note that we do not
assume that numerals n: 1�N and m: 1�N with m{n are distinct maps in C.
We can of course now regard any f: N�N in C as ``defining'' a numerical func-

tion F: N�N, but the usual context is a category with products.
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Definition 2.5. Suppose that C is a category with finite products and that N is
an object of C equipped with maps

1 �
0
N �

s
N.

Take numerals n: 1�N as just defined. A map f: Nk
�N in C numeralwise

represents (or numeralwise expresses) the numerical function F: Nk
�N just when

the composite

1www�

(n1 , ..., nk) N k
www�

f
N

is equal to F (n1 , ..., nk): 1�N for all natural numbers n1 , ..., nk .
Suppose also that B is an object of C equipped with maps

1 �

t

B 1 �

f

B.

A map r: Nk
�B numeralwise represents the k-ary relation R on N just when the

composite

1www�

(n1 , ..., nk) N k
www�

r
N

is t: 1�B for all (n1 , ..., nk) #R and f: 1�B for all (n1 , ..., nk) �R.

With these standard ideas as background we give the categorical counterpart to
the arithmetical equations of Section 1.2.

Definition 2.6. Suppose that C is a category with finite products (a terminal
object suffices) equipped with a diagram

1 ww�
ww�

t

f

B.

Consider an object N of C equipped with maps

1 �

0
N N �

s
N

N �

p
N N �

z
B.

We say that N thus equipped is a simple object of numerals (relative to 1 ww�
ww�

t

f

B)
just when the diagrams

0 n

t f

1ww�

0
N 1 ww�

n+1
N

p p

N N

1ww�
0

N 1 ww�
n+1

N

z f

B B

commute. (Here, of course, the n: 1�N are the numerals derived from 0: 1�N

and s: N�N.)
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This definition is weak in two respects. First it only provides information about
the behavior of the numerals n: 1�N. Two of the diagrams say that the standard
predecessor function is numeralwise represented by p, while the other two say that
z numeralwise represents a test for zero. We hope to suggest this focus on
numeralwise representability by speaking of an object of numerals rather than
natural numbers. Of course the arithmetical equations of Section 1.2 are concerned
only with numerals and this reflects the fact that the only values in the operational
semantics are numerals. The second way in which the definition is weak is that it
is purely equational and makes no references to the possibility of any recursion. We
intend to suggest this feature by the qualification simple. This simplicity is part of
the charm of Plotkin's reduction rules [61] giving the operational semantics.
In general the force of the definition of simple object of numerals (as of the

corresponding equations) will be extremely weak. Very few functions need be
numeralwise representable. (Think, for example, about what can be explicitly
defined in the case B=N, t=0, and f=1.) However, in the context of c-fix
categories the definition is strong as we shall explain in the next section.
We can now describe our notion of a categorical model for PCF. We give two

definitions, the first of which is very simple.

Definition 2.7. (Concrete version). A categorical model for PCF is a c-fix
category equipped with a simple object of numerals.

We hope that it is clear how the equational theory of PCF can be modelled in
such a structure. Note in passing that a given c-fix category may contain many non-
isomorphic simple objects of numerals, so the choice of such is definitely part of the
structure.

Remark. For some purposes it is useful to look at the definition from the point
of view of categorical logic. Let T be a cartesian closed category generated by the
equational theory of PCF. (There are a number of equivalent ways to construct T.
For example, one might augment PCF with a terminal type and products and take
equivalence classes of terms in the manner described by Lambek and Scott [49]
and by Crole [21], or else consider formal products of types and equivalence
classes of tuples of terms.) T is a c-fix category and it contains by construction a
simple object of numerals which we may as well continue to call @. So T is as one
would hope a model for PCF in the sense just given.

Definition 2.8 (Abstract version). A categorical model for PCF is a map
M: T�C of c-fix categories.

The point is that since the notion of a simple object of numerals is purely equa-
tional, M(@) is a simple object of numerals in C. All that the map M does effectively
is to pick out this structure and so the two definitions are essentially equivalent.
The second definition has the virtue of making clear the sense in which T (or the
identity T�T) is initial amongst models for PCF. Usually we shall simply write
C for a model of PCF, letting the structure in the sense of Definition 2.7 or the
structure and interpreting functor M in the sense of Definition 2.8 be understood.
We can justify this definition in terms of the discussion in Section 2.1. The values

in PCF are the booleans of type o and numerals of type @. Thus Corollary 1.1 says
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in effect that the initial model T of PCF is computationally sound and adequate (in
the strong sense). Hence all our models of PCF are (strongly) computationally
sound. (This is not a serious restriction.) Computational adequacy on the other
hand has a number of characterizations.

Proposition 2.1. Let C (M: T�C) a be a model of PCF. Then the following
are equivalent:

(i) C is computationally adequate.

(ii) C is strongly computationally adequate.

(iii) If M(s: 1� @) (respectively M(s: 1� o)) is a numeral (respectively
boolean) in C then s is a numeral (respectively boolean) in T.

(iv) If M(s)=M(n) (respectively M(s)=M(t), M(s)=M(f)) in C then s=n
(respectively s=t, s=f) in T.

Since conditions (iii) and (iv) make no reference to the operational semantics,
they suggest the following general definition. Suppose that a type theory T is
equipped with program types P and sets of values UP�T(1, P). We assume that
any model M: T�C is equipped with values VM(P)�C(1, M(P)) so that M(UP)
�VM(P) . Thus M: T�C is a strongly sound model of T.

Definition 2.9. Let M: T�C be a strongly sound model of the type theory T.
We shall say that C (strictly speaking M) is adequate just when M reflects values:
if M(s) is in VP then s is in UP .

In the case of PCF we take as values in any model the booleans and numerals.
Then the above definition applies to give a generalization of the usual notion of
adequacy. Not all models of PCF are adequate. In particular the trivial model of
PCF, the unique model M: T� 1 of PCF in the (terminal) one-object-one-map
category 1, is certainly not adequate (but adequacy can fail in more subtle ways).
In an adequate model of PCF the elements (i.e., global sections) of B and N may

be quite bizarre. Usually, however, we are interested in models in which the
individual values are distinct and in which there is just one additional nonvalue at
each program type. This is the familiar notion of a standard model of PCF. We
present this in our general setting constructively and in both a set-based and an
order-enriched version.

Definition 2.10. Let C be a model for PCF and write VP for the values in C

of the program type P (either booleans or numerals).

Set-based case. We say that C is standard just when

(i) the individual values in VP are distinct, and

(ii) for all a, b: 1�P in C, a=b in C if and only if a #VP� b #VP .

Order-enriched case. We say that the order-enriched model C is standard just
when

(i) the individual values in VP are distinct, and

(ii) for all a, b: 1�P in C, a�b in C if and only if a #VP� b #VP .
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There is one further desirable property of models of PCF which we need to
consider. First we make a general definition.

Definition 2.11. Suppose that C is a category with products and that we have
a collection of program types P in C and sets of values VP�C(1, P). We call a map
f: P1_ } } } _Pk�P from a product of program types P1 , ..., Pk to a program type
P a first order map. We say that such a map f is (elementwise) strict in its ith
argument just when for any a1 : 1�P1 , ..., ak : 1�Pk , if the composite

1 www�
(a1 , ..., ak) P1_ } } } _Pk www�

f
P

is a value, then so is ai : 1�Pi , and we say that f is strict (without qualification)
just when it is strict in all its arguments. (Note that this definition depends on the
product representation P1_ } } } _Pk .)

We shall be interested in models for PCF in which there are appropriate strict
maps.

Definition 2.12. A model C of PCF is strict just when the structural maps
satisfy the following natural strictness conditions:

v #N : B_N_N�N and #B : B_B_B�B are both strict in their first
argument;

v s: N�N, p: N�N, and z: N�B are all strict.

Example 2.1.

(i) The initial model T of PCF is strict. (This follows from Corollary 1.1
and the nature of the evaluation relations. For example if condust=n: @ then cond

ust- n; but - corresponds to a deterministic evaluation strategy so we deduce that
u- as required.)

(ii) The standard Scott domain model for PCF is strict. (This is clear from
its definition but see Proposition 2.8 below.)

(iii) The trivial model 1 is strict.

We leave the reader to ruminate on nonstrict models (the obvious ones are rather
boring) and simply give some sufficient conditions for strictness.

Proposition 2.2. Suppose that a model C of PCF is such that the functor
M: T�C maps T(1, @) surjectively onto C(1, N) and C(1, o) surjectively onto
C(1, B). If C is adequate then C is strict.

Proof. Suppose, for example, that a: 1�N in C is such that

1 �
a N �

s N

is a numeral. By surjectivity a=M(u) for some u: 1� @ in T. Now we have

M(u); M(succ)=M(u; succ)
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a numeral. As C is adequate M reflects numerals and so u; succ is a numeral in T.
But succ is strict in T (see above), so u is a numeral. Thus a=M(u) is a numeral
as required. The other cases are similar. K

Corollary 2.1. Suppose that C is a standard model of PCF. Then C adequate

implies C strict.

Proof. We show that the functor M: T�C satisfies the surjectivity hypotheses
of the preceding proposition. It suffices to show that some element of T(1, @)
(respectively T(1, o)) maps to a nonvalue in C(1, N) (respectively C(1, B)). In
T(1, @) consider Y(succ). If Y(s)=M(Y(succ))=n in C, then n=n+1 in C and C

is equivalent to the one-object-one-map category 1 and is thus not standard; there-
fore Y(s) is the ``undefined'' element of C(1, N). A similar argument using the fixed
point of a map swap: o� o deals with the other case. The result now follows from
Proposition 2.2. K

2.4. Recursion Theory

We start by considering the following definition which (like that of simple objects
of numerals) deals only with numerals.

Definition 2.13. Suppose C is a category with finite products (for the moment
a terminal object suffices). An object N of C equipped with maps

1 �
0
N N �

s
N

is an iterative object of numerals just when it comes equipped for any object X and
maps a: 1�X, f: X�X with a choice of maps r=it(a, f ): N�X such that the
diagrams

a

1 ww�
0

N 1 www�
n+1=n; s

N

r n; r r

X N_X www�
f

X

commute.

In other words an iterative object of numerals is one which enables us to repre-
sent iterations numeralwise. Now a standard argument shows that in a category
with products we can also numeralwise represent recursion; that is, we can give for
any object X and maps a: 1�X, g: N_X�X a choice of maps r=rec(a, g):
N�X such that the diagrams

a

n+1=n; s

g

1 ww�
0

N 1 N

r (n, n; r) r

X X X

commute.
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We remark in passing on the strength of this definition in a cartesian closed

category. Suppose that 1 �0 N�s N is an iterative object of numerals in a cartesian
closed category C. The closure enables us to parameterize recursive definitions. So
a sequence of primitive recursive definitions based on 0 and s gives rise to a
sequence of maps in C which numeralwise satisfy the corresponding recursion equa-
tions. Rather than spell this out in detail we give a formulation as in [49] where
the result is stated for the (stronger) notion of a weak natural number object.

Proposition 2.3. If 1 �0 N�s N is an iterative object of numerals in a cartesian
closed category C then all primitive recursive functions are numeralwise representable
in C.

Remark.

(i) Lambek and Scott presented the corresponding result for a weak natural
number object in [49]. The approach is essentially to observe that a weak natural
number object is an iterative object of numerals and then to follow the standard
approach outlined above.

(ii) Recall that we did not assume that our numerals n: 1�N were all dis-
tinct. However, in the context of an iterative object of numerals in a cartesian
closed category C, it is easy to show the following analogue of Remark 2.2(iii): if
n: 1�N and m: 1�N are equal for n{m, then the category C is equivalent to the
one-object-one-map category 1.

Let us return to the observation that in the presence of products, iteration entails
recursion (at the level of numeralwise representation). The standard recursion
equations for the predecessor involve no parameters, so the predecessor can be
represented numeralwise; a test for zero can also be defined by iteration. Hence we
have the following trivial result.

Proposition 2.4. Suppose that the category C with products is equipped with a
diagram

1 ww�ww�
t

f
B

Then an iterative object of numerals 1 �0 N �s N can be further equipped to give a
simple object of numerals (relative to B).

Recursion in a c-fix category is provided in a powerful way by fixed points.
Hence it is not surprising that in a model of PCF we have a converse to the above.

Proposition 2.5. In a model of PCF the structure 1�0 N�s N is (or can be
equipped with the structure of ) an iterative object of numerals.

Proof. Given a: 1�X and f: X�X we define r: N�X implicitly by the
informal equation

r(n)=if (n=0) then a else f (r( p(n)))

using the fixed-point operator and check that it works. K
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Remark. It follows that the requirement on a standard model that the values be
distinct is essentially the requirement that there be a nonvalue.

We have seen that in a model of PCF the notion of a simple object of numerals
provides an algebraic way of describing an iterative object of numerals. So by
Proposition 2.3, it provides numeralwise representations for all primitive recursive
functions. Note that this representation is quite uniform: there is a representation
in T whose interpretation in a model is a representation there. In fact all partial
recursive functions can similarly be represented in a sense which we now make
clear.

Definition 2.14. Suppose that C is a category with finite products and that N
is an object of C equipped with maps 0: 1�N and s: N�N. Take numerals
n: 1�N as usual. A map f: Nk�N in C tracks a partial numerical function
,: Nk�N just when for any natural numbers n1 , ..., nk with ,(n1 , ..., nk) defined,

the composite 1www�
(n1 , ..., nk) Nk �

f
N is equal to 1www�

,(n1 , ..., nk) N, and numeralwise

represents , just if, in addition, whenever the composite 1 www�
(n1 , ..., nk) N k �

f
N is a

numeral, then ,(n1 , ..., nk) is indeed defined.

Since PCF can be regarded as a programming language its terms should repre-
sent effective functions.

Proposition 2.6. If f: @kO @ is a term of PCF then (the interpretation of ) f

numeralwise represents a partial recursive function in the initial model T.

Proof. The relation t - v is defined inductively and so is semi-recursive. The
result follows as by Corollary 1.1: f (n1 , ..., nk)=m if and only if f (n1 , ..., nk) -m. K

A standard piece of programming gives a partial converse.

Proposition 2.7. For every partial recursive function ,: Nk�N, there is a term

f: @kO @ whose interpretation tracks , in the initial model T.

Proof. The argument is standard. The collection of partial functions tracked in
a model is clearly closed under substitution (composition). Hence it suffices (in view
of Kleene's representation of the partial recursive functions) to show how the result
of applying the least number operator may be tracked. We give the simplest case.
Suppose that h: @_@O @ tracks (and so numeralwise represents) the total function
H: N_N�N. Define g: @_@O @ implicitly by the informal equation

g(n, k)=if h(n, k)=0 then k else g(n, k+1)

using the least fixed-point operator. Then f: @O @ defined by f (n)= g(n, 0) tracks the
possibly partial function ,(n)=+k . (H(n, k)=0).

Corollary 2.2. If C is a model of PCF then for every partial recursive

,: Nk�N there is a term f of PCF whose interpretation in C tracks ,.

To get the full converse we need additional arguments. We first note the
following general property of strict models.
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Proposition 2.8. Suppose C is a strict model of PCF. Then for any f: Nk�N in
C there is a strict g: Nk�N which represents the same partial function (and similarly
for arbitrary first order maps).

Proof. Define t: N�N by

t(x) =
def

cond(zero?x) 00.

We see that t is strict and carries all numerals to 0. Now define g by g(x1 , ..., xk) =
def

cond(zero? t(x1))(cond(zero? t(x2))(cond } } } (cond(zero? t(xk)) f (x1 , ..., xk) 0)
} } } ) } } } ) 0.

Corollary 2.3. Suppose that C is a strict model of PCF. Then the collection
of partial functions numeralwise represented in C is closed under substitution
(composition).

Proof. The essential point is the following. If f1 , ..., fk : N
l�N numeralwise

represent ,1 , ..., ,k : N
l�N and if g: N k�N is strict and numeralwise represents

�:Nk�N, then g( f1 , ..., fk):N
l�N numeralwise represents �(,1 , ..., ,k):N

l�N. K

The full converse to Proposition 2.6 gives the following characterization.

Theorem 2.1. The partial functions numeralwise representable in the initial model
T for PCF are exactly the partial recursive functions.

Proof. It simply remains to refine the proof of Proposition 2.7. As T is strict,
Corollary 2.3 means that it suffices to show that the least number operator preserves
numeralwise representability. But this is a straightforward consequence of the fact
that Y behaves syntactically like a least fixed-point operator:

if (Yt)(s1 , ..., sk) - v then tr0(s1 , ..., sk) - v for some r.

In the notation of Proposition 2.7 we deduce by a straightforward induction that
g(n, k) numeralwise represents the function

�(n, k)=+l . (l�k6H(n, l )=0),

and so f numeralwise represents , as required. K

Remark.

(i) This result was of course known to Platek [59] and Scott [69]. We
sketch it here to show how the proof appears in our general perspective.

(ii) One can extract further information from the PCF definability of the least
number operator. Suppose we vary PCF by omitting the predecessor but include an
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equality test N_N�B. Then we can define a function numeralwise representing
the predecessor function

p(x)=if x=0 then 0 else +y .succy=x.

However, the predecessor cannot be recovered from (the successor and) test for zero
alone.

We note some elementary observations:

Lemma 2.1.

(i) If f: (@, ..., @
k

, @) is a term of PCF then in the initial model T (the interpreta-

tion of ) f numeralwise represents a partial recursive function.

(ii) If f tracks , in T then f tracks , in any model of PCF. If f numeralwise
represents , in T then f numeralwise represents , in any adequate model of PCF.

Proof. (i) is obvious in view of the effective nature of the reduction relation - .
We omit the proof of (ii). K

Finally we can say something about the representability of partial recursive
functions in adequate models of PCF.

Proposition 2.9. If C is an adequate model of PCF then for every partial
recursive function ,: Nk�N there is a term f of PCF (in the sense of Remark 2.3)
whose interpretation in C numeralwise represents ,.

Proof. If f numeralwise represents , in T then it does so in C as the functor
M: T�C reflects numerals. K

The converse of the preceding proposition is essentially obvious:

Proposition 2.10. Suppose that C is an adequate model of PCF. Then any term
f: @k� @ of PCF represents a partial recursive function in C.

3. OBSERVABLES, ADEQUACY, OBSERVATIONAL, AND FULL ABSTRACTION

3.1. Observables, Observational Preorder, and Quotient

We start by considering a notion of observational equivalence in a general
categorical setting. Throughout this section we take C to be a symmetric monoidal
closed category, which we think of as some category of types and terms. (We
suppress the structure of associativities and so on.)

Definition 3.1. A notion of observables O on C associates to each object A of
C a set OA of subsets of C(I, A) called observables at A, with the property that if
f: A�B in C and S # OB then

f*S =
def

[a: I�A | a; f # S] # OA .
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We say that such an association A[ OA equips C with observables and that C so
equipped is a category with observables.

Example 3.1. (i) Suppose that T is a programming language with an opera-
tional semantics as considered at the end of the last section; and suppose that T is
the category of types and (equivalence classes of) terms for a corresponding type
theory. We assume that T is computationally sound and adequate (in the strong
sense) so that convergence to value is preserved and reflected by equalities in the
type theory. Hence we do not bother to distinguish between types and terms in T
and the objects and maps in T which are their respective denotations. Then we have
relations

v of convergence a - for a: I�P (P a program type)

v of convergence to value a - v for a: I�P, v: I�P (P a program type and
v the interpretation of a value)

on maps in T. (Of course, a- v is just a suggestive way of writing ``a=v: I�P is
the interpretation of a value''!)
Take for simplicity a single program type P. (The generalization to more than

one program type is straightforward.) For f: A�P we define an observation

Of =
def

[a: I�A | a; f - ]

and for f: A�P and v: I�P a value we define

Of, v=[a: I�A | a; f - v].

Now we give some notions of observables.

(i) Termination. The association A[ OA=[Of | f: A�P] equips T with
observables.

(ii) Termination to value. The association A[ OA=[Of, v | f: A�P,
v: I�P a value] equips T with observables.

(iii) Termination to specified value. Choose a value u: P, so that we have a
distinguished map u: I�P in T. The association A[ OA=[Of, u | f: A�P] equips
T with observables.

(ii) More generally suppose given a monoidal closed category C, an object P
(a program type) of C, and a collection V of ``elements'' v: I�P of P (a set of
values). Then for f: A�P we define an observation

Of =
def

[a: I�A | a; f #V],

and for f: A�P and v: I�P #V we define an observation

Of, v =
def

[a: I�A | a; f=v].
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We generalize the notion of observables above.

(i) Termination. The association A[ OA=[Of | f: A�P] equips C with
observables.

(ii) Termination to value. The association A[ OA=[Of, v | f: A�P,
v: I�P #V] equips C with observables.

(iii) Termination to specified value. Choose a distinguished map
u: I�P #V. The association A[ OA=[Of, u | f: A�P] equips C with observables.

(iii) Suppose O equips D with observables and F: C�D is a functor. Then
it is easy to see that the association

A[ (F&1O)A=[F&1(u) | u # OA]

equips C with observables.

Remark.

(i) The reader may like to consider how very different are the notions of
observables termination, termination to value, and termination to specified value in
the case of (models of) lazy languages where abstractions are values: only termina-
tion seems to correspond to a clear computational intuition in this case. However
for PCF as we shall shortly see the notions will coincide in reasonable circumstan-
ces.

(ii) The construction in (iii) is particularly revealing in the case of a model
M: T�C of a programming language where C is equipped with a notion O of
observables as in (ii). (We naturally assume that the interpretation of values in T

is identical with those maps in T which become values in C.) In this case M&1O

is a notion of observables in T which generally will not coincide with any notion
defined as in (i). The structure in C allows us to make additional observations
in T.

It seems just worth introducing some suggestive terminology to describe special
properties of notions of observables O.

Definition 3.2. Suppose that C is a (symmetric monoidal closed) category with
observables O.

(i) We say that U # OG is a universal observation just when

OA=[ f*U | f: A�G]

for all A.

(ii) We say that a set G of observations is a generating set of observations for
O just when

OA=[ f*R | f: A�C, R # OC is in G]

for all A.
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(iii) We say that an ``element'' d: I�D is a detector for observations just
when [d ] # OD is a universal observation. (We also say d can be used to detect
observation.)

Consider the examples in (i) and (ii) above. In the case of termination there is a
universal observation. In the case of termination to specified value, the value can be
used to detect observations. In the case of termination to value the collection
[Oid, v | v: I�P] is a generating set of observations where id: P�P is the identity.

Observational preorder. Suppose that C is a (symmetric monoidal closed)
category with observables A[ OA . Then there is a natural notion of observational
preorder between maps from the same hom-set. For f, g: A�B in C we define

f� g =
def

f� #ROg� #R for all R # OA &b B

where f� , g� : I� (A&b B) are obtained from f, g, respectively by transposing. We
write the associated equivalence as & . (The reader will see that at last the
symmetric monoidal closed assumption is beginning to be used.)
Composition on either side preserves this preorder. Note that maps h: B�C and

k: D�A give rise to obvious maps (A&b h): (A&b B)� (A &b C) and (k &b B):
(A &b B)� (D &b B). Suppose that f�g: A�B. Take R # OA &b C;

f; h #R� f� # (A&b h)* ROg� # (A &b h)* R� g; h #R.

Thus f; h�g; h: A�C. Similarly take S # OD &b B ; suppose that f�g: A�B. Take
R # OA&b C ;

k; f # S� f� # (k&b B)* SO g� # (k &b B)* S� k; g # S.

Thus k; f�k; g: D�A.

Definition 3.3. If we let C� (A, B) =
def

C(A, B)�� be the poset induced by the
preorder � on C(A, B), we get a new order-enriched category C� , which we refer
to as the observational quotient of C. (Of course C� depends on the choice of
observables O.)

The category C� inherits a symmetric monoidal closed structure (now as an order-
enriched category) from C. Note that a map g: C�D induces an obvious map

(A&b B) �* (A�C &b B�D),

the transpose of

(A &b B)�A�C ww�
ev�g B�D.

Suppose that f�f $: A�B. Take R # OA�C &b B�D .

f�g #R� f� # **RO f $ # **R� f $�g #R.
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Thus f�g�f $�g: A�C�B�D. It follows at once that f�f $: A�B and
g�g$: C�D entail f�g�f $�g$: A�C�B�D. Thus � becomes an order-
enriched functor on C� and the symmetric monoidal structure carries over. The
closed structure does likewise as C� (A�B, C) and C� (A, B &b C) are isomorphic
posets trivially by the definition.
Now suppose that C is a cartesian closed category so that we are dealing with

a categorical product _ and corresponding function space O . Then C� is also
cartesian closed. It is enough to show that _ is a categorical product in C� . Note
that a map g: C�B gives rise to a map

#: (COA)$(COA)_1 ww�
1_g� (COA)_(COB)$(COA_B).

Suppose that f�f $: C�A. Take R # OCOA_B;

( f, g) #R� f� # #*RO f $ # #*R� ( f $, g) #R.

Thus ( f, g)�( f $, g): C�A_B. It follows at once that f�f $: C�A and
g�g$: C�B entail ( f, g)�( f $, g$): C�A_B. The converse implication is easy
and so _ is a product in C� in the order-enriched sense.
To summarize the discussion so far, we have shown:

Proposition 3.1. For any symmetric monoidal closed category C with observ-
ables, the observational quotient C� is an order-enriched category which inherits the
symmetric monoidal closed structure from C. (That is, the quotient functor preserves
the structure.) If C is in fact cartesian closed, then the same structure is likewise
inherited by C� .

Remark.

(i) Naturally different notions of observables may give rise to the same
notion of observational quotient. Indeed suppose O and O$ are two notions of
observables on the same (symmetric monoidal closed) category C, giving rise to
preorders �1 and �2 , respectively. Then one easily sees that

f�1 gO f�2 g

holds generally just when, for every f� ,

, [R # O1 | f� #R]�, [R # O2 | f� #R].

(ii) Generally suppose C is a cartesian closed category enriched over CPOs,
and that it is equipped with a notion of observables. (For example the category CA

of computational arenas and innocent strategies which is the subject matter of Part
III.) We call the enriching partial order the given ordering of C. It is easy to see that
if for each A, every observable R # OA is upper-closed with respect to the
given ordering of C(1, A), then the given ordering is contained in the associated
observational preorder. (This is the case for CA.)
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3.2. Observables: The Case of PCF

Recall from Section 2.4 that we regard PCF as having two program types o, @.
The values of type o are the booleans and those of type @ are the numerals. Thus
in T we have values t, f: 1�o and n: 1� @ for each natural number n. In a model
C of PCF it remains natural to take the booleans and numerals in C as values.
(They are just the images of values in T.) Thus in any model C of PCF we have
notions of observables along the lines of Example 3.1(ii). In principle we can dis-
tinguish nine separate notions. We have

v termination

v termination to value

v termination to specified value

and we may take these as

v at N only

v at B only

v at both N and B.

We now show that in good circumstances these distinct notions coincide.
We start by considering the general situation. Recall from Example 3.1(ii) that

our different notions of observables are defined in terms of observations

Of =
def

[a: I�A | a; f #VP ]

Of, v =
def

[a: I�A | a; f=v]

for f: I�P where P is a program type and v #VP a value. Now suppose P and Q
are program types. If v #VQ we write kv : P�Q for a strict map carrying all values
to the constant value v. if u #VP and v #VQ we write lu, v for a strict map which
carries just the value u to a value, that value being v. When such maps exist we get
connections between observations:

Of, u=O( f; lu, v), v

Of, u=Of; lu, u

Of=O( f; kv), v
.

In other words the different kinds of observations are interchangeable.
By Proposition 2.8 we are in this good position in strict models of PCF.

Proposition 3.2. If C is a strict model for PCF then the nine separate notions of
observables (introduced at the start of the section) coincide.

In the nonstrict situation it seems best to make a choice. We shall take as the
standard notion of observables for PCF that of termination at both ground types. In
general unless we say otherwise this is the one we shall mean; and for an arbitrary
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model C of PCF we shall write C� for the quotient category with respect to this
notion. But in case C is strict all reasonable choices give the same result.
We note in passing the following simple fact about the observational quotient of

models of PCF.

Proposition 3.3. Suppose that C is a model of PCF; then n�s in C� entails n=s
in C. In particular

(i) C adequate�C� adequate

(ii) C standardOC� standard

(iii) C strict�C� strict.

(Of course the second implication is not reversible; T is not standard but T� is.)
A consequence is the following simple property of the observational preorder.

Corollary 3.1. Suppose that in a model of PCF the maps f, g: Nk�N
numeralwise represent the partial functions ,, �: Nk�N, respectively. Then f�g
entails ,�� (i.e., , extends �).

Proof. Suppose ,(n1 , ..., nk)=m. Then in C we have

m=(n1 , ..., nk); f�(n1 , ..., nk); g.

We deduce m=(n1 , ..., nk); g in C and so �(n1 , ..., nk)=m. K

3.3. Behavioral Preorders, Order-Extensionality, and Context Lemma

We now turn to the standard notion(s) of observational preorders defined con-
cretely over terms of a programming language. We restrict attention to PCF though
much of the discussion has wider application. Let s and t be closed terms of type
A. Recall that s is said to approximate t observationally if C[s] - implies C[t] -
for every type-compatible context C[X ] such that C[s] and C[t] are programs.
Suppose x1 : A1 , ..., xn : An |&s, t: B, and let % range over closing substitutions, i.e.,
type-preserving functions from variables to closed PCF-terms. There are several
ways by which the notion of behavioral preorder may be extended to a preorder on
open terms.

v closure by context: s C&t t =
def

if C[s] - then C[t] - for all type-compatible
contexts C[X ] such that both C[s] and C[t] are programs

v closure by abstraction: s C&t
o t =

def
if C[*x� : A9 .s] - then C[*x� : A9 . t] - for all

contexts

X: A1 O } } } OAn OB |&C[X ]

of program type

v closure by substitution: s C&t
s t=

def
if C[s%] - then C[t%] - for all closing

substitutions % and contexts X: B |&C[X] of program type.
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Remark. Each of the preorders may be regarded as an appropriate definition
(for different reasons).

(i) The first preorder C&t is the observational preorder with respect to which
inequationally full abstraction is standardly defined. Note that free variables in s
(and similarly t) are bound as a result of the context substitution C[s].

(ii) The second preorder C&t
o (the superscript ``o'' is for closure) corresponds

precisely to the observational preorder of the PCF type theory T with respect to
the notion of observables as defined in Example 3.1.

(iii) The third preorder C&t
s (the superscript ``s'' is for substitution) was

studied in [4] in the context of the lazy *-calculus.

We could have defined C&t (and similarly for the other two preorders) as

C[s] - vOC[t] - v, for all values v;

but this is equivalent to the simpler formulation given earlier. For if for some
C[X ], we have C[s] - v and C[t] - v$ where v and v$ are distinct values, take
D[X ] to be cond(eqC[X ] v) 00. Then D[s] - and D[t] � . (This is a concrete
proof of Proposition 3.2 for the strict initial model T of PCF.)
What is the relationship between the three preorders? Restricted to closed terms,

it is clear that they are equivalent. For open terms, it is easy to see that C&t implies
C&t

o and C&t
s since the effects of closure and closing substitution, respectively, can be

simulated (by an appeal to Proposition 1.1) by appropriate contexts. But in fact the
three preorders coincide even for open terms.

Lemma 3.1. The preorder C&t
o is contained in the preorder C&t .

Proof. Consider PCF-terms y1 : B1 , ..., ym : Bm |&s, t: A. Take a context
X: A |&C[X] such that C[s] and C[t] are both programs. For any fresh variable
z: E where E is B1 O } } } OBm OA, (*z : E .C[zy� ])(*y� : B9 .s)=C[s] is an equa-
tion in the type theory T. Therefore, by Proposition 1.1, if C[s] - then
(*z : E .C[zy� ])(*y� : B9 .s) - . Suppose s C&t t; take D[X ]#(*z : E .C[zy� ])(*y� : B9 .X),
then (*z : E .C[zy� ])(*y� : B9 . t) - , and so, C[t] - by Proposition 1.1. K

Remark. The above simple syntactic argument is really quite general.

Lemma 3.2. The preorder C&t
s is contained in the preorder C&t

o .

Proof. This is a simple application of Milner's context lemma. Suppose s C&t
s t.

Then for all closing substitutions % we have s% C&t t% , and hence for all closed terms
a� of types A9 we have

(*x� .s) a� C&t (*x� . t) a� .

But now by the context lemma it follows that *x� .s C&t *x� .t, and so, s C&t
o t. K

Hence we can conclude:

Proposition 3.4. As preorders over open terms, C&t , C&t
o , and C&t

s are equivalent.
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Context lemma and order-extensionality. To our knowledge, the first context
lemma (or operational extensionality theorem as Meyer calls it in [50]) was
proved by Milner in [52]. Since then, several results of a similar kind but for
different languages have been proved; see, e.g., the work of Berry [9], Curien [24],
Stoughton [72], Howe [36], Abramsky and Ong [4], etc.
Adapting Meyer's terminology, it seems reasonable to say that in a (symmetric

monoidal closed) category C equipped with a notion of observables, the observa-
tional extensionality theorem is valid just in case the induced observational preorder
� satisfies the following:

f�g: A�B� \a: 1�A .a; f�a; g: 1�B.

This is equivalent to the condition that the global sections functor from C� to
the enriching category of posets is faithful, that is, to the condition that the
order-enriched category is order-extensional.
Suppose now that the notion of observables O on C is that based on termination

at program type. Then the observational preorder � is just the (analogue of the)
preorder C&t

o described above for the case of PCF. But quite generally C&t
o coincides

with the contextual preorder C&t . Hence in these circumstances we refer to the
observational extensionality theorem as the context lemma. This is consistent with
the usual definitions. Curien in [24, p. 324] defines the context lemma (in the case
of PCF) as the following property: for any closed terms s and t of the same type
A=(A1 , ..., An , @) say,

s C&t t� su1 } } } un - vO tu1 } } } un - v for any value v and any ui : Ai .

By an easy inductive argument, the context lemma is equivalent to

sC&t
! t� su1 C&t

! tu1 for any u1 : A1 ,

where C&t
! may be any of the three behavioral preorders we have just considered.

If the context lemma (or observational extensionality theorem) is valid in a
model of PCF, we can exploit it to good effect. As a simple example we give a
converse to Corollary 3.1.

Proposition 3.5. Suppose that the context lemma is valid in a model C for PCF
and that the observational quotient C� is standard. Take f, g: Nk�N in C

numeralwise representing the partial functions ,, �: Nk�N, respectively, and
suppose that f is strict. Then we have

f�g� ,��.

Proof. By Corollary 3.1 we only need the converse implication, so we assume
,��. By the context lemma, it suffices to show

f (a1 , ..., ak)�g(a1 , ..., ak)

(a1 , ..., ak); f�(a1 , ..., ak); g
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for all a: 1�Nk in C. As C� is standard it suffices to show that (a1 , ..., ak); f a
numeral implies (a1 , ..., ak); g a numeral. As f is strict we know that (a1 , ..., ak); f
a numeral, b say, implies a1 , ..., ak are numerals. We deduce that ,(a1 , ..., ak)=b
and so as ,��, �(a1 , ..., ak)=b. But then (a1 , ..., ak); g=b as required. K

3.4. Adequacy, Observational and Full Abstraction

We give an account of the notions of adequacy and full abstraction in the general
framework we have introduced.

Definition 3.4. Suppose that M: T�C is a model of the type theory T and
that T is equipped with a notion of observables O.

(i) C is adequate just when for any R # OA we have

(-) s #R and M(s)=M(t) implies t #R.

(ii) Suppose further C is order-enriched. C is order-adequate just when for
any R # OA we have

(-) s #R and M(s)�M(t) implies t #R.

The connections with standard notions of adequacy are quite straightforward.
Note that condition (-) for a generating set of observations is sufficient to ensure
adequacy. Consider the three notions of observables discussed in Example 3.1.
We assume that values in C are such that u is a value in T if and only if M(u)

is a value in C.

v In case O is termination, C is adequate if and only if M(s) a value in C

implies s a value in T.

v In case O is termination to value, C is adequate if and only if M(s)=M(u)
a value in C implies s=u in T.

The first of these is the notion generally taken as the standard notion of adequacy.
Note that the idea of order-adequacy is neglected for the good reason that one
never seems to consider a model C where M(s) is greater than but not equal to a
value.
We can give an easy alternative characterization of our notion of adequacy which

is familiar in the case of the usual notion.

Proposition 3.6. Suppose that M: T�C and that O is a notion of observables
on T.

(i) C is adequate if and only if for all s, t: A�B

M(s)=M(t)O s& t.

(ii) Suppose that C is order-enriched. C is order-adequate if and only if for all
s, t: A�B

M(s)�M(t)O s�t.

The notion of full abstraction also makes sense at this level of generality.
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Definition 3.5. Suppose that M: T�C is a model of the type theory T and
that T is equipped with a notion of observables O.

(i) C is equationally fully abstract just when for all s, t: A�B

M(s)=M(t)� s& t.

(ii) Suppose further that C is order-enriched. C is (order) fully abstract just
when

M(s)�M(t)� s�t

for all s, t: A�B. This notion is often called inequational full abstraction.

It is clear that this is a simple generalization of the standard notion.
Finally we introduce the notion which is fundamental to our treatment of PCF.

Definition 3.6. Suppose that M: T�C is a model of a type theory T. Then C

is observationally abstract just when for all s, t: A�B

M(s)�M(t)� s�t.

Thus in the given circumstances C is observationally abstract just when the
composite

T�C�C�

is fully abstract.

One way to think of observational abstraction is as follows. If C is observa-
tionally abstract, then the contexts in C allow us to make no more distinctions
between PCF-definable maps than do the contexts in T. So T�C induces (an
order-embedding) T� �C� .

Part II: Dialogue Games and Innocent Strategies

4. DIALOGUE GAMES OVER COMPUTATIONAL ARENAS

Dialogue games are played by two players in a prescribed setting or environment
called a computational arena. The dialogue game playable in a given computational
arena is completely determined by the associated game tree. We specify a game tree
in two stages:

v First the computational arena spells out the moves (which are questions and
answers) of the game and the justification ordering between question-moves.

v The game tree is then systematically generated from the set of moves subject
to a number of ground rules. Formally the game tree is represented as the collection
of all paths in the tree. Such paths are called legal positions.
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4.1. An Approach Based on Dialogue Games

Dialogue games are two-person games. The two players are called Player (or P)
and Opponent (or O). In diagrams we represent Player's move as the hollow circle
`` b '', and Opponent's move as the filled circle `` v ''. A dialogue game is played in a
computational arena which sets out the moves of the game. There are four kinds
of moves: Player's question, which we represent generically as ``('', Opponent's
answer ``)'', Opponent's question ``['', and Player's answer ``]''. The representation
of questions and answers as left and right matching parentheses, respectively,
reflects the following convention: Player's question can only be answered by Oppo-
nent and vice versa. In addition every answer is associated with a unique question.
Not all question-moves are necessarily available at the start of the game. Some

of them may become available or enabled as the play progresses. Except for the
initial questions (which do not need any justification), a question-move can only be
made provided its unique justifying (or enabling) move has been made. This notion
of justification is formulated as a partial ordering between questions so that the
resultant partially ordered set is an upside-down forest.

Definition 4.1. A computational arena A consists of the following data:

v A partially ordered set of questions (Qn(A), �A) such that the upper set
of each question is a finite linear order. So the questions form an upside down
forest (of trees), the root of each tree being a maximal element in the ordering.

v An association to each question of a set of possible answers. This is
represented as a map qnA : Ans(A)�Qn(A) where Ans(A) is the set of all answers
of the arena A. An answer a is said to be an appropriate answer of the question
qnA(a).

Questions of depth 0, 2, 4, etc. are associated with Opponent. We refer to these
questions as O-questions. Questions of depth 1, 3, 5, etc. are associated with Player,
and we call them P-questions. Answers appropriate to an O-question are associated
with Player, and they are called P-answers. Similarly answers appropriate to a
P-question are associated with Opponent, and they are called O-answers. Questions
of depth 0 (corresponding to the roots of trees) are called initial or opening
questions, and they have a special status.
Let q and q$ range over questions. We say that q$ justifies q if q$ is the unique

question immediately above q in the ordering; that is to say q$ is the least question
in Qn(A) such that q�A q$ and q{q$. For the sake of uniformity, we shall also
refer to the question qnA(a) as the (unique) justifying question of the answer a.

Ground rules. Given a computational arena, a play involving Player and
Opponent observes the following rules:

v A play of a dialogue game always starts by Opponent asking an initial
question.

v Thereafter the play alternates strictly between Player and Opponent. A play
ends as soon as the initial question is answered.
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Principles of civil conversation. Each play traces out a dialogue of questions and
answers which obeys the following principles:

1. Justification. A question is asked only if the dialogue at that point
warrants it in the sense that (an instance of) the unique justifying question is
pending i.e. already asked but not yet answered. Likewise, an answer is proffered
only if (an instance of) the unique question with which it is associated is pending.

2. Priority. Questions pending in a dialogue are answered on a last-asked-
first-answered basis: the question which is last asked must be answered first. This
is equivalent to Gandy's no-dangling-question-mark condition.

Definition 4.2. Formally a well-formed sequence s of a computational arena A
is a sequence of moves m1 }m2 } } }mn such that each move mi is associated with a
natural number +i called the justification index of mi satisfying +i<i and conditions
(w1) to (w4) in the following. By convention +1 is 0. The indices are best thought
of as a way of representing justification pointers. Note that the preceding require-
ment +i<i means that the justification pointers always point backward from mi to
m+i

. So a well-formed sequence s is by definition equipped with an auxiliary
sequence of justification indices; both sequences are of the same length.
We say that a move mj (which may be a question or an answer) is explicitly

justified by the question mi if mi justifies m j and that the justification pointer at mj

points to mi . We say that mj is an explicit answer of the question mi if mj is an
appropriate answer of mi and that +j=i.

(w1) Initial question to start. The first move m1 in s is an initial question of
A and there can be no occurrence of any initial question of A in the rest of s. By
convention +1 is 0: an initial move is not justified by any move.

(w2) Alternating play. The sequence alternates between Player's move and
Opponent's move.

(w3) Explicit justification. There are two cases:

�� Any noninitial question may be asked if an instance of its unique justify-
ing question has already been asked and has not been answered so far. More
precisely for any noninitial question mj in s, the move indexed by +j (which is m+j

)
explicitly justifies mj , and the segment m+j

}m+j+1 } } }mj of s does not contain any
explicit answer of m+j

. Note that this means that for +j<k< j, if mk is an
appropriate answer of the question m+j

then +k{+ j ; in fact it is a consequence of
condition (w4) that +k>+ j .

�� Any answer a may be offered if an instance of its unique justifying ques-
tion qnA(a) has already been asked and has not been answered so far. More
precisely any answer mj in s explicitly answers the question m+j

, and the segment
m+j

}m+j+1 } } }mj&1 of s does not contain any explicit answer of m+j
.

(w4) Last-asked-first-answered (or no-dangling-question-mark). Any sequence
s#m1 }m2 } } }mn satisfying the preceding three conditions is said to satisfy the last-
asked-first-answered condition if for any answer move mi in s, the move m+i

which
explicitly justifies mi is the last unanswered question in m1 } } } } }m i&1 .
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FIG. 1. An example.

This condition is equivalent to Gandy's no-dangling-question-mark condition. We
first introduce a definition. A question m occurring in a sequence t of moves
equipped with an auxiliary sequence of justification indices is said to be dangling in

the sequence t if t does not contain any explicit answer of m. Using the same
notations as before, any sequence s#m1 }m2 } } }mn is said to satisfy the
no-dangling-question-mark condition if for every answer mj occurring in the sequence
s, the segment m+j

}m+j+1 } } }mj contains no dangling question in itself. Note that
by condition (w3) the question m+j

is explicitly answered by mj .

The principle of priority is a version of the so-called well-bracketing condition in
formal language theory. There is a tradition in game semantics of intuitionistic logic
which uses essentially the same condition; see, e.g., Felscher's survey paper [28].
For example, as shown in Fig. 1, the sequence m1 }m2 } } }m6 of shape

[ } ( } [ } ] } ) } ] with the corresponding sequence of justification indices
0 } 1 } 2 } 1 } 2 } 3 violates the no-dangling-question-mark condition (since (say) the
segment m2 } } }m5 has a dangling question m3). It is easy to see that every initial
subsequence of a well-formed sequence is well formed.

Remark.

(i) For any well-formed sequence s#m1 }m2 } } }mn , for each i, the justifica-
tion index +i of mi is a pointer from mi to the move m+i

which explicitly justifies
mi , regardless of whether mi is a question or an answer. The indices are a represen-
tation of pointers in terms of relative positions in the well-formed sequence s.
Therefore, whenever the well-formed sequence is altered or transformed in any way
(say by removing some element), the auxiliary sequence of justification indices has
to be systematically recalculated in order to preserve the original justification rela-
tionship. In the following we shall only be concerned with a particular kind of
transformation of well-formed sequences called projection. We say that a sequence
s#m1 }m2 } } }mn projects to s$ (or s$ is a projection of s) if s$ is obtained from s by
deleting some elements from s; equivalently s$ is a subsequence of s.

(ii) A projection of a well-formed sequence s to a subsequence s$ respects
justification if whenever a move m in s occurs in the subsequence s$, so does the
question explicitly justifying m. If this condition is satisfied, we can be sure that the
image s$ of the projection (after the indices have been systematically reset) satisfies
condition (w3) of explicit justification.
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(iii) Note that so long as m+j
is a noninitial question of a well-formed

sequence, m+j
is in turn justified by the move m: where : is the justification index

++j
of m+j

. We can iterate this process, thereby tracing out the history of explicitly
justifying questions or simply the history of justification of mj which must end with
the only unjustified question of the well-formed sequence��the initial question m1 .
Clearly for any noninitial move mi , its history of justification is a unique sub-
sequence of s. For any move m occurring in the history of justification of m$, we
say that m$ is hereditarily justified by m. We state two elementary properties of
well-formed sequences. The proof is straightforward and we omit it.

Lemma 4.1.

(i) In any initial subsequence of a well-formed sequence, the number of answers
occurring in it is less than or equal to the number of questions.

(ii) Any well-formed sequence whose last element is an explicit answer to the
initial O-question is maximal.

4.2. Views and Legal Positions

Definition 4.5. Player's view, or P-view, Np\ of a well-formed sequence p of
moves is defined recursively. Let q range over well-formed sequences of moves and
r over segments of well-formed sequences.

N[\ =
def

[ if ``['' is initial,

Nq } ( } r } [\ =
def Nq\ } ( } [ if ``('' explicitly justifies ``['',

Nq } )\ =
def Nq\ } )

Nq } [ } r } ]\ =
def Nq\ if ``]'' explicitly answers ``['',

Nq } (\ =
def Nq\ } (.

Note that this definition is by recursion over the initial subsequences of a well-
formed sequence. There is no ambiguity in the second clause: given an O-question
``['' at the end of the sequence, there may well be several occurrences of the unique
justifying question ``('' of ``['' in the sequence to the left of ``['', but by condition
(w3) there is a pointer emanating from ``['' indicating a specific instance of ``(''
which justifies it explicitly. For example the P-view of a well-formed sequence of
moves may have the shape

[ } ( } ) } ( } ) } ( } [ } ( } ) } ( } ) } ( } [ } ( } ) } } } .

By construction whenever there is a pattern ``( } ['' in a P-view, the O-question ``[''
is explicitly justified by the P-question ``(''. Also there can be no segments of the
form ``[ } } } ]'' in a P-view. This may be read as the following: Player ignores
answers to questions posed by Opponent.
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There is a dual definition of Opponent's view, or O-view, np+ of a well-formed
sequence p of moves:

nq } [ } r } (n =
def

nq+ } [ } ( if ``['' explicitly justifies ``('',

nq } ]+ =
def

nq+ } ]

nq } ( } r } )+ =
def

nq+ if ``)'' explicitly answers ``('',

nq } [+ =
def

nq+ } [.

The O-view of an empty sequence is the empty sequence. Since a well-formed
sequence never begins with a P-question, we omit the case of n(+ . An O-view can
never have a segment of the form ( } } } ): Opponent ignores answers to questions
posed by Player. An O-view may, for example, have the shape

[ } ( } [ } ] } [ } ] } [ } ( }[ } ] } [ } ( } } } .

The following properties of P-view and O-view are easy to verify:

v By repeated application of condition (w3), if q } ( } r } ) is a well-formed
sequence and if ``('' explicitly justifies ``)'', then

Nq } ( } r } )\=Nq\ } ( } ).

Dually if q } [ } r } ] is a well-formed sequence and if ``['' explicitly justifies ``]'', then

nq } [ } r } ]+= nq+ } [ } ].

v If p is a well-formed sequence ending with an O-move (respectively
P-move), then the last move of p is preserved by P-view (respectively O-view); that
is to say, the last move of Np\ (respectively np+) comes from the same last move
of p.

What kind of a sequence is the P-view (or O-view) of a well-formed sequence?
Is it necessarily a well-formed sequence? For s ranging over well-formed sequences,
the operation of P-view s[ Ns\ is a projection. So Ns\ inherits the justification
pointers from s in the natural way mentioned in the remark. Unfortunately the pro-
jection does not always respect justification. For example, the following well-formed
sequence with its auxiliary sequence of justification indices

[1 } (2 } [ 3 } ( 4 } [5 } ( 6 } )7 0 } 1 } 2 } 3 } 2 } 3 } 6

has P-view [1 } ( 2 } [5 } ( 6 } )7 . With respect to the inherited justification pointers,
this sequence does not satisfy condition (w3) of a well-formed sequence: the last
P-question ``(6 '' inherits a justification pointer to ``[ 3 '' which does not appear in the
P-view. As it stands, as unary operations over well-formed sequences, P-view and
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O-view are only properly defined on certain well-formed sequences. What
additional condition characterizes these well-formed sequences? This motivates the
visibility condition.

Visibility condition. Recall that we choose to specify the game tree of a dialogue
game in terms of the collection of all paths in the tree. Such paths are called legal
positions which we define as follows.

Definition 4.4. A legal position of a computational arena A is a well-formed
sequence t which satisfies the following visibility condition:
For any initial subsequence s } ( of the sequence t, the O-question ``['' explicitly

justifying the P-question ``('' occurs in the P-view of s. Similarly for any initial sub-
sequence s } [ of the sequence t, the P-question explicitly justifying ``['' occurs in the
O-view of s.

It is easy to see that every initial subsequence of a legal position of an arena is
a legal position. It is also easy to check that as projections acting on legal positions,
the operations of both P-view and O-view respect justification. In performing the
operation N&\ (respectively n&+), we implicitly assume that the justification
indices are systematically reset in Ns\ (respectively ns+) in the appropriate way.
The above visibility condition applies only to questions of a legal position.

However this condition is strong enough to ensure that a corresponding visibility
condition automatically holds for answers. This is made precise in the following
lemma whose essentially straightforward proof is omitted.

Lemma 4.2. The explicitly justifying question of every P-answer (respectively
O-answer) in a legal position appears in the P-view (respectively O-view) of the legal
position up to that point. More precisely,

(i) for every initial subsequence s } ) of a legal position t, the P-question which
``)'' explicitly answers occurs in ns+;

(ii) for every initial subsequence s } ] of a legal position t, the O-question which
``]'' explicitly answers occurs in Ns\.

A sequence of moves of a computational arena A, equipped with an auxiliary
sequence of justification pointers, is said to be a P-view (respectively O-view) if it
is the P-view (respectively O-view) of some legal position of A. The operations of
P-view and O-view are well defined on legal positions: they map legal positions to
legal positions.

Notation. Given a sequence s#m1 }m2 } } }mn , we write s�mi
for the initial

subsequence of s up to and including mi , that is to say, m1 }m2 } } }mi . We write
s<mi

for m1 }m2 } } }mi&1 .

Proposition 4.1. Let s be a legal position of a computational arena. Both the
O-view and the P-view of s are legal positions.

Proof. We will just consider the case of the P-view Ns\ of a legal position s for
illustration. By the recursive definition of N&\, it is clear that conditions (w1) and
(w2) are satisfied by Ns\. For (w3), there are four cases to consider. First,
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P-question is considered. Consider an initial subsequence p } ( of Ns\. By construc-
tion we see that p is just Ns<(

\. Since s satisfies the visibility condition, ``('' is
explicitly justified by some O-question which occurs in p. Second, O-question is
considered. Consider an initial subsequence of the shape p } [ of Ns\. By definition,
either p is the empty sequence, in which case ``['' is an initial question, or p ends
with a P-question ``('' which explicitly justifies ``[''. Third, P-answer: but by con-
struction, a P-view does not contain any P-answer. Fourth, O-answer. For any
initial subsequence p } ) of Ns\, suppose, for a contradiction, the explicitly justifying
question ``('' of ``)'' does not occur in p. Note that p is Ns$\ such that s$ } ) is an initial
subsequence of s. There are two possibilities:

v ``('' occurs in a segment (1 } } } [ 2 of s where ``(1 '' explicitly justifies ``[2 '' and
p contains the segment (1 } [2 . In this case, s contains the segment ( 1 } } } ( } } } [ 2 } } } ).
By the no-dangling-question-mark condition, an appropriate answer of ``[2 '',
say ``]3 '', occurs before ``)''. That is to say, s contains the segment
(1 } } } ( } } } [2 } } } ]3 } } } ). A P-view does not contain any P-answer: we consider each
of the three cases explaining the disappearance of ``]3 '' in

Ns$\ in turn. Case 1: s
contains the segment [2 } } } ( 4 } } } ]3 } } } [ 5 with ``(4 '' explicitly justifying ``[5 ''. By the
no-dangling-question-mark condition, ``(4 '' explicitly justifies an appropriate answer
which occurs before ``]3 ''. But this contradicts our assumption that ``( 4 '' remains
explicitly unanswered up to ``[5 ''. Case 2: s contains the segment [2 } } } [4 } } }
]3 } } } ]5 with ``[4 '' explicitly justifying ``]5 '' such that ``[4 '' and ``[5 '' vanish in Ns$\

according to the fourth clause of the definition of N&\. But this violates the
no-dangling-question-mark condition. Case 3: the segment [2 } } } ]3 vanishes under
the P-view operation by virtue of the fourth clause of the recursive definition. But
this contradicts our assumption that the segment (1 } [2 appears in p.

v ``('' occurs in a segment [1 } } } ]2 of s where ``[1 '' explicitly justifies ``]2 ''. So
s contains the segment [1 } } } ( } } } ]2 } } } ): note that ) has to occur to the right of ]2 ,
for otherwise it would not occur in the P-view Ns\. But this violates the no-
dangling-question-mark condition.

Condition (w4) is vacuously satisfied since it is easy to see that whenever an answer
and its explicitly justified question occur in a P-view, they are necessarily P-ques-
tion and O-answer and adjacent to each other. Finally, the visibility condition is
considered. For any initial subsequence p } [ of a P-view, by construction, the last
move ``('' of p explicitly justifies ``[''. Since any initial subsequence of a P-view is a
P-view, and thus, is P-view invariant, ``('' occurs in Np\. For any initial subsequence
p } ( of a P-view Ns\, note that by construction, p is Ns$\, for some initial sub-
sequence s$ of s such that s$ } ( is in turn a subsequence of s. Since s satisfies the
visibility condition, the explicitly justifying question of ``('' appears in Ns$\#p. It
then remains to observe that p is P-view invariant.

Lemma 4.9. The operations of P-view and O-view are idempotent, i.e., NNp\\=Np\

and nnp++=np+ for any legal position p.

The proof is straightforward and is left to the reader. We note that since an initial
subsequence of a P-view (respectively O-view) is a P-view (respectively O-view), it
is therefore invariant under the P-view (respectively O-view) operation.
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Recall that the history of justification of a move m in a well-formed sequence s

is a well-defined subsequence of s which may be traced out by successively
``chasing'' the justification pointers starting from m until the initial question is
reached. Our next result shows that the history of justification of a move in a legal
position may be defined completely in terms of P-view and O-view.

Lemma 4.4. Let t be a legal position of a computational arena.

(i) If t ends with a question m then the history of justification of m (as a sub-

sequence of t) is N
nt+

\=n
Nt\

+ and is therefore a legal position.

(ii) If t ends with an answer m which is explicitly justified by (say) the question
m$ in t, then the history of justification of m is N

nt�m$+
\ }m=n

Nt�m$
\

+ }m, where t�m$

is the initial subsequence of t up to and including m$.

Proof. (i) We shall just consider the case of m being a P-question; the argu-
ment for the case of m being an O-question is similar. We prove by induction on
the length of such sequences. The base case of length 2 is immediate. For the induc-
tive case consider the following analysis of t where we use ``('' to represent m and
``($'' and ``['' are specific instances of moves in t such that ``['' explicitly justifies ``(''
and ``($'' explicitly justifies ``['':

t

s$

} } } ($ } } } [ } } } (

s"

s

t$

As shown in the above diagram, we write s#s$ } [ and t#t$ } (. Now, we have

nt+=ns$+ } [ } (. Hence, we have

N
nt+

\= N
ns$+ } [ } (

\=N
ns$+ } [ } (\= N

ns+
\ } (.

Hence, by the induction hypothesis, we have

N
nt+

\=n
Ns\

+ } (. (1)

We can already conclude that the history of justification of ``('' is N
nt+

\ since, by the
induction hypothesis, the history of justification of ``['' is n

Ns\
+ . However, we still

need to show that N
nt+

\= n
Nt\

+ . Observe that Ns\=Ns"\ } ($ } [; hence we get from
(1),

N
nt+

\=n
Ns"\ } ($ } [+ } (=n

Ns"\ } ($+ } [ } (. (2)
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Now we have

n
Nt\

+= n
Nt$\ } (+=n

Nt$\<[+ } [ } (. (3)

Recall that [upto] pm denotes the initial subsequence of p up to but not including
m. The last equation is justified since the O-question ``['' which explicitly justifies
``('' occurs in Nt$\: this is the visibility condition. For the same reason, and because
``($'' explicitly justifies ``['', we infer that

Nt$\<[=
Ns"\ } ($. (4)

Combining Eqs. (3) and (4), we get n
Nt\

+= n
Ns"\ } ($+ } [ } (. Hence from (2), we have

n
Nt\

+=
N

nt+
\. The proof of (ii) follows immediately. K

4.3. Constructions of Computational Arenas

We could already have defined the product A_B and function space AOB of
computational arenas A and B. These will turn out to be the actual product and
function space of a cartesian closed category of computational arenas. The verifica-
tion of the respective universal properties will have to wait until the category is
introduced in the next section.

Product. For product we simply take the obvious ``disjoint sum'' of the arenas
A and B as directed graphs. More precisely

Qn(A_B) =
def

Qn(A)+Qn(B),

Ans(A_B) =
def

Ans(A)+Ans(B),

qn(A_B) =
def

qn(A)+qn(B) (=[qn(A); in1 , qn(B); in2]),

where ini is the canonical injection map and [ f, g] the so-called source tupling.

Function space. For AOB it is simplest to draw a picture as in Fig. 2. (In the
picture there is only one initial move in B.) The initial moves of AOB are those
of B; and to the tree ``below'' each such initial move, we graft onto it a copy of the
forest of questions of A. More formally we define

Qn(AOB) =
def

(Qn(A)_MB)+Qn(B),

Ans(AOB) =
def

(Ans(A)_MB)+Ans(B),

qn(AOB) =
def

(qn(A)_IdM)+qn(B),

where MB is the set of initial (equivalently maximal) questions of B. The
justification ordering �AOB is defined to be the least partial order which includes
the partial order associated with Qn(A)_MB+Qn(B) viewed as a construction of
posets (MB being a discrete poset) and satisfies the additional condition:

(q, m)�AOB m for any m #MB and q #Qn(A).
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FIG. 2. The forest of questions of AOB.

The net effect of the construction is that moves of the new computational arena
AOB are defined in terms of those of A and B in a way similar to the game seman-
tics of the linear formula (!A)= B B (read ``shriek A perp par B'') in the style of
Blass according to which a P-move (respectively O-move) in A becomes an O-move
(respectively P-move) in AOB (see [13]). More accurately, corresponding to each
A-question at level 2n (respectively 2n+1) of the forest Qn(A), there are m copies
of the same question at level 2n+1 (respectively 2n+2) of the forest Qn(A)OB,
where m is the number of initial questions in Qn(B).
This is a good place to consider some examples and fix some notations.

Example 4.1.

(i) The natural numbers computational arena N is specified by the following
data:

�� The forest of questions is a singleton tree��the initial O-question ``[ @'' (or
simply ``['' whenever its type is clear).

�� The answers are all P-answers ]0 , ]1 , ]2 , } } } which are appropriate to
the only question ``[ @''.

(ii) The boolean computational arena B is defined similarly: the forest of
questions is a singleton ``[ o''; the answers (all P-answers) are ``]t'' and ``]f''.

There is no harm in writing the answers simply as 0, 1, 2, } } } rather than
]0 , ]1 , ]2 , ..., and we shall do so occasionally.

Remark. More generally, for any PCF-type A=(A1 , ..., An , @), the forest of
questions of the corresponding PCF-arena A is an inverted finite tree which is
constructed by recursion as follows: ``below'' the initial question corresponding to @,
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graft onto it a copy of the tree of questions corresponding to A1 , ..., An , respectively
(of course, O-questions and P-questions in the Ais are interchanged as a result).
It is useful to establish a naming convention for questions of a PCF-arena A.

Each question occurring in the tree is marked by an occurrence which is a finite
sequence of positive integers. The occurrence is defined as follows:

v the initial question of @ (or o) has occurrence =, the empty sequence

v for 1�i�n, if a question m of the arena Ai has occurrence l then m

regarded as a question of (A1 , ..., An , @) has occurrence i } l.

For example, the forest of questions of the arena (((@, @), @, @), @, @) is shown in Fig. 3
with the questions annotated with occurrences. Answers of a (PCF-)arena are just
copies of answers at program type, namely, ]0 , ]1 , ]2 , } } } or ]t and ]f.

4.4. Properties of Function Space Arenas

The definition of a function space arena is remarkably simple. Our task now
is to investigate properties of the function space arena and to express them
synthetically, i.e., in terms of the respective properties of the subarenas A and B.

Components. Let s be a legal position of a function space arena AOB and let
a be an (instance of an) A-initial move in s. We refer to the following subsequences
of s as the components of s:

v s�B, the B-component of s (or the projection of s onto B), is the
subsequence of s consisting of all B-moves in s,

v s� (A, a), the (A, a)-component of s (or the projection of s onto the compo-
nent (A, a)), is the subsequence of s consisting of all moves in A which are
hereditarily justified by a.

In addition we write s� (A, a)+ to mean the subsequence m } s� (A, a) where m is
the initial B-move of s. Clearly every move of s belongs to precisely one component
of s.

FIG. 3. Forest of questions of arena (((@, @), @, @), @, @).
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Two useful properties we shall prove shortly about function space arenas are:

v Projection convention. The projection of a legal position of AOB onto B
is a legal position in B, while the projection onto A can be read as an appropriate
interleaving of a finite number of legal positions in A.

v Switching convention. Player, but not Opponent, is allowed to switch com-
ponents, that is to say, either between a B-component and an (A, a)-component or
between different (A, a)-components.

Both conventions are reminiscent of similar conditions which are axioms in the
construction of par games in the Blass-style game semantics of linear logic (see for
example [2, 13, 39]). It is an indication of the simplicity of the arena approach that
these conventions are consequent features and not part of the definition of the
function space computational arena.
Let s be a legal position of the arena A. Let b0 be an initial move of the arena

B, and suppose s begins with an initial move a. It is easy to see that b0 } s is a legal
position of the function space arena (AOB) such that

[b0 } s]� (A, a)
+=b0 } s;

which is the same as saying that all moves of the legal position b0 } s are in the com-
ponent (A, a)+. (In this paper we use curly parentheses ``['' and ``]'' to indicate
operator precedence rather than the more standard ``('' and ``)'' which are reserved
for denoting P-questions and O-answers, respectively.) Conversely if t is a legal
position in (AOB) such that

t� (A, a)+=t,

then t� (A, a) is a legal position in A beginning with the initial A-move a.

Lemma 4.5. Let b0 } s be a legal position of the arena AOB such that all moves
in s belong to the component (A, a). Then we have:

(i) Nb0 } s
\AOB=b0 } ns+A .

(ii) nb0 } s+AOB=b0 }
Ns\A

Proof. The proof is a straightforward induction on the length of the legal posi-
tion in question. We sketch the argument for (i) for illustration. Suppose the
(AOB)-legal position b0 } s is of the form b0 } p }m } r }m$ where the P-question m
explicitly justifies the O-question m$. Then its P-view is Nb0 } p

\AOB }m }m$, which
by the induction hypothesis is b0 } np+A }m }m$. As a move in A, m is the O-question
which explicitly justifies the P-question m$. Therefore np+A }m }m$ is just

np }m } r }m$+A . The other cases of the recursive definition of P-view are dealt with
similarly. K

We are now in a position to state and prove the switching convention.

Proposition 4.2. Let s be a legal position of an arena AOB beginning with an
initial move b, and let the last move of s be a P-move m ( for (i) and (ii)).
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(i) (O-view projection 1). If m is in B then ns+AOB�B=ns�B+B=ns+AOB .

(ii) (O-view projection 2). If m is in the component (A, a) then

ns+AOB� (A, a)
+=b } Ns� (A, a)\A= ns+AOB .

(iii) (Switching convention). Whenever any two consecutive moves m and m$ in
s=[ } } }m }m$ } } } are in different components of s, then they are of the shape v } b ,
as opposed to b } v . In other words Player, but not Opponent, is allowed to switch
components.

Proof. We prove (i), (ii), and (iii) by mutual induction on the length of s. The
respective base cases are trivial. We consider the inductive cases in turn.

(i) Let m& be the move in s which explicitly justifies m; by construction of
s, m& is an O-move in B. Since s<m& }m& has length less than that of s, by the
induction hypothesis of (iii), the last move of s<m& is in B. Hence

ns+�B= nsm&+�B }m& }m by the induction hypothesis of (i)

=ns<m&�B+ }m
& }m

=n[s<m& }m& }m]�B+

=ns�B+.

Also by induction ns+�B= ns<m&+ �B }m& }m= ns<m&+ }m
& }m, and so,

ns+�B= ns+ .

(ii) If m is (an instance of) an initial A-move a then ns+=b }m. We then have

ns+AOB� (A, a)
+=b }m=b } Ns� (A, a)\ A.

If m is not an initial A-move then let m& be the O-move explicitly justifying m.
Note that both m and m& belong to the same component (A, a), say. We have

ns+= ns<m&+ }m
& }m. By the induction hypothesis of (iii), the last move of s<m& is

in the same component (A, a) as m&. Hence by the induction hypothesis of (ii),

ns+AOB� (A, a)
+=b } Ns<m&� (A, a)\A }m& }m=b } Ns� (A, a)\A.

Also by induction ns+AOB� (A, a)
+= ns+AOB .

(iii) Let s be a legal position whose last move m is an O-move, and let m&

be the P-move in s immediately preceding m. There are two cases. First, m& is in
(A, a). By the induction hypothesis of (ii), ns�m&+ has the form [ } p where ``['' is
the initial B-move in s, and p is a sequence of moves in (A, a). By the visibility
condition the move which explicitly justifies m is either ``['' or some move in p. The
former is to be rejected since m being an O-move can only be justified by a
P-question. Hence m is explicitly justified by some move in the (A, a)-component,
and so it must be a move of the same component. The other case of m& in B
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FIG. 4. An example.

follows from the induction hypothesis of (i), and we leave the details as an easy
exercise for the reader. K

Example 4.2. Consider the legal position s of the arena AOB as in Fig. 4. The
P-view Ns\ is b1 } a1 } a4 } b4 } b5 with justification indices 0 } 1 } 2 } 1 } 4, and so Ns\�B

is b1 } b4 } b5 with justification indices 0 } 1 } 2. Clearly s�B= Ns�B\. Observe that
Ns\�B is a (proper) subsequence of Ns�B\.

Convention. In the following we write sP t to mean that s is a subsequence (not
necessarily initial) of t.

Proposition 4.3 (P-view projection). Let s be a legal position of an arena

AOB. Suppose s ends with the move m.

(i) If m is in B then Ns\AOB�BP Ns�B\B.

(ii) If m is in the component (A, a) then Ns\AOB� (A, a)+Pb } Ns� (A, a)\A.

Proof. Since the proof is quite technical, we relegate it to the Appendix. K

Proposition 4.4 (Projection convention). Let s be a legal position of the arena

AOB.

(i) The projection s�B of s onto B is a legal position in B.

(ii) For any instance a of an initial A-move in s, the projection s� (A, a) is a

legal position of the arena A.

Proof. (i) We show that t#s�B is a legal position of B. Condition (w1) of a
well-formed sequence is clearly inherited by t. An immediate consequence of the
switching convention (Proposition 4.2) is that t is an alternating sequence. Suppose
we are given a P-question ``('' in t. By regarding ``('' as a move in s which is a legal
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position, the explicitly justifying question ``['' (say) occurs before ``('' in s and is
pointed to by the justification index. Now ``['' is a B-question, and so it occurs in
t before ``(''. The same argument applies to explicit justification of O-questions in
t. By proceeding in an identical manner and by considering the definition of the
order structure of Qn(A)OB in terms of that of Qn(B), we see that properties (w3)
as well as (w4) are inherited by t. For the visibility condition, take any P-question
``('' in t. By regarding it as a P-question in s which is a legal position, we infer that
the explicitly justifying question ``['' of ``('' occurs in Ns<(

\(. Since ``['' is a B-move,
it occurs in Ns<(

\�B. Hence, by Proposition 4.5, ``['' occurs in Ns<(�B
\.

For (ii) we shall just verify the visibility condition; the rest is routine. Let s be
a legal position in AOB which begins with b0 . Take any P-question (regarded as
a move in A) m in t#s� (A, a). By regarding it as an O-question (of AOB) in s,
the P-question m

�
(also in the component (A, a)) which explicitly justifies m is in

ns<m+AOB . Observe that m belongs to ns<m+� (A, a)
+. By Proposition 4.2(ii), m

�
is

in ns<m� (A, a)
+

+ which is just nb0 } [s<m]� (A, a)+. By definition all moves of
s<m� (A, a) are in the component (A, a) and the last move is a P-move in AOB.
Hence, by Lemma 4.5, m

�
is in Nt<m

\ as required. K

Remark. The payoff of the visibility condition may be seen in the above: the
projection of a merely well-formed sequence of a function space computational
arena AOB (say) onto either of the two components A or B is not necessarily well
formed. It is easy to check that the following sequence with the auxiliary sequence
of justification indices is well formed in AOB:

[B } (A } [A } (B } [A; 0 } 1 } 2 } 1 } 2.

However, the projection onto A with the auxiliary sequence of justification indices
systematically reset in the natural way as follows

(A } [A } [A 0 } 1 } 1

is not an alternating sequence.

5. INNOCENT STRATEGIES

A strategy for a player is a rule or a method that determines how a player is to
respond at a position where he or she is expected to make a move. Abstractly a
strategy for Player, say, is a partial function (of a certain kind) mapping legal posi-
tions (at which Player is to move) to P-moves. We represent a strategy as an
appropriate sub-tree of the game tree associated with an arena. Since we have
chosen to represent the game tree associated with an arena A formally as the collec-
tion of all paths (= legal positions) in the tree, we define a P-strategy _ of A to
be a non empty prefix-closed collection of legal positions of A satisfying the follow-
ing conditions:
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(s1) Determinacy. For any s # _ at which Player is to move, if both s } a and
s } b are in _ then a=b.

(s2) Contingent completeness. For any s # _ at which Opponent is to move
and for any O-move a, if s } a is a legal position then it is in _.

5.1. Uncovering and Composition of Strategies

First some terminology is defined. A sequence of moves of arenas A1 , ..., An is
said to be explicitly justified if it is equipped with justification pointers represented
by an associated sequence of natural numbers called justification indices.
Suppose we are given strategies _ and { of computational arenas AOB and

BOC respectively. Take a legal position s of the computational arena AOC. We
define the uncovering of s in accord with _ and {, written u(s, _, {), as the unique
maximal explicitly justified sequence u of moves of A, B, and C satisfying the
following properties,

(u1) u� (A, C)�s,

(u2) u� (B, C) # {,

(u3) u� (A, B)b # _;

where � in the first clause is prefix ordering between legal positions. For legal
positions s and t, we say that s�t holds just in the case where

v as sequences of moves, s is a prefix of t

v the auxiliary sequence of justification indices of s is a prefix of that of t.

The subscript b in the third clause ranges over all instances of initial B-moves in
u. Note that u may be an infinite sequence of moves, in which case we read the
second clause as: every finite truncation of the projected sequence u� (B, C) belongs
to {. The same qualification applies to the third clause.

Convention. By a component, we mean either (B, C) or (A, B)b where b is an
instance of an initial B-move occurring in u. We will use X as a meta-variable rang-
ing over components and \X as a meta-variable denoting _ if X is (A, B)b or { if
X is (B, C).

Definition 5.1. The uncovering u=u(s, _, {) may be generated by the following
algorithm. We write u=u1 } u2 } u3 } } } } with ui ranging over moves in arenas A, B,
and C. Let n be the length of u (note that n may be infinite). We show inductively
that for each i�n, the initial subsequence v#u1 } u2 } } } ui satisfies clauses (u1),
(u2), and (u3); and if v<u, then the next move ui+1 is uniquely defined.

(1) If s is the empty sequence, then so is u; otherwise the initial move of s is
the initial move of u.

(2) If v#u1 } u2 } } } } } ui has been generated and ui can be regarded as an
O-move in the component X (that is to say, ui is either an O-move in the arena
AOC or it is a B-move), then v�X is inductively in \X (which is _ or { as
appropriate).
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(2.1) If (v�X ) } a # \X for (a necessarily unique) a, then there are two
possibilities:

(2.1.1) either a is a B-move and then we define ui+1 to be a

(2.1.2) or a is a move in AOC, in which case

(2.1.2.1) if we still have v� (A, C) } a�s, then define ui+1 to be a,

(2.1.2.2) otherwise we stop with u=v.

(2.2) If not, we stop with u=v.

(3) If v#u1 } u2 } } } } } ui has been generated and ends with a move ui in com-
ponent X which cannot be regarded as an O-move (that is to say, ui is a P-move
in AOC), then inductively, v� (A, C)�s.

(3.1) If there is a move in AOC, say a, making v� (A, C) } a�s, then
define ui+1 to be a. (The move a must be an O-move in the same component (in
the sense of Proposition 4.2) of AOC as ui , by the switching convention.)

(3.2) If not, stop with u=v.

It is straightforward to check that u generated as above is the uncovering of s
according to _ and { and is uniquely defined.
We make the following useful observation.

Lemma 5.1. For any legal position t of AOC, and any s�u(t, _, {)� (A, C), we
have

u(s, _, {)� (A, C)=s.

Proof. Let v be the maximal initial subsequence of u(t, _, {) such that
v� (A, C)=s. It suffices to check that v is in fact u(s, _, {).

Composition of strategies. We can now formally define composition. Given
strategies _ and { of AOB and BOC respectively, we define

_; { =
def

[u(s, _, {)� (A, C) : s is a legal position of AOC].

The composition of strategies is reminiscent of csp-style parallel composition plus
hiding [35].
The collection _; { is clearly nonempty: any initial move of AOC (regarded as

a singleton sequence) belongs to _; {. For any legal position t of AOC, and for any
s�u(t, _, {)� (A, C), by Lemma 5.1, s=u(s, _, {)� (A, C), and so s is in _; {.
Therefore _; { is prefix-closed.
Now consider Definition 5.1 (of uncovering). Suppose s # _; { ends with an

O-move d0 . Writing u(s, _, {) as u, it is clear that if u is infinite, then there can be
no P-move a such that s } a # _; {. So suppose u is finite. By construction of the
uncovering u, for some finite n�0, there are B-moves d1 , ..., dn , and for each
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0�i�n, writing Xi as the component in which d i may be regarded as an O-move,
such that:

v u#v } d0 } d1 } } } dn with v } d0� (A, C)=s, and

v (v } d0 } d1 } } } } } di �Xi) } di+1 # \Xi
, for each 0�i�n&1.

Further

(A) either (v } d0 } d1 } } } } } dn �Xn) is a maximal legal position in \Xn
, corre-

sponding to case (2.2) in Definition 5.1 (note that in this case there can be no
P-move a for which s } a # _; {)

(B) or there is some P-move a in AOC such that v } d0 } d1 } } } } } dn �Xn } a #
\Xn

, corresponding to case (3.2) in the same definition. In this case observe that
s } a # _; {, and a is unique.

Hence we see that condition (s1) (of strategy) is satisfied by the collection _; {.
Also, by reference to clause (3.1) of Definition 5.1, _; { inherits property (s2) from
the same of _ and {. Hence _; { is a strategy.
Composition of strategies as defined is associative. Given strategies _, {, and \ of

arenas AOB, BOC, and COD, respectively, taking any s # (_; {); \, we show
that s # _; ({; \) by induction on the length of s. (Inclusion in the other direction is
similar and we leave it as an exercise for the reader.) The base case is obvious. Let
m be the last move of s. W.l.o.g. suppose m is an A-move. The case of m being an
O-move is easy: by the switching convention (Proposition 4.5), the move m&

preceding m must also be in the same component as m. Since s�m& is in _; ({; \)
by the induction hypothesis, so must s be by condition (s2) of strategy.
Now suppose m is a P-move. We consider the less straightforward case of m&

being a D-move. By the induction hypothesis s�m& is in _; ({; \). Writing
u(s�m& , _, {; \) as u, by Lemma 5.1, u� (A, D)=s�m&, as depicted in Fig. 5. Since
s is in (_; {); \; by Lemma 5.1, writing u(s, _; {, \) as v, we have v� (A, D)=s, and
for some C-moves c� , v has shape w } c� }m where w has m& as the last move. Let cn
be the last move in c� , and suppose cn is in the component (A, C)c$ . By definition
of the uncovering v,

v� (A, C)c$ # _; {.

Observe that cn and m are the penultimate and last moves respectively in
v� (A, C)c$ . By definition of _; { and by Lemma 5.1, writing u(v� (A, C)c$ , _, {) as l,
we have

l� (A, C)c$=v� (A, C)c$ ,

where l has shape } } } c� } b9 }m. Suppose m to be in the (A, B)b$ -component of l. We
have l� (A, B)b$ # _. It is easy to check that u } b9 }m is u(s, _, {; \), and
u } b9 }m� (A, D) is s. Hence s # _; ({; \).
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FIG. 5. Composition of strategies is associative.

To summarize we have shown:

Proposition 5.1. Composition of strategies is well defined and associative.

For strategies _, {, and " of arenas AOB, BOC, and COD respectively and for
a legal position s of AOD, we define u(s, _, {, ") as the unique maximal explicitly
justified sequence u of moves of arenas A, B, C, and D satisfying

v u� (A, D)�s

v u� (C, D) # "

v u� (B, C)ci # { for each instance ci of initial (BOC)-move occurring in u

v u� (A, B)bj # _ for each instance bj of an initial (AOB)-move occurring
in u.

We leave the essentially straightforward proof of the following result to the
reader.

Proposition 5.2. The composition (_; {); " (or equivalently _; ({; ")) is

_; {; "=[u(s, _, {, ")� (A, D): s is a legal position of AOD].

5.2. Representation of Innocent Strategies

A strategy for Player is history-free if Player's move at any position of the game
where he or she is expected to play is determined by the last move of Opponent:
the history of the play prior to the last move has no bearing on Player's response
(see [2]). If Player's move depends on the entire history of the play up to that
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point, then the strategy is said to be history-sensitive. Innocent strategies are neither
history-free nor history-sensitive. Rather they determine a response to Opponent's
move on the basis of a narrow view of the history of the play up to that point
(hence the adjective ``innocent'').
Each such P-strategy, say _, is determined by a partial function of a certain kind

mapping P-views p (of legal positions at which Player is to move) to pairs of the
form (a, \) where a is a P-move and \ a justification pointer from a to a position
i (say) in the P-view p. Suppose p=Ns\ and i� is the position in s that projects onto
i under P-view. We shall call the new pointer \� from a to i� the transposed pointer
of \.

Definition 5.2 (Innocent strategy). A strategy _ is said to be innocent if there
is some partial function f of the abovementioned kind such that for any legal posi-
tion s # _ at which P is to move, and for any P-move a, s } a (together with a
justification pointer \, say, for a) is in _ if and only if f (Ns\)=(a, \$) and \ coin-
cides with the transposed pointer of \$. We shall call such a function f a defining
partial function for the innocent strategy _.

Remark. In the following we shall often regard defining partial functions of
innocent strategies conveniently as a function from P-views to P-move, suppressing
the justification pointer of the P-move whenever where it points to is clear from the
context. We regard this as a harmless simplification.

It is easy to see that corresponding to each innocent strategy _, there is a least
(and so unique) such partial function regarded as a graph, written f_ . We call f_
the representing partial function for the innocent strategy _. We also call functions
of the form f_ representing innocent functions. The representing function f_ may be
characterized as follows: for any P-view p ending with an O-move, and for any
P-move a, f_(p) is defined and equal to a if and only if there is some s # _ such that

(i) Ns\= p, and

(ii) s } a # _.

So for any P-view p ending with an O-move, f_( p) is undefined if and only if either
there is no legal position s # _ such that p= Ns\ or for some (and hence for every)
legal position s # _ such that p=Ns\, s is a maximal legal position in _. (It is easy
to see that a history-free strategy is automatically innocent, but the converse is not
true.)

Representation of innocent strategies. Clearly not every partial function from
P-views to P-moves gives rise to an innocent strategy. There is, however, a
necessary and sufficient condition for a partial function of the appropriate type to
be the representing partial function of some innocent strategy. We first introduce a
helpful notion. Let A be a computational arena. Take any P-view p of A ending
with an O-move and let f be a partial function of the following type:

f : [P-views of A ending with O-moves]( [P-moves in A].
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The collection �f p of f-traces of p is a subset of the legal positions of A defined
as follows:

s #:
f

p

s#m1 }m2 } } }m2n+1 , for some n�0, is a legal position of A where

� { v Ns\= p,

v for each 0�l<n, f (Nm1 }m2 } } }m2l+1
\)=m2l+2 .

Definition 5.3. A partial function of the above type is said to be innocent if for
any P-view p of a legal position ending with an O-move, and for any P-move a,
f ( p) is defined and equal to a if and only if the following conditions are satisfied:

(if1) �f p is non-empty,

(if2) for any legal position s, if s #�f p, then s } a is a legal position of A.

Consider the collection _f of legal positions defined inductively as follows. For n
ranging over |, and writing = as the empty sequence, we define

_0
f =

def
[=],

_2n+1
f =

def
[s } a | s # _2n

f , a # O-moves, and s } a is a legal position],

_2n+2
f =

def
[s } f (Ns\) | s # _2n+1

f , f (Ns\) is defined],

_f =
def .

n # |

_n
f .

Lemma 5.2.

(i) Given any innocent ( partial ) function f, the collection _f of legal positions
defined above is an innocent strategy.

(ii) For any P-view p of a legal position ending with an O-move,

:
f

p=[s # _f :
Ns\= p].

The proof is an easy exercise which is left to the reader. In fact innocent strategies
and innocent functions are the same thing, as the following proposition shows. We
omit the largely straightforward proof.

Lemma 5.3. For any innocent strategies _ and _$ and any innocent functions f and
f $, we have

(i) f_f= f.

(ii) _f_
=_.

(iii) f�f $ if and only if _f�_f $ .

(iv) _�_$ if and only if f_�f_$ .
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Consequently we are justified in regarding an innocent function f as a (unique)
representation of the innocent strategy _f .
We use this representation in a number of ways: to explain the notion of a finite

or compact strategy (see Lemma 5.4) and to define recursive strategies (see
Section 5.6). In a sense innocent functions seem more fundamental than innocent
strategies (as trees); but the latter are well suited to an explanation (and definition)
of composition.

5.3. Composition of Innocent Strategies

In Section 5.1 we saw how to compose strategies of computational arenas. Now
we consider whether this operation preserves innocence. The main result in this
section is the following:

Proposition 5.3. Composition of innocent strategies is well-defined.

To prove this proposition, we need to verify the following: for any innocent
strategies _=_f and {={g of computational arenas AOB and BOC, respectively,
the composition _; { is an innocent strategy. By Proposition 5.1, we know that _; {
is a strategy. It remains to prove that the strategy _; { is innocent; that is to say,
there is a partial function h mapping P-views of legal positions (at which P is to
move) of AOC to P-moves of the same arena such that for any legal position s
of _; { at which P is to move, and for any P-move a of AOC,

s } a # _f ; {g� h(Ns\) is defined, and is equal to a.

Suppose s is a legal position of the arena AOC. Write u#u(s, _, {), the uncover-
ing of s according to _ and {. For d an O-move in the general sense in u (i.e., an
O-move in AOC or a B-move), let d� be the preceding O-move in AOC (so that
d� coincides with d when d is a move of AOC) and write

u(d� )#u(Ns�d�
\, _, {).

Since the P-view of a legal position is a legal position (Lemma 4.1), u(d� ) is well
defined.

Proposition 5.4. For any generalized O-move d in u, we construct by recursion
on d an identification of u(d� ) as a subsequence of u�d of the following kind: u�d looks
like

v |www
www| b v |www

www| b v |www
www| b v |www

www| b } } } ,

where the leftmost `` v '' is an initial move in C; other occurrences of `` v '' are O-moves
in AOC; ``|www

www|'' represents a block of alternating moves in B, and `` b '' is a
P-move in AOC. The following are satisfied:
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(i) u(d� )�d simply omits segments of the form `` v |www
www| b '', where `` v '', and

so also `` b '', are missing from Ns�d�
\. We shall write u(d� )�d<} u�d to mean that

u(d� )�d is a subsequence of the required kind.

(ii) If X is the component in which d is an O-move, then

Nu(d� )�d�X
\=Nu�d�X

\.

Before we prove the proposition, let us unpack the equation in clause (ii) and
express it in terms of the following commuting diagram: for any legal position s of
AOC, and for any generalized O-move d occurring in s, and d� as before,

@wwwww� @wwwww�
-|
|
a

-|
a

-|
|
a

-|
|
|
|
|
|
a

"
@wwww� @wwww�

uncover s truncate at d

truncate at d P-view in Xd

s, d, d� u(s, _, {)#u u�d

truncate s at d�

s�d

P-view in AOC P-view in Xd

Ns�d�
\ Nu�d�Xd

\

uncover

u(d� )#u(Ns�d�
\, _, {) u(d� )�d

Nu(d� )�d�Xd
\

Proof. We prove by a case analysis on d.

Case 1. d is an O-move in AOC.

Case 1a. d is the initial O-move in C: this is obvious.

Case 1b. d is an O-move after the initial C-move, so that d=d� , say in
component X. Then by condition (w3) of legal position, d is explicitly justified by
a P-move, call it e, in component X. Let x be the O-move immediately preceding
e in u. Note that x is still in component X, though it may be a B-move.

(i) Note that s�d� is of the form s�x� } e } } } d, so that taking the P-view in
AOC, we have Ns�d�

\= Ns�x�
\ } e } d. Hence u(d� )#u(Ns�d�

\, _, {)=u(Ns�x�
\ } e } d,

_, {) has u(x� )#u(Ns�x�
\, _, {) as an initial subsequence. By the recursion

hypothesis, u(x� )�x<} u�x ``is'' a subsequence of the required kind, and thus, also
u(d� )�x=u(x� )�x . By the induction hypothesis for (ii), we have Nu(x� )�x�X

\=
Nu�x�X

\. Note that we have already observed that x and d occur in the same
component X. Hence,

hX (
Nu(d )�x�X

\)=hX (
Nu(x)�x�X

\)=hX (
Nu�x�X

\)=e,

by construction of u. And it follows by construction of u(d� ) that u(d� )�d is
u(d� )�x } e } d=u(x� )�x } e } d. This provides an obvious identification of u(d� )�d as a
subsequence of u�d of the right kind. Note that we omit all the `` v |www

www| b ''
segments sandwiched between e and d.
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(ii) Note that u�d is of the form u�x } e } } } d. So

Nu�d�X
\= Nu�x�X

\ } e } d by the induction hypothesis of (ii)

=Nu(x� )�x�X
\ } e } d

=Nu(x� )�x } e } d�X
\

=Nu(d� )�d�X
\.

Case 2. d is an O-move in B, say in component X. Hence, d is a P-move in the
paired component Y. Let y be the O-move immediately preceding d in component
Y. Note that d� = y� .

(i) By the recursion�induction hypotheses, we have u(y� )�y<} u�y , a sub-
sequence of the required kind. As u�d=u�y } d, we know that hY (

Nu�y�Y
\)=d. By

the induction hypothesis, we know that Nu( y)�y�Y
\= Nu�y�Y

\, so Nu(d� )�y�Y
\=

Nu�y�Y
\. Hence, by construction, we see that u(d� ) extends u(d� )�y by

hY (
Nu(d� )�y�Y

\)=hY (
Nu�y�Y

\)=d.

This gives the identification u(d� )�d=u(d� )�y } d as a subsequence of u�d of the
required kind.

(ii) Now let e be the P-question in X which explicitly justifies d in u and let
x be the O-move immediately preceding e.
We know by (i) that u(d� )�d<} u�d is a subsequence of a certain kind. Hence,

since e occurs in u(d� ) �d , we infer that x and x� both occur in u(d� )�d because
x, x, e, and d all occur in the same segment `` v |www

www| b '' which is in u(d� )�d . It
follows that x occurs in s�d� so s�x� �s�d� and so u(d� ) starts like u(x� ) and in
particular, u(d� )�x=u(x� )�x . By the induction hypothesis, we know that
Nu(x� )�x�X

\= Nu�x�X
\, and hence,

hX (
Nu(d� )�x�X

\)=hX (
Nu�x�X

\)=e.

Thus, not only is u�d of the form u�x } e } } } d but so u(d� )�d is of the form
u(d� )�x } e } } } d. Hence,

Nu�d�X
\=Nu�x�X

\ } e } d=Nu(d� )�x�X
\ } e } d= Nu(d� )�d�X

\. K

To prove Proposition 5.3, the first step is to specify the partial function

h: [P-views (of AOC) ending with O-moves]( [P-moves in AOC]

that defines the composite innocent strategy _f ; {g .

Definition 5.4. For any P-view p of AOC ending with an O-move d0 , h( p) is
defined and equal to a P-move a in AOC if and only if for some explicitly justified
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sequence t of the arenas (A, B, C), and for some n�0, there are B-moves d1 , ..., dn
with

u#u(p, _, {)=t } d0 } d1 } d2 } } } } } dn ,

such that hX (
Nu(d0)�X

\)=a where X is the component in which dn is an O-move
and the same convention as before governs the meaning of hX .

Proof of Proposition 5.3. Suppose s # _; { is a legal position which ends with an
O-move d0 . Note that d0 appears in Ns\= p as the last move. For any P-move a,
by the preceding analysis, s } a # _; { is equivalent to the following:

(1) the uncovering u#u(s, _, {) is finite; that is to say, for some finite n�0,
there are B-moves d1 , ..., dn such that u#w } d0 } d1 } d2 } } } dn , for some explicitly
justified sequence w of the arenas (A, B, C); and

(2) (u�Xn) } a # \Xn
where, as before, we write Xn as the component in which

dn may be regarded as an O-move.

Since d0 occurs in u and p=Ns\, by Proposition 5.4(i), statement (1) is equivalent
to the assertion that u(d0)#u( p, _, {) is finite and that u(d0)#v } d0 } d1 } d2 } } } dn ,
for some explicitly justified sequence v of the arenas (A, B, C). Also, since _ and {
are innocent strategies by assumption, (2) is equivalent to

hXn
(Nu�Xn

\)=a,

where hXn
is defined as before. By Proposition 5.4(ii), we have hXn

(Nu(d0)�Xn
\)=a.

By the definition of h, we conclude that (1) and (2) amount precisely to the asser-
tion that h(Ns\) is defined and equal to a. We have thus proved Proposition 5.3. K

5.4. CA: A Cartesian Closed Category of Computational Arenas

At long last we have in place the necessary data for defining a category. The
category CA of computational arenas is defined by the following data:

v Objects are computational arenas.

v Maps between computational arenas A and B are innocent P-strategies of
the function space computational arena AOB.

The identity map of a computational arena A is just the ``tit-for-tat strategy'' or
``copy-cat strategy'' of the arena AOA. Consider the two components (or copies)
of A in AOA. The strategy may be described informally as follows: suppose
Opponent has just made the move m in one component; then Player responds by
making the same move in the other component. The tit-for-tat strategy is innocent:
for any n�0, and for any legal position s of the form a1 } a1 } a2 } a2 } } } an } an }
an+1 , the representing partial function of the strategy maps the P-view Ns\ to an+1 .
Composition of strategies as defined in the last section is associative.

Product. For any computational arenas A and B, the categorical product is just
A_B as defined earlier. The projection map A_B�A is the following innocent
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strategy of the arena (A_B)OA which is another tit-for-tat strategy: we label the
two copies (or components) of A as (A1_B)OA2 . O begins by making an initial
A-move in A2 . P responds by making the same initial A-move in A1 . Note that O
cannot switch components. For any O-move in A1 , P responds by making the same
move in A2 . Thereafter P responds to any O-move by making the same move but
in the other A-component. To check the universal property we observe that the
arena CO (A_B) is just (COA)_(COB). So given maps f: C�A and g: C�B,
the pairing [ f, g]: C�A_B is defined by the disjoint union of the respective
strategies.
The terminal object 1 is the empty computational arena: it has neither question

nor answer. For any computational arena A, the unique innocent strategy of the
arena AO 1 (which is just the empty arena 1) is the singleton set [=] as defined by
the empty (as a graph) innocent partial function.

Function space. For computational arenas A, B, and C, it is easy to see that the
arenas (C_A)OB and CO (AOB) are isomorphic (the respective arenas are
exactly the same as pictures). Hence

CA(C_A, B)$CA(C, AOB)

is an isomorphism natural in A, B, and C. We can therefore conclude that the
category of computational arenas and innocent strategies is cartesian closed.
It is worth observing that many strategies that denote PCF-terms are tit-for-tat

strategies in some appropriately general sense. In these strategies, Player's response
simply consists in copying Opponent's move from one component of the arena to
another. We have already seen two examples; namely, the identity and projection
maps. Another is the evaluation map

(AOB)_A w�
ev B

for arenas A and B. The map ev is a history-free (and hence innocent) strategy in
the arena (AOB)_AOB which has two components of the subarena A, one dual
to the other and similarly for the subarena B. The strategy ev may be described
succinctly as follows: if O's move is m in some component of A (respectively B)
then P's response is m in the dual component of A (respectively B).

5.5. CA as an Enriched Category

In this section we show that CA is the underlying category of a category (which
we continue to call CA) enriched over the category of dI-domains. (For enriched
category theory see [44].) For computational arenas B and C, CA(B, C) is the set
of all innocent strategies of the arena BOC. We consider the structure which this
set naturally carries. Since we can readily identify CA(B, C) with CA(1, BOC) we
can restrict attention to sets of the form CA(1, A) for any arena A. We write A

�
for

CA(1, A), the set of all innocent strategies of a computational arena A.
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For the sake of completeness we introduce some basic domain-theoretic notions.
A complete partial order (CPO) is a poset which has a least element and joins of
all directed subsets. A subset X of a poset D is said to be consistent if X has an
upper bound in D. A CPO D is consistently complete if any of the following equiv-
alent conditions are satisfied:

(1) every pairwise consistent pair of elements of D has a join in D;

(2) every consistent subset of D has a least upper bound (lub);

(3) every subset of D has a greatest lower bound (glb),

An element d of a CPO D is said to be prime if for every subset X of D such that
� X exists and if dC=�X, then there is some element x #X such that dC=x. The ele-
ment d is said to be compact if the above condition holds for X ranging over only
directed subsets of D. A CPO D is said to be algebraic if for every element d of D,
the collection of all compact elements of D dominated by d is directed, and its lub
is precisely d. Further, D is said to be |-algebraic if D has countably many compact
elements. By a Scott domain, we mean a consistently complete, |-algebraic CPO.
A consistently complete CPO D is said to be prime algebraic if every element d of
D is the lub of all prime elements dominated by d. A dI-domain8 is a consistently
complete, algebraic CPO that is prime algebraic and satisfies axiom (I): every com-
pact element dominates only finitely many elements.
We say that a legal position s of an arena A is innocent if there is an innocent

strategy (of A) of which s is an element. Clearly not every legal position is innocent:
consider the legal position

[ } (1 } [ 1.1 } ]1 } [1.1 } ]2

of the arena (@O @)O @ whose questions are annotated according to the convention
introduced in the Remark in Section 4.3. Since innocent strategies are determined
by innocent functions, it is easy to see that a legal position s (which ends in an
O-move) is innocent if and only if there is an innocent function f such that
s #�f

Ns\. Given an innocent legal position s of an arena A, we define

_[s] =
def

the least innocent strategy containings.

Suppose s#m1 }m2 } } }m2n+1 . It is easy to see that _[s] is _g where the (partial)
function g is defined by the following graph

[(Nm1 }m2 } } }m2l+1
\, m2l+2) : 0�l<n].

It is routine to verify that f thus defined is innocent.

Example 5.1. Note that _[s] may contain legal positions of length greater than
that of s. Just take s to be the legal position (together with its auxiliary sequence
of justification indices)

[ } (1 } [ 1.1 } ] } ) } ] 0 } 1 } 2 } 3 } 2 } 1
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of the arena (@O @)O @. The least innocent strategy generated by s is defined by the
following innocent function:

[ [ (1

[ } ( 1 } [1.1[ ]

[ } (1 } )[ ].

Note that _[s] contains the following family of legal positions: for each n�0,

[ } (1 } [ 1.1 } ] } } } } } [1.1 } ]

2n

} ) } ] 0 } 1 } 2 } 3 } 2 } 5 } } } } } 2 } 2n+1

2n

} 2 } 1;

so the length of legal positions in _[s] is unbounded.

For any P-view p that ends with an O-move, and for any P-move a, it is easy
to see that if p } a is a legal position then it is innocent. The innocent function
f_[ p } a] , qua graph, is the collection of ordered pairs (q, b) such that b is a P-move
and q } b�p } a. Since P-views are P-view invariant (Lemma 4.3), any two pairs in
the collection which agree in the first component necessarily agree in the second.
Let S be a set of innocent strategies of A bounded, say, by {. By Lemma 5.3, for

each _ # S, f_�f{ , and so �_ # S f_�f{ . Hence F=def �_ # S f_ is a partial function.
It is straightforward to verify that F is innocent. Clearly � S is the strategy defined
by F. (Note that in general � S is not �_ # S _, though of course �_ # S _�� S.) We
have shown that the poset of innocent strategies A

�
is bounded complete.

Lemma 5.4.

(i) An innocent strategy _ #A
�

is compact if and only if its representing

function f_ is a finite graph.

(ii) An innocent strategy _ #A
�
is prime if and only if it is _[ p } a] for some

P-view p (which ends with an O-move) and for some P-move a such that p } a is a legal

position.

(iii) A
�
is prime algebraic.

Proof. We prove (ii) and (iii) for an illustration. First observe that for any
innocent strategy _ of A,

'
( p, a) # f_

_[ p } a]

is defined and is equal to _. If _ is prime then _�_[ p } a] for some pair (p, a) in
f_ . But in fact _=_[ p } a], since _[ p } a] is the least strategy that contains p } a. The
other direction is now immediate and so is (iii). K

Supposing the arena A is countable (i.e., A has countably many questions and
answers), then A has only countably many P-views. Since compact innocent
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strategies are finite subsets (of a certain kind) of the countable set [P-views]_
[P-moves], there are only countably many such strategies. Therefore A

�
is

|-algebraic. Finally we observe that axiom (I) is trivially satisfied for any A.
To summarize we have shown that

Proposition 5.5.

(i) The collection A
�
of innocent strategies ordered by inclusion is a dI-domain.

(ii) In particular, if A is a PCF-type, then A
�
is |-algebraic.

We conclude from the preceding proposition that each CA(B, C) carries the
structure of a dI-domain. It follows easily from the definition of identities, composi-
tion, products and function spaces that the corresponding maps (natural
isomorphisms in the last two cases)

1�CA(A, A)

CA(A, B)_CA(B, C )�CA(A, C)

CA(C, A)_CA(C, B)�CA(C, A_B)

CA(C_A, B)�CA(C, AOB)

are continuous maps of dI-domains (but they are not necessarily stable). Hence we
have the main result of this section:

Theorem 5.1. The category CA of computational arenas and innocent strategies
is a cartesian closed category which is enriched over dI-domains.

5.6. Recursive Strategies

Now we consider computational arenas which are in some sense recursively
presented. For simplicity we suppose that the forest of questions of A is a finite tree.
(We could proceed with an enumeration of a countable tree, but the definition is
more cumbersome and we have no need of that generality.)

Definition 5.5. Let A be a computational arena with a finite tree of questions
and a countable (finite or denumerable) set of answers. Then a recursive presenta-
tion of A consists of an enumeration of the countable set of answers corresponding
to each question: for each q #Qn(A) we have a bijection

qn&1(q)�N

or

qn&1(q)�Nn=[i : i<n].

We call a computational arena equipped with a recursive presentation a recursively
presented computational arena (rpca).
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Example 5.2.

(i) The computational arenas N and B of Example 4.1 have natural recursive
presentations. (N also has perverse recursive presentations.)

(ii) Clearly the computational arena 1 is trivially recursively presented, and
if A and B are recursively presented then so are A_B and AOB in an obvious
way.

We could consider a category with rpcas as objects and innocent strategies as
maps. This is hardly worth naming as it is equivalent to a subcategory of CA: the
forgetful functor is full and faithful. Rather we want to use the enumerations
(codings) of answers to enable us to talk of recursive strategies. Now given an rpca

A we can concoct natural codings for P-moves and for P-views in A. (Of course the
coding includes information about the justification indices.) If a is a P-move (u a
P-view) we write *a (*u) for its numerical code. Recall that an innocent strategy
_ is completely determined by a representing innocent function f_ which maps
P-views to P-moves. We can code f_ as a partial numerical function ,_ where

f_(u)=a� ,_(*u)=*a.

(If we are sensible the set of codes for P-view will be recursive, and we may as well
assume ,_ not defined on numbers which do not code P-views.) The set of partial
functions from N to N, in which the codes ,_ for strategies lie, is so important that
we need a special symbol for it; we write P for the set of partial numerical
functions.

Definition 5.6. An innocent strategy _ in a recursively presented arena is
recursive just when ,_ is a partial recursive function.

Clearly the identity or tit-for-tat strategy in AOA is recursive for any rpca A.
Also the composition of two recursive strategies is recursive. This reflects the fact
that the proof of Proposition 5.3 is constructive. (The reader need only understand
this in the intuitive sense: if _, { are innocent strategies for AOB and BOC respec-
tively, then f_; { can be constructed from f_ and f{ .) In fact one can read from
Definition 5.4 the proof of the following precise result which we use later.

Proposition 5.6. Given rpcas A, B and C there is a recursive operator9 M of
two arguments M: P_P�P such that if _: A�B and {: B�C are innocent
strategies then

M(,_ , ,{)=,_; { .

It follows in particular that we can define a category using recursive strategies.
Then category RA of recursive arenas is defined by the following data:

v objects are recursively presented computational arenas,

v maps between rpcas A and B are recursive strategies in AOB.
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The identity, composition, product, and function space arenas are as in CA. So RA

is a cartesian closed category.
Finally perhaps we should confess to a degree of overkill in our description of the

category RA. Consider the computational arenas N as in Example 4.1 and Nn

(n�0) where Nn is like N save that only replies i<n are permitted. (So N2 is
isomorphic to B of Example 4.1.) These objects have canonical recursive presenta-
tions. Close this collection of objects under the standard terminal object, product,
and function space in RA. Then any object in RA is isomorphic to an object which
results. (This is because we insisted on a finite tree of questions.) Thus RA as we
defined it is (up to equivalence) a very simple category indeed.

6. CONTEXT LEMMA FOR CA

The standard notion of observables for CA. We recall the standard notion of
observables for the category CA of computational arenas and innocent strategies
(see the discussion after Proposition 3.2). If an innocent strategy _ of the arena @
has an answer (n say) to O's opening question��in which case, _ is the set
[``['', ``[ } n'']��then we write _ - n; otherwise we write _ � . We shall write _ - to
mean that for some n, _ - n. Following the same pattern as Example 3.1, for each
arena A and each innocent strategy f of the arena AO @, we define

Rf =
def

[a : 1�A | a; f - ].

The collection OA of observables of type A consists of all subsets of CA(1, A) of the
form Rf . Since for any g: B� @ and f: A�B, f*Rg is just Rf; g , the association
A[ OA equips CA with a notion of observables (which we shall refer to as the
standard such notion). As CA is cartesian closed, the associated notions of observa-

tional preorder � and observational quotient CA@ (see Section 3.1) are well defined.

6.1. Context Lemma for CA

It is a familiar fact that the context lemma holds for PCF. The main result of this
section are that the context lemma also holds for the category CA of computational
arenas and innocent strategies with respect to the standard observational preorder.
Recall (from Section 3.3) that this is the same as saying that the observational
quotient CA@ is order-extensional.

Theorem 6.1 (Context lemma). The observational quotient of the category of
arenas and innocent strategies is order-extensional, with respect to the standard obser-
vational preorder. That is to say, for any innocent strategies _, { of the arena AOB,

_�{� a; _�a; { for all innocent strategies a of arena A.

We devote the rest of the section to the proof. One direction (``O '') of the proof
is almost obvious. For the other direction, we appeal to a correspondence result
between compact strategies and a class of syntactic objects called finite canonical
forms.
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6.2. Proof of the Context Lemma for CA

W.l.o.g. we shall assume that @ is the only program type. We first prove the direc-
tion ``O '' of the context lemma. The argument is essentially a consequence of the
cartesian closed structure of the category CA. For any innocent strategies _ and {
of the arena AOB, take any maps x: 1�A and $: B� @. By the universal property
of the function space construction, we have the following equation of maps:

1 �
x A �

_ B=1�
_ (AOB)www�

( id, !; x) (AOB)_A w�
ev B.

Let :: (AOB)� @ be the following composition of maps:

(AOB)www�
( id, !, x) (AOB)_A w�

ev B�
$ @.

Clearly x; _; $=_; :. By exactly the same reasoning, we also have x; {; $={; :.
Hence if _; : - implies {; : - for every :: (AOB)� @, then x; _; $ - implies x; {; $ -
for each x: 1�A and $: B� @ as required.

6.3. The Harder Direction

We shall now consider the other, harder, direction. Our proof appeals to the
correspondence between compact innocent strategies and a class of syntactic objects
known as finite canonical forms as set out in Sections 7.3 and 7.6. The reader is thus
advised to take the context lemma on trust, skip the proof in this section on the
first reading, and return to it after reading Section 7.
Take a compact innocent strategy _ of an arena A. Observe that only the ques-

tions and some of their associated answers of a certain subarena of A appear in the
corresponding game tree of _. The definition of the graph of the innocent function
f_��being a finite collection of pairs of the form ``(P-view, P-move with pointer)''
��depends only on a finite subarena of A. In Section 7.6 we define the _-subarena
of A to be the (necessarily finite) subarena of A consisting precisely of those
questions and all associated answers that appear in the graph of the innocent
function f_ .
Take arbitrary arenas A and B and innocent strategies _ and { of arena AOB

as in the statement of the context lemma. To prove the direction ``o '', because of
continuity, there is no loss of generality in considering compact strategies _ and {.
For any fixed compact strategies _ and {, a moment's thought should reveal that
it suffices to prove the lemma by regarding _ and { as compact strategies of any
finite subarena of AOB that contains both the _-subarena and the {-subarena of
AOB. Thus it is enough to prove the following proposition.

Proposition 6.1. For compact innocent strategies _ and { of a finite arena
A=(A1 OA$), if :; _�:; { for every :: A1 then _�{.

Proof. Write _�& { for the relation :; _�:; { for every : : A1 . We shall prove
the proposition by induction on the size of A=(A1 OA$). The base case is obvious.
Suppose the proposition holds for arenas smaller than A.
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Claim. Let _ be a compact innocent strategy of arena A. Suppose _�& { : A.
For any arenas ;9 =B1 , ..., Bk , each of which is smaller than A, and for any
canonical form

f : A, g1 : B1 , ..., gk : Bk |&C[ f; g� ] : @

(corresponding precisely to an innocent strategy of the arena A_B1_ } } } _
Bk O @), then

C[_; ;9 ] - n�C[{; ;9 ] -n

for all innocent strategies ;9 : ;9 .

Proof of the claim. By continuity, it suffices to consider only finite canonical
form (FCF) C[ f; g� ] and compact strategies ; i . We shall prove the claim by
induction on the size of the FCF C[ f; g� ]. Consider the shape of C[ f; g� ]. Suppose

C[ f; g� ]#case f (*h1
�

: D1

�
.a1[ f; g� , h1

�
]) } } }

_(*hm
�

: Dm

�
.am[ f; g� , hm

�
])[dk[ f; g� ]]0�k�r ,

where for each i, Di

�
=Di1 , ..., D iri

and

f : A, g� : ;9 , hi
�

: Di

�
|& ai[ f; g� , hi

�
] : @.

Since the FCF a1[ f; g� , h1
�

] is smaller than C[ f; g� ] (and each D1

�
is a subarena of

A), by the induction hypothesis of the claim, for any $9 : D1

�
,

a1[_; ;9 , $9 ] - nO a1[{; ;9 , $9 ] - n.

Since D11_ } } } _D1r1
O @ is smaller than A, by the induction hypothesis of the

proposition, we deduce that

*h1
�
: D1

�
.a1[_; ;9 , h1

�
]�*h1

�
: D1

�
.a1[{; ;9 , h1

�
] : D1

�
O @. (5)

Consider the compact innocent strategy represented by

l: D1

�
O @ |& _l(*h2

�
: D2

�
.a2[_; ;9 , h2

�
]) } } } (*hm

�
: Dm

�
.am[_; ;9 , hm

�
]) : @.

(Strictly speaking, we should prove that the above syntactic expression, which is

not a FCF, properly defines a compact innocent strategy.) Let l: D1

�
O @ |& E[l ] : @

be the FCF representing the strategy. Suppose E[*h1
�

: D1

�
.a1[_; ;9 , h1

�
]] -k; then

by (6.1), we have E[*h1
�

: D1

�
.a1[{; ;9 , h1

�
]] -k. Repeat this for holes of types

D2

�
O @, ..., Dn

�
O @ successively, we get

_(*h1
�

: D1

�
.a1[{; ;9 , h1

�
]) } } } (*hm

�
: Dm

�
.am[{; ;9 , hm

�
]) -k.
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Note that D1

�
O @ is a subarena of A1 . Since _�&{ by assumption, we can deduce

that

{(*h1
�

: D1

�
.a1[{; ;9 , h1

�
]) } } } (*hm

�
: Dm

�
.am[{; ;9 , hm

�
]) - k.

Now suppose C[_; ;9 ] - n. Then for some 0�k�r,

_(*h1
�

: D1

�
.a1[_; ;9 , h1

�
]) } } } (*hm

�
: Dm

�
.am[_; ;9 , hm

�
]) -k and dk[_; ;9 ] - n.

As dk[ f; g� ] is smaller than C[ f; g� ], by the induction hypothesis of the claim,
dk[{; ;9 ] - n. Hence we conclude that C[{; ;9 ] -n; and this establishes the claim. K

We can now conclude from _�&{ that _�{. K

This completes our proof of the context lemma.

Part III: A Fully Abstract and Universal Game Model

7. A FULLY ABSTRACT DIALOGUE GAME MODEL OF PCF

In this section we show how PCF may be interpreted in the category CA of
computational arenas and innocent strategies. This interpretation is computa-

tionally adequate and the derived interpretation in the observational quotient CA@
is order (or inequationally) fully abstract for PCF. Full abstraction is obtained as
a consequence of a strong definability result: not only are all compact innocent
strategies (of PCF-types) definable in P, but the valuation map actually gives an
order-isomorphism between syntax (a class of finite canonical forms of a PCF-
variant called P ordered by the standard 0-matching) and semantics (compact
innocent strategies ordered by set inclusion). The language P is just PCF extended
by a family of definition-by-cases constructs. We conclude this section by examining
in some detail two instructive examples: the innocent strategies defined by a type-2
and a type-3 functional, respectively.

7.1. Semantics of PCF in CA

PCF-types. For any PCF-type A we define the interpretation [mng] A as a
computational arena recursively as follows,

�o� =
def

B,

�@� =
def

N,

�A1 OA2� =
def �A1� O �A2� ,
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where N and B are the natural numbers and boolean computational arenas defined
in Example 4.1. Note that the forest of questions of an arena which is a PCF-type
is an (inverted) finite tree, i.e., a finite poset with a unique top element (the initial
question) such that the upper set of each element is a finite linear order. Further
all questions are just ``copies'' of the initial question at program type, and answers
are ``copies'' of the natural numbers and�or booleans.

Convention. In the following we shall often confuse syntax (of both PCF-types
and terms) with semantics and write the interpretation of a PCF-type A also as A
(and similarly for PCF-terms s) provided it is safe to do so. If there is a possibility
of confusion, we shall denote the dialogue game interpretation as �A�CA (and
�s�CA). Thus we can reserve N for the usual natural numbers of mathematics.

PCF-terms. For each PCF-type A, the (intensional) domain of type A is the set
of global sections of the arena A. As we have seen earlier, this is just the collection
of innocent strategies of the arena A ordered by set inclusion. The domain of type
@ is the standard flat CPO of natural numbers: the least element is the empty
strategy��one that has no response to O's opening question. The denotation of a
natural number n is the strategy that returns the answer ``] @

n '' to O's opening
question ``[ @ ''. (We shall write ``] @n '' variously as ``]n '' or simply n whenever the
type information is clear from the context.) We shall just state an elementary
observation.

Proposition 7.1. This interpretation of PCF is standard in the sense of
Plotkin [61].

The basic arithmetic constants are straightforwardly interpreted as innocent
strategies. We consider the interpretation of the successor and conditional for
illustration. Questions of the respective arenas are annotated with their respective
occurrences as in Fig. 6. The innocent strategy �succ� : (@, @) is defined by the
following innocent function: for n�0,

[ [ (1

[ } (1 } )n[ ]n+1 .

The innocent strategy �cond@� : (o, @, @, @) is defined by the following innocent
function: for n ranging over the natural numbers,

[ [ (1

[ } (1 } ) t [ (2

[ } (1 } ) f [ (3

[ } (1 } ) t } (2 } )n[ ]n

[ } (1 } ) f } (3 } )n[ ]n .
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FIG. 6. Trees of questions of arenas (@, @) and (o, @, @, @).

The interpretation of *-abstraction and application is completely determined by the
cartesian closed structure of the category CA. We regard this as standard and refer
the reader to [21, 49] for a systematic treatment.

Remark.

(i) Any partial function can be numeralwise represented in CA in the way
that the successor can. For simplicity we restrict ourselves to the case of one
variable. If ,: N�N is a partial function we have an innocent strategy �,� defined
by the innocent function:

[ [ ( 1

[ } (1 } )[ ],(n) whenever ,(n) is defined.

(ii) For any partial function (and in particular for the successor) there are
many different choices of innocent strategies which will numeralwise represent , (in
the strong sense). We call �,� defined in (i) the standard representation of ,.

7.2. Fixed Points

We give two different presentations of the interpretation of fixed-point operators
as innocent strategies. The first, a Tarski�Knaster style argument, follows more or
less standard lines in denotational semantics. The second highlights the observation
that the family of innocent strategies that correspond to fixed-point operators
behave in a ``parametric'' way: they do nothing more than copy moves in a highly
uniform way. Our account of the second approach is informal. While it may seem
more tedious to describe than the first, the idea is actually simpler!

A standard denotational approach. We say that a cartesian closed category has
fixed points if it has a family of maps YA: (AOA)�A for each object A satisfying
the commuting diagram in Definition 2.1(ii). For each type A the commuting
fixed-point diagram is the following equation

Y
A=*f: AOA . f (YAf ).

Take a cartesian closed category C which is enriched over CPOs (so that not just
composition but also the respective natural isomorphisms which characterize
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products and function spaces are continuous). We refer to the enriching ordering of
the homsets as the given ordering. In such a category, fixed-point operators YA may
be interpreted as the least (with respect to the given ordering) fixed point of the
following simply-typed *-term

F=*F: (AOA)OA .*f: AOA . f (Ff )

which has type ((AOA)OA)O (AOA)OA. Since C is cartesian closed, F has
interpretation as a map from (AOA)OA to itself. Writing the details out in full,
we define

F
0 =

def
=

(AOA)OA

F
n+1 =

def
*f: AOA . f ( } } } ( f

n+1

=
A) } } } ),

where =
A is the least element of the homset C(1, A). By assumption the lub

�n #| F
n with respect to the given ordering (which we write as Y

A) is a well-
defined map (AOA)�A. For any map g: (AOA)�A and a: A�A, we write
application g } a to mean ( g� , a� ); ev. (We shall blur the distinction between a map
g and its function space transpose g� .) In such a category, application is continuous

\' gn+ } a=' (gn } a)

because pairing, transpose, and composition are. Note that we do not need
order-extensionality.
To see that the fixed-point diagram commutes in C, we have

*f: AOA . f } (YA } f )=*f: AOA .' f ( } } } ( f

n+1

=) } } } )

=' *f: AOA . f ( } } } ( f

n+1

=) } } } )

=Y
A.

Hence C has fixed points.
Suppose C is equipped with an observational preorder (defined with respect to

a notion of observables). By Proposition 3.1 the observational quotient C� is an
order-enriched category which inherits the cartesian closed structure from C.
However the enriching structure need not be a CPO. Nonetheless since the
observational preorder is preserved by composition, the fixed-point diagram in C�
commutes if and only if the following equation (of equivalence classes) holds:

[YA]=[2A_A ; id_YA ; ev].

This equation follows trivially from the fixed-point equation in C.
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FIG. 7. Components of YA: (AOA)OA.

To summarize we have shown that:

Proposition 7.2. Any cartesian closed category C enriched over CPOs has fixed

points. With respect to any observational preorder the derived quotient C� also has

fixed points.

As an immediate corollary we can conclude that both CA and its observational

quotient CA@ have fixed points.

Fixed-point operators as uniform strategies. For any arena (not just those which
are PCF-types) A we describe a strategy in (AOA)OA. First we need to
distinguish between moves in the different copies of A as in Fig. 7:

v The main O-component. These are moves hereditarily justified by the open-
ing O-move in A (on the right) only. That is to say, they are not hereditarily
justified by P-moves which are opening moves in the copy of A in the middle.

v The P-components. These are moves which are hereditarily justified by an
instance of an opening move in A made by P, but not by opening A-moves made
by P dependent on it. There may be many such.

v Subsidiary O-components. Moves hereditarily justified by a sequence of
three initial moves in A [ } ( } [.

In a game according to the strategy we describe there will be a correspondence
between O- and P-components. The first P-components to occur is the dual of the
main O-component. The others in order are the duals of the subsidiary O-com-
ponents in order. At any stage after P has moved the duals will be copies of each
other. The strategy can be succinctly described as follows: suppose O has just moved:

Case 1. Opening move: we copy to create the first P-component.

Case 2. O opens a new subsidiary component: we copy and create a new
P-component.

Case 3. O moves in some existing O- or P-component: we copy the move in
the dual P- or O-component.
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Arguing inductively it is easy to see this makes sense. The question is:

v is it an innocent strategy?

v does it satisfy the fixed-point equation or diagram?

The usual situation after an O-move is that the play has been p } ( } r } [, where ``(''
explicitly justifies ``['', or p } ( } r } ), where ``('' explicitly justifies ``)'', and so the
P-view is Np\ } ( } [ or Np\ } ( } ) where the moves ( } [ or ( } ) are in the same compo-
nent. Then the P-move ``('' displayed is a copy of an O-move ``[1 '' in the dual
component, and this O-move ``[1 '' occurs at the end of Np\; hence the copy reply
``(1 '' or ``]1 '' is a legitimate move independent of the way we reached the particular
P-view, so we can safely reply Np\ } ( } [ } ( 1 or Np\ } ( } ) } ]1 as appropriate on the
basis of the view.
The composition

(AOA) �2 (AOA)_(AOA) w�
1_Y (AOA)_A w�

ev
A

can be represented in parallel composition and hiding forms as in Fig. 8. We draw
some copying paths through the picture in Fig. 9.
It does not seem accidental that these three paths (in Fig. 9) partition the whole

picture. In the composed game we use the terminology (main O-component,
P-components, subsidiary components, the dual of a component) already intro-
duced. Now we can tie down the behaviour of the composed strategy by making
the following observations.

1. After the opening O-move in the main O-component, P copies along path
(1) (with reference to Fig. 9) to give a reply in the first P-component (the dual of
the main O-component). Thereafter any O-move in either of the two components
is answered by copying along path (1) (in either direction) to give a P-reply (which
is just a ``copy'') in the dual component.

2. After the first O-move (if any) in the first subsidiary O-component, P
copies along path (2) to give a reply in the second P-component (its dual). There-
after any O-move in either of these two components is answered by copying along
path (2) (in either direction) to give a P-reply (just a copy) in the dual component.
Furthermore exactly the same applies mutatis mutandis in the case of any

subsidiary O-component which begins with an O-move justified by the opening
P-move in the first P-component. (Perhaps it is worth noting that each of these

FIG. 8. Composition of maps 2; 1_Y; ev.
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FIG. 9. Copying paths.

further O-components involves P opening a fresh version of Y on the hidden sketch
pad, i.e., the returning portion of path (2) involves a fresh version of Y in each new
case.)

3. After the first O-move (if any) in a subsidiary O-component not as in 2,
P copies along path (3) to give a reply in a new P-component (its dual). Thereafter
any O-move in either of these two components is answered by copying along path
(3) (in either direction) to give a P-reply (just a copy) in the dual component.
It follows from the three observations that the composed strategy behaves exactly

like Y: that is

Y

(AOA)_(AOA) ww�
1_Y (AOA)_A

2

ev

AOA A

commutes.
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Remark. We have seen two ways of representing innocent strategies formally:
first as a collection of paths (legal positions) of the corresponding game tree and
second as an innocent function. Even for relatively simple PCF-terms, a precise
description of their denotations as innocent strategies in either style very quickly
becomes unwieldy and opaque. Neither style is optimized for capturing the
uniform10 or parametric nature of (most) innocent strategies which are denotations
of PCF-terms. Intuitively a uniform strategy is one whose behavior does not
depend on the type to which it is instantiated. For example the identity strategy of
the arena AOA copies moves from one component of A to its dual component
regardless of the complexity of the arena A. It would be highly desirable if an
expressive calculus which lent itself to a succinct description of such uniform
strategies was available.
Using the preceding analysis of the interpretation of fixed-point operators as a

guide, we seek a calculus for describing strategies with the following capabilities:

1. generating new names,

2. copying moves,

3. communication in the style of message passing,

4. private links (so that there is no ambiguity as to which pending question
we are answering),

5. branching constructor (corresponding to definition-by-cases),

6. replication.

In addition there should be a polymorphically typed-version of such a calculus to
handle uniform strategies. It is worth noting that despite being models of higher-
type functions, moves of our games are just copies of program-type objects. Hence
if moves are the only things we communicate, a process calculus which passes
program-type signals (e.g., names) as opposed to more complicated objects (e.g.,
processes) would suffice as a first attempt. This naturally brings to mind the
?-calculus [54]. We have a way of expressing innocent strategies as terms of an
appropriately sorted polyadic ?-calculus (see [53]). This representation reflects the
behavior of the innocent strategy exactly. At the same time this gives an apparently
new encoding of PCF (and hence the simply-typed *-calculus) in the ?-calculus.
This and further developments are presented in [40].

7.3. Characterization of Compact Innocent Strategies of PCF-Arenas

A major result in this section characterizes compact innocent strategies in terms
of (a class of ) finite canonical forms (FCF) of a language which is essentially PCF
extended by a family of definition-by-cases constructs. This characterization is very
tight: there is a one-to-one correspondence between compact innocent strategies
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and FCFs. More precisely the valuation map which takes FCFs to compact inno-
cent strategies gives an isomorphism between syntax��ordered by the 0-match
ordering��and semantics. An important consequence of this correspondence is the
full abstraction result for PCF.

PCF extended by definition-by-cases. We introduce a language called P (for
Platek or Plotkin) which is obtained from PCF by adding a family of definition-by-
cases constructs. Each such construct is indexed by a natural number (which we
shall often omit in the interest of readability) corresponding to the number of cases
considered by the definition. Formally the language P is defined by adding the
following typing rule to those that define PCF: for each program type ; and k�0:

t0 : ; } } } tk : ; s : @
case;

k s=[0O t0 | 1O t1 | } } } | kO tk] : ;
.

Notation. There is no harm in assuming that @ is the only program type and we
shall do so in the rest of this section. Also we shall use two kinds of shorthand
freely.

v First we write case s[t0 | } } } | tk] to mean the notationally cumbersome

case @
k s=[0O t0 | 1O t1 | } } } | kO tk].

v Second, for r1< } } } <rk=l, we write case s[r1 O t1 | } } } | rk O tk] to mean
case s[u0 | } } } | ul], where for each 0�i�l, ui is

tj
0

if i=rj , for some j,
otherwise.

The operational semantics of the language P is obtained from that of PCF by
adding the following rules:

s - j t j - v

case s[t0 | } } } | tk] - v
0� j�k.

The case construct

x : @, y0 : @, ..., yn : @ |& case x[y0 | } } } | yn] : @

has an obvious interpretation as an innocent strategy of the arena ( @, ..., @
n+3

) represented
by the following innocent function:

[ [ ( 1

{[ } (1 } ) i [ ( i+1

[ } (1 } ) i } ( i+1 } )m[ ]m .
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We define the 0-match ordering �0 over terms of P as follows: for any n�0, and
for any P-context11 C[X1 , ..., Xn], we have

s#C[0, ..., 0]�0 t

whenever t#C[u1 , ..., un] for some P-terms u1 , ..., un . For any k$�0, we identify
the term case s[t0 | } } } | tk] with

case s[t0 | } } } | tk |0 | } } } |0

k$

].

It is easy to see that �0 is a partial order over terms of the language P.

Finite canonical form. For any PCF-types A1 , ..., An where n�0, we define the
collection

FCF[ f1 : A1 , ..., fn : An]

of (program-type) finite canonical forms (FCFs) of P with free variables appearing
in the list f1 , ..., fn as follows:

v The program-type 0 and n�0 are in FCF[ f9 : A9 ].

v For any f9 : A9 # f1 : A1 , ..., fn : An and for any 1�i�n where

Ai#(C1 , ..., Cm , @)

and where

Cj#(Dj1 , ..., D jpj
, @) for each 1� j�m;

if rc # FCF[ f9 : A9 ] for each 0�c�k and if tj # FCF[ f9 : A9 , yj
� : Dj

�

] for each
1� j�m, then

case[ f i (*y1 :� D1

�

. t1) } } } (*ym :� Dm

�

. tm)[r0 | } } } | rk] # FCF[ f9 : A9 ].

Note that a FCF is by definition of program type and it is 0, a number n, or a
definition-by-cases construct.
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A map from finite canonical forms to compact innocent strategies. For PCF-
types A=(A1 , ..., An , @) and for any s # FCF[ f1 : A1 , ..., fn : An], we define by recur-
sion a partial function

%[*f9 : A9 .s] : [P-views of A]� [P-moves of A]

and prove simultaneously that %[*f9 .s] is a compact innocent function. There are
three cases.

Case 1: s is 0. The function %[*f9 .0] is the everywhere undefined partial
function.

Case 2: s is a number n. The function %[*f9 .n] is the least partial function
that maps the initial question ``[A '' of A to the answer n.

Case 3: s is the case-construct case[ fi (*y1
� . t1) } } } (*ym

� . tm)[r0 | } } } | rk]
where i is a number between 1 and n where

Ai#(C1 , ..., Cm , @)

Cj#(Dj1 , ..., Djpj , @)

with rc # FCF[ f9 : A9 ] for each 0�c�k and t j # FCF[ f9 : A9 , yj� : Dj

�
] for each

1� j�m. Write Bj#(A9 , Dj

�
, @). By the recursion hypothesis %[*f9 .rc] and

%[*f9 yj� . tj] are compact innocent functions. We then define %[*f9 .s] as the least
partial function satisfying the following:

v %[*f9 .s] maps ``[A '' to the initial question ``(Ai '' of Ai in A,

v for each 1� j�m, if %[*f9 yj� .tj] maps [Bj } p to m then %[*f9 .s] maps
[A } (Ai } [Cj } p to m,

v for each 0�c�k, if %[*f9 .rc] maps [A } p to m then %[*f9 .s] maps
[A } (Ai } )Ai

c } p to m;

where we write ``(Ai '' and ``[Cj '' to denote the initial questions of A i and Cj ,
respectively, as they occur in A and where ``)Ai

c '' is the answer c associated with the
question ``(Ai ''. For the definition to be sound, we need the following lemma whose
proof is straightforward and we omit it.

Lemma 7.1.

(i) If [A } (Ai } [Cj } p is a P-view of A then [Bj } p is a P-view of Bj . Further if
the legal position [Bj } u of Bj , in which the question ``[Bj '' is not explicitly answered,
is in �[Cj } p %[*f9 yj� . t j[

Bj } p] then [A } (Ai } [Cj } u is a legal position of A, and is in
�[A } (Ai } [Cj } p %[*f9 . s].

(ii) If [A } (Ai } )Ai
c } p is a P-view in A, then [A } p is a P-view of A.

It remains to show that %[*f9 .s] thus defined is an innocent function; its finiteness
is obvious. Suppose %[*f9 .s] maps the P-view [A } (Ai } [Cj } p (say) of A to a P-move
m. By definition of %[*f9 .s], %[*f9 yj� . tj] maps the P-view [Bj } p of Bj to m. By the
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recursion hypothesis (%[*f9 yj� . tj] is innocent) and �[Cj } p %[*f9 yj� . t j] is nonempty,
and so, by (i) of the preceding lemma, so is �[A } (Ai } [Cj } p %[*f9 .s]. Take any legal
position [A } (Ai } u #�[A } (Ai } [Cj } p %[*f9 .s]. Since the innocent function %[*f9 yj� . tj]
maps [Bj } p to m, we know that m is explicitly justified by some unanswered ques-
tion which appears in the P-view [Bj } p. By the preceding lemma, m is explicitly
justified by some question which appears in [A } (Ai } [Cj } p which by assumption is
the P-view of [A } (Ai } u. Hence we infer that [A } (Ai } u }m is a legal position of A
and we are done.
For FCFs s and s$ in FCF[ f1 : A1 , ..., fn : An] suppose %[*f9 .s]�%[*f9 .s$].

W.l.o.g., we may assume that s is a definition-by-cases construct defined as in the
preceding. Since %[*f9 .s] maps ``[A '' to ``(Ai '' and that %[*f9 .s]�%[*f9 .s$], by defini-
tion of %[*f9 .s$], we infer that s$ is a definition-by-cases construct of the shape

*f9 .case fi (*y1
� .t$1) } } } (*ym

� . t$m)[r$0 | } } } | r$k].

We claim that %[*f9 yj� .tj]�%[*f9 yj� . tj$]. To see this, suppose %[*f9 yj� . t j] maps the
P-view [Bj } p to some move m. By definition of %[*f9 y j

� .t j], this must mean that
%[*f9 .s] maps [A } (Ai } [Cj } p to m. By supposition %[*f9 .s]�%[*f9 .s$], and by the
definition of %[*f9 .s$], we infer that %[*f9 yj� . tj$] also maps [Bj } p to m. Hence, by the
recursion hypothesis, we have tj�0 t j$. Essentially the same reasoning justifies
rc�0 r$c . Hence we have s�0s$.
To summarize we have proved:

Proposition 7.3. For any FCF s, s$ # FCF[ f1 : A1 , ..., fn : An] ,

(i) the partial function %[*f9 .s] is a compact innocent function of the arena
A#(A1 , ..., An , @).

(ii) s�0s$ if and only if %[*f9 .s]�%[*f9 .s$].

A map from compact innocent strategies to finite canonical forms. We show that
all compact innocent strategies of PCF-types are definable in PCF by induction on
the size of the defining innocent function.

Proposition 7.4. For any PCF-type A=(A1 , ..., An , @) and any compact innocent
strategies _ and _$ of A,

(i) there is a FCF s_ # FCF[ f1 : A1 , ..., fn : An] of P such that *f9 : A9 .s_
defines _.

(ii) _�_$ if and only if s_�0s_$ .

Proof. For _=_f ranging over compact innocent strategies, we define the FCF

s_ # FCF[ f1 : A1 , ..., fn : An]
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associated with _ by recursion on the size of the domain of f. Suppose _=_f is a
compact innocent strategy of PCF-type A=(A1 , A2 , ..., An , @). The trivial cases are:

v the strategy _ does nothing, in which case, the term *f9 .0 defines _;

v the strategy _ immediately outputs a number l, in which case, the term *f9 . l
defines _.

There are two cases, depending on whether A1 is the program type. We consider the
nontrivial inductive case. Suppose in response to Opponent's first move (which
must be the initial A-move ``[A ''), _ asks an A1 -question, ``(

A1 '' say.

A1#(C1 , C2 , ..., Cm , @).

We imagine that Opponent chooses initially to compute in Cj by posing a
Cj -question ``[Cj '', so the P-view at this point is [A } (A1 } [Cj. Of course, Opponent
may subsequently switch from Cj and bring in other Cj $ ; but the P-strategy in ques-
tion is determined independent of that for whenever Opponent raises the initial
question in Cj $ , Player's view immediately collapses to [A } (A1 } [Cj $.
Suppose that Cj#(Dj1 , Dj2 , ..., Djpj

, @) and consider the ensuing moves and the
effect on Player's view. The P-question moves are of two kinds, (see Fig. 10)

v (A1, ..., (An and questions which are hereditarily justified by them;

v (Dj 1, ..., (Djpj and questions which are hereditarily justified by them.

So every P-view until ``[Cj '' is answered can be regarded as a P-view in the arena
corresponding to:

(Dj1 , ..., Djpj
, A1 , ..., An , @).

Thus we derive from our strategy _ a strategy _j in such an arena. Note that f_j is
smaller than f_��f_j is defined on the P-view [A } p if and only if f_ is defined on
[A } (A1 } (Cj } p. Hence, by the induction hypothesis, we have a term

*yj1 : D j1 . } } } .*yjpj : Djpj
.*f1 : A1 } } } .*fn : An . t j ( yj

�, f9 )

FIG. 10. Shape of arena A.

371ON FULL ABSTRACTION FOR PCF: I, II, AND III



whose interpretation is _j . In the case where Cj is the program type @, then the
corresponding term is *f1 : A1 } } } fn : An .tj ( f9 ).
Note that the _j 's completely determine the action of _ up to the moment that

Opponent answers the question ``(A1 ''. Now consider the position once ``(A1 '' is
answered by an O-answer ``)'': the P-view is [A } (A1 } ). The O-answer ranges over
a finite number of possible natural numbers, say c1 , ..., ck in increasing order. When
we continue (Opponent will have ``forgotten all that has happened''), Player's view
will thereafter always start with [A } (A1 } ); so for each value c1 , ..., ck , we get smaller
strategies \1 , ..., \k telling us how _ continues. We get by the induction hypothesis
the corresponding terms:

*f1 : A1 . } } } .*fn : An .u1( f9 ),

b

*f1 : A1 . } } } .*fn : An .uk( f9 ),

whose interpretations are \1 , ..., \k respectively.
We write yj

�#yj1 , ..., y jpj . Now consider the term:

*f9 : A9 .case f1(*y1
� . t1) } } } (*ym

� . tm)[c1 O u1( f9 ) | } } } | ck O uk( f9 )].

It is easy to see that _ is the interpretation of the above term.
The second part of the theorem is proved by induction on the size of the

strategies. We leave the essentially straightforward details to the reader. K

Putting the two preceding results together we can say the following.

Theorem 7.1 (Strong definability). There are maps in opposite directions: for
any PCF-type A=(A1 , ..., An , @)

FCF[ f1 : A1 , ..., fn : An] $ [compact innocent strategies of A]

f1 : A1 , ..., fn : An |&s[ %[*f9 .s]

f1 : A1 , ..., fn : An |&s_� _

(the choice of variables f9 : A9 in the above is of course immaterial). The pair of maps
defines a bijection and hence (by the two preceding propositions) an isomorphism
between finite canonical forms and compact strategies. It is straightforward to see
that for any s # FCF[ f9 : A9 ], the compact innocent strategy associated with s coincides
with its denotation in CA; that is to say

%[*f9 .s]=�*f9 .s�CA.

Remark.

(i) In Proposition 7.1 we only consider the case of PCF generated from one
program type @. Nevertheless it is entirely straightforward to extend the same
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argument therein to deal with PCF proper, i.e., where both @ and o are program
types. The boolean conditionals would then play exactly the same role as that of
definition-by-cases constructs.

(ii) The strong definability result can be straightforwardly extended to
innocent strategies in general. Of course the correspondence would then be with
possibly infinitary canonical forms.

We can take advantage of the strong definability theorem as a representation
device to explain the structure of the dialogue game model. For example it is easy
to see that the arena oO o is infinite: the following represents a family of distinct
strategies:

*x : o cond x(cond x( } } } (cond

n

x t 0) } } } ) 0) 0

corresponding to the prime innocent strategy generated by

[ } (1 } ) t } } } (1 } )t

n

[ ]t

7.4. Strong Adequacy and Order Full Abstraction

Building on the definability result we can now prove that dialogue games and
innocent strategies give an order-extensional, order (or inequationally) fully
abstract model for PCF.

Proposition 7.5 (Strong adequacy). For any P-program s, and for any value v,
s- v if and only if �s� - v (in the category CA).

Proof. Our proof is similar to Plotkin's proof of adequacy of the Scott function
space model for PCF. Plotkin used a reducibility-style argument pioneered by Tait
[74] and Girard [31]. Since the argument is standard and well documented (see
Plotkin's proof in [61]; see also [34] for an exposition), we omit it here.

Proposition 7.6. For any PCF-terms s and t of the same type, s C&t t in PCF if
and only if sC&t t in the extended language P.

To prove the proposition, consider a translation of terms from P to PCF s[ s
defined by recursion as follows:

st =
def

s� t�

*x : A .s =
def

*x : A .s�

Y(s) =
def

Y(s� )

case s[t0 | } } } | tk ] =
def

cond(eq s� 0) t0 (cond(eq s� 1) t1 } } } (cond(eq s� k) tk 0) } } } ),

373ON FULL ABSTRACTION FOR PCF: I, II, AND III



where eq is a PCF-term of type (@, @, o) satisfying

v eq uv- if and only if both u - and v - , and further,

v eq uv- t if and only if u - n and v- n, for some natural number n.

In addition the translation preserves variables, constants and all PCF-terms. Note
that for any P-terms s and t, s[t�x]#s[t� �x].

Lemma 7.2. For any closed term s of the language P, and for any value v (which
may be an abstraction), s - v (in P) if and only if s� - v� (in PCF).

Proof. We sketch the proof of the direction ``o '' as an illustration; the other
direction may be proved in a similar way. The proof is by induction over the rules
that define the relation s - v. The base cases are trivial. Consider the case of the
following rule:

s - j t j - v

case s[t0 | } } } | tk] - v
0� j�k.

Suppose case s[t0 | } } } | tk] - v in PCF. Since case s[t0 | } } } | tk ] is

cond(eq s� 0) t0 (cond(eq s� 1) t1 } } } (cond(eq s� k) tk0) } } } ),

this can only be so provided eq s� i - t (or equivalently s - i) and ti - v, for some i. By
the induction hypothesis, s - i and ti - v; so, by the rule in question, we have
case s[t0 | } } } | tk] - v. K

The direction ``o '' of Proposition 7.6 is immediate since a program context of
PCF is also a program context of P. To prove the other direction, take a program
context C[X] of P such that both C[*f9 .s] and C[t] are programs, where s and

t are PCF-terms. Suppose C[*f9 .s] - v. Since C[*f9 .s] is C� [*f9 .s] and v is v, by
Lemma 7.2, C� [*f9 .s] - v in PCF. Assuming s C&t t, we have C� [t] - v. Hence, by
Lemma 7.2 again, C[t] - v in P. This concludes the proof of Proposition 7.6.
Take any (closed) PCF-terms s and t of the same type, A say. Write �s� for the

denotation of s in the CA. By definition �s���t� means that for any innocent
strategy \ of the arena AO @, for any number n,

�s�; \ - nO �t�; \ - n.

Since the map \[ �s�; \ from AO @ (the dI-domain of all innocent strategies of
AO @ ordered by inclusion) to @

�
is a continuous function between CPOs, �s�; \ - n

if and only if �s�; & - n for some compact approximant & of \. Hence it suffices to
consider only compact innocent strategies & of the arena AO @.
So suppose s C&t t in PCF, and suppose for some compact innocent strategy &,

�s�; & -n. By the P-definability of compact innocent strategies (Proposition 7.1),
there is a FCF h corresponding to & such that �hs� - n. Since CA is strongly ade-
quate for P (Proposition 7.5), this is equivalent to hs - n in the extended language

374 HYLAND AND ONG



P. Since s C&t t in PCF, by Proposition 7.1, s C&t t in the extended language P. Hence
�ht� - n which is equivalent to [mng] ht - n in CA, by the same adequacy result as
before. To summarize we have proved:

Theorem 7.2 (Full abstraction). The observational quotient CA@ of the category

CA gives rise to an order-extensional, order fully abstract model of PCF.

7.5. Examples and Counterexamples

A type-2 strategy. Consider the type-2 PCF-term (see, e.g., [11, p. 129] or
[24])

F=*f : (o, o, o) . f ( f t0)( f0t) : ((o, o, o), o)

For ease of explanation we label the questions of the arena ((o, o, o), o) as in
Fig. 11. We describe the innocent strategy denoted by F informally in terms (see
Fig. 12) of its interaction with the innocent strategy ``left or'' l-or which corresponds
exactly (in the sense of Theorem 7.1) to the PCF-term

l-or=*x : o .*y : o .condx t(condytf) : (o, o, o).

The legal position in Fig. 12 is precisely the trace of the computation F } l-or.
Formally it is the uncovering of the maximal legal position ``[o } ]t '' in accord with

1www�

(F, l-or) ((o, o, o), o)_(o, o, o) w�

ev
o.

The dotted arrows pointing backwards are the justification pointers. We number
the moves from 1 to 10 for ease of identification. In response to the opening move
``['', Player makes the move ``(1 '' corresponding to the head variable f of F. Oppo-
nent, playing l-or and regarding ``(1 '' as its opening move, raises the question ``[1.1 ''
corresponding to the head variable x (left argument) in l-or. From this point
onward until the third move is answered (in the eigth move), Player plays the sub-
strategy F1=*f : (o, o, o) . f t0 corresponding to the subterm f t0 of F. The strategy
F1 regards the third move ``[1.1 '' as its opening move and responds by raising the

FIG. 11. Tree of questions of arena ((o, o, o), o).
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FIG. 12. Trace of F } l-or.

question ``( 1 '' (fourth move) corresponding to the head variable f in F1 . Opponent
regards the fourth move as an opening move (distinct from the second move) of a
new play. He responds as before by raising the question ``[1.1 '' (fifth move) corre-
sponding to the left argument in accord with l-or. This corresponds to querying the
first of the two arguments of the head variable in F1=*f . f t0, so Player supplies
the answer ``]t '' (sixth move). The strategy l-or now has enough information to
supply the answer ``)t '' to Player's earlier question (fourth move). In response
Player concludes the substrategy F1 by supplying the answer ``] t '' to Opponent's
question in the third move. Opponent can now respond to Player's question in the
second move by returning the answer ``)t '', whereupon Player concludes the play by
``]t '', echoing the preceding move.

Remark. There can be no innocent strategy of the arena ((o, o, o), o) which tells
l-or and r-or apart, say, by mapping the former to t and the latter to f. This is just
as well in view of Curien's observation in [24, p. 358]: The type-2 function of type
((o, o, o), o) which sends the left-or to t and the right-or to f is not PCF-definable.
Curien's observation highlights an important feature of PCF-style higher-type

sequential composition: higher-order functionals interact extensionally with their
functional arguments.
One way to see why the preceding type-2 function is not definable as an innocent

strategy is to appeal to the correspondence between compact innocent strategies
and finite canonical forms (FCF) of the language P and then argue syntactically
following Curien. It is instructive, however, to sketch an explanation from first prin-
ciples in terms of the definition of innocent strategy. Consider the strategies G1 and
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FIG. 13. G1 , a (non)strategy that tells left-or and right-or apart.

G2 defined informally in Figs. 13 and 14, respectively. The question-moves therein
(all from arena ((o, o, o), o)) are annotated with occurrences as in Fig. 11. It is easy
to see that both G1 and G2 take l-or to t and r-or to f. Fortunately neither is an
innocent strategy.

v G1 's response in the fourth move (see Fig. 13) violates the last-asked-first-
answered condition so that the two sequences of moves are not even legal positions.
This is essentially the catch (and throw) facility which has been studied by
Cartwright, Curien, and Felleisen in [18].

v In the case of G2 , both sequences of moves in Fig. 14 are legal positions,
and we definitely have a strategy. However, G2 is not innocent because its response
at the sixth move is different in the two cases despite the fact that both legal
positions have the same P-view (which is ``[ } (1 } )t '') when truncated at the fifth
move.

The (counter)example G2 illustrates well the rationale for studying strategies which
are invariant over P-views. This is the essence of innocence.

A type-3 strategy. As another example we consider (much more briefly) the
interpretation of the following type-3 terms:

F1 =
def

*f : ((@, @), @) . f (*y : @ . f (*x : @.y)) : (((@, @), @), @)

F2 =
def

*f : ((@, @), @) . f (*y : @ . f (*x : @ .x)) : (((@, @), @), @).

We illustrate the strategies defined by F1 and F2 , respectively, in terms of their
interaction with the term

G =
def

*g : (@, @) .g1 : ((@, @), @).

FIG. 14. G2 , another (noninnocent) strategy that tells left-or and right-or apart.
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FIG. 15. Tree of questions of arena (((@, @), @), @).

The questions of the arena (((@, @), @), @) are annotated with occurrences as in Fig. 15.
We present the play corresponding to F1G and F2G in Fig. 16. We have omitted
the justification pointers of all moves except the sixth. Note that F1 and F2 are only
subtly different: in their respective interaction with G, the underlying sequences of
moves (as a trace of the play) are identical��they only differ in the way the sixth
move is justified. This example was communicated to us by Gandy and Pani.

7.6. Representation of Innocent Strategies as Canonical Forms Revisited

We have seen in Section 7.3 and especially in the proof of the strong definability
Theorem 7.1 how compact innocent strategies of PCF-arenas may be given precise
representation as FCFs. Now we turn to the problem of representing (compact)
innocent strategies of an arbitrary arena A.

FIG. 16. Two subtly different strategies.
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The forest of questions of A may be infinite and infinitely branching. Call an
arena pointed if its forest of questions is a tree and call it basic if its forest of ques-
tions is a singleton tree. It is worth noting the following fact concerning the
structure of arenas.

v Every arena A can be expressed as a (possibly infinite) product >i #I Pi of
pointed arenas Pi .

v Every pointed arena can be expressed as a function space arena AO @ where
A is an arena and @ a basic arena.

Correspondingly each innocent strategy _ of an arena A is a tuple (_i | i #I) of
component strategies _i of pointed arenas. We shall just show how a compact inno-
cent strategy of a pointed arena can be given a precise representation in terms of
a class of syntactic objects.
Take a compact innocent strategy _ of A. Observe that only the questions (and

some of their respective associated answers) of a certain subarena of A appear in
the corresponding game tree of _. The definition of the graph of the innocent func-
tion (corresponding to) _��being a finite collection of pairs of the form ``(P-view,
P-move with pointer)''��depends only on a finite subarena of A. We shall call the
(necessarily finite) subarena of A consisting only of questions and all associated
answers that appear in graph of the innocent function f_ the _-subarena of A.
The tree of questions of a pointed arena A=(>i #I Ai)O @1 has the general

shape in Fig. 17. There are three ways by which _, a compact innocent strategy of
A, can respond to the opening question ``[ @1

''.

(1) _ has no response

(2) _ returns an answer c, say; or

(3) _ raises the question ``(A1
'', say. Suppose A1 has the form (>j #J C j)O @

where each Cj is a pointed arena.

FIG. 17. Forest of questions of arena A.
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Consider case (3). We shall assume that of the level C questions (see Fig. 17),
Player has a nontrivial response only to O-questions [C1

, ..., [Cm
(so these are the

only ones that occur in the graph of the innocent function of _). For each 1� j�m,
suppose Cj has the shape Dj O @ where Dj=>k #K D jk and each Djk is a pointed
arena.
Following the argument of the proof of Theorem 7.1 in constructing the canoni-

cal form corresponding to _, we would then arrive at an expression of the shape

*f>i #I Ai .case pA1
( f )(*y1

D1 .a1[ f, y1], ..., *ym
Dm .am[ f, ym] |09 )[dk[ f ]]k # P ,

where

v P is a finite subset of the answers associated with ``(A1
''

v f : >i #I Ai |& pA1
( f ) : A1 where pA1

( f ) is the projection onto the
A1 -component of the product arena >i #I Ai ,

v (*y1
D1 .a1[ f, y1], ..., *ym

Dm .am[ f, ym] |09 ) is a tuple of type >j #J Cj such
that the only non-0 components are the ones on the l.h.s. of the vertical bar.

We shall call this expression the finite canonical form of _. We shall not elaborate
on the formal syntax of finite canonical form introduced here; suffice it to say that
it is a slight variant of that defined earlier in Section 7.3, adapted in the obvious
way to describe strategies of an arbitrary arena.
Though we have not spelt it out in an entirely formal way, it should be clear how

the same representation scheme can be extended to a correspondence between inno-
cent strategies in general on the one hand and infinitary canonical forms on the
other.

8. UNIVERSALITY

In this section we extend the full abstraction result (Theorem 7.2) by showing the
following:

(i) every map between PCF-types in CA@ is PCF-definable in some (partial)
function parameter;

(ii) every map between PCF-types in RA@ is PCF-definable.

(Recall from Section 5.6 the definition of the category RA of computational arenas
and recursive innocent strategies.) Results of this kind are often called universality
theorems.
To establish the results we show that for every PCF-type A there is a PCF-term

uA : (@O @)OA

(we shall suppress the dependence of u on A) with the following property.
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Suppose that _ is an innocent strategy of type A with coding function ,_ as
indicated in Section 5.6. Let ,_ be the canonical strategy in @O @ associated to ,_ #P.
Then _ is observationally equivalent to ,_ ; �u�, where �u� is the interpretation of u
in CA.
It should cause little confusion to drop the brackets and the bar; so henceforth

we write the more natural equivalence as u(,_)&_.
Of course the existence of a u as described immediately gives (i). (Note that

definition in a partial function comes out of the proof but it is not difficult to
replace it with a total function if preferred.) For (ii) we know that if _ is in RA,
then ,_ is partial recursive. Now by Proposition 7.5 CA is computationally ade-
quate. So by Proposition 2.35 ,_ is representable in the strong sense in CA by the
interpretation of a PCF-term s, say. It follows (from the context lemma for CA)
that ,_ &s. Hence u(s)&_ and we have (ii).

8.1. Retracts of Pure Types

The construction of (generalized versions of) the term u just described involves
a pretty standard ``use of the recursion theorem'' (here the fixed point operator).
However, it seems right to sketch a proof in some detail. We do this in the nota-
tionally simple case when A is a pure type (see below). There is no loss of generality
as the full result follows in view of simple coding facts. (However, some best
possible estimates on the use of Y are lost in this approach.)
We start our simplifying scheme by introducing the notion of pure types which

are conventionally denoted by natural numbers n: the pure type (denoted by) n is
a particularly simple (PCF-) type of height n. For the rest of this section we shall
assume that @ is the only ground type.

Definition 8.1. The pure types 0, 1, 2, ... are defined recursively by:

0 =
def

@

n+1 =
def

(nO0).

Little confusion should arise from the (overloading) use of numbers both as
elements of N (and indeed strategies in CA) and as (names for) pure types. We
shall need a simple lemma.

Lemma 8.1. Any pure type n is a retract of the pure type n+1 by PCF-definable
maps. Thus n In+1 in T.

Proof. We have 0 I1 via

n : 0[ *x : @ .n : 1

f : 1[ f (0) : 0,

and then proceed inductively. K
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When studying total type theories over the natural numbers, recursion theorists
standardly exploit the fact that any type A is recursively a retract of the pure type
ht(A). However in the case of partial type structures the situation is more subtle.
We define by recursion the notion of the rank rk(A) of a PCF-type A.

rk(@) =
def

0

rk(A0 , ..., Ak&1 , @) =
def

{
rk(A0)+1
max(rk(A0), ..., rk(Ak&1))+2

if k=1
if k�2.

Proposition 8.1. Any PCF-type of rank n is a retract by PCF-definable maps12

of the pure type n. (So for any PCF-type A there is an n with A In in T.)

Proof. We start by establishing the following:

Lemma 8.2. Any finite product of a pure type n is a retract of n+1.

Proof. By induction on n. In case n=0 we have 0_ } } } _0 I1 via

(n0 , ..., nk&1)[ *x : @ .cond(eq x0) n0(cond(eq x1) n1 } } } )

f [ ( f (0), ..., f (k&1)).

For the induction step, assume the result for r and let n be r+1. Then

n_ } } } _n=(rO0)_ } } } _(rO 0)

$ (rO0_ } } } _0) ccc isomorphism

I(rO (0O 0))

$ (r_0O 0) ccc isomorphism

I(r_r)O 0 Lemma 8.1

I(r+1O 0) inductive hypothesis

= n+1. K

Now we prove the proposition by induction on the structure of

A=(A0 , ..., Ak&1 , @).

Suppose k=1 and rk(A)=r+1; then by the induction hypothesis

A=(A0 O @) IrO0=r+1.
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Suppose k�2 and A has rank r+2. Then by definition rk(Ai)�r for each i. Hence

A0_ } } } _Ak&1 O @ Ir_ } } } _rO 0 by induction hypothesis

I(r+1)O0 by preceding Lemma

= r+2. K

8.2. Preamble to the Main Construction

Suppose that _: m0_ } } } _mk&1� @ in CA is an innocent strategy whose
arguments are all pure types mi�n+2. Then we have the following three cases:

Undefined case. _ does not respond to the initial question ``[''.

Constant case. _ responds to the initial question ``['' with an immediate
answer ``]c '' for some value c.

Inductive case. _ responds to the initial question ``['' with the initial question
``('' in the i th game mi (0�i�k&1). Now the general circumstance is when
mi=m+2 is at least 2 and we analyze this first. The only interesting response for
O is the initial question in (m+1) which is now justified. The play until that
question is answered is (effectively) a play in the game

m_m0_ } } } _mk&1 O0,

and we write _$ for the strategy in this game derived from _. (See below for the
simple relation between the representing innocent functions.) The special cir-
cumstances when mi=1 or mi=0 are simpler. In the case where mi=1, the only
interesting response for O is the initial question in 0 which is now justified. The
play until that question is answered is effectively a play in the game
m0_ } } } _mk&1 O0 and we write _$ for the strategy in this game derived from _.
Finally in case mi=0, O can only give an uninteresting immediate answer c to P's
question. In all three circumstances, the analysis now continues in the same fashion.
At some stage (possibly at once��the ``uninteresting'' response, possibly after many
completed plays against _$) O may reply to P's initial question in mi . If the answer
is the value c, then the P-view will be ``[ } ( } )c '' and P is then essentially back in the
position of playing in a game m0_ } } } _mk&1 O0 again. We write _c for the
strategy obtained from _ for the succeeding play. (Again see below for the relation
between the representing innocent functions.)
We consider the output behavior of _ in these three cases. Let {0 : m0 , ..., {k&1 :

mk&1 be k innocent strategies of pure type. Then the composite

({0 , ..., {k&1); _=_({0 , ..., {k&1) : 0

is a strategy in @. So it is either the unresponsive strategy or else it directly responds
with an answer of a natural number.
In case 1, _({0 , ..., {k&1) is the unresponsive strategy.
In case 2, _({0 , ..., {k&1) responds with some natural number c.
In case 3, _({0 , ..., {k&1) is the unresponsive strategy unless
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(a) the interpretation of {i (*a ._$(a, {0 , ..., {k&1)) (in the general circumstances),
{i (_$({0 , ..., {k&1)) in case mi=1, or { i in case mi=0 is some natural number c, and

(b) _c({0 , ..., {k&1) responds with some number d, in which case _({0 , ..., {k&1)
responds with d.

Clearly the strategy _$ and sequence of strategies _c depend in a simple way on
_: If justification indices and coding details are omitted the representing innocent
functions satisfy:

f_$(u)=a� f_(``[ } ( } u'')=a

f_
c
(``[ } v'')=a� f_(``[ } ( } )c } v'')=a.

This dependence is reflected in terms of the codes ,_ for _ introduced in
Section 5.6: there are (least) recursive operators 8$: P�P and 8: N_P�P

(where P is the set of all partial functions from N to N) such that for all _: m0_
} } } _mk� 0 in CA,

8$(,_)=,_$ and 8(c, ,_)=,_
c
.

We suppress the dependence of 8 and 8$ on the sequence (m0 , ..., mk&1) and shall
write 8(c, ,) in its curried form 8c(,). We need an explicit choice of 8$ and 8. The
natural choice to make is of the least such recursive operators, so we set

8$(,)=. [,{$ : { is a (finite) innocent strategy with ,{�,]

and

8(,, c)=. [,{
c
: { is a (finite) innocent strategy with ,{�,].

8.3. Representability of Recursive Operators

It does not seem profitable to extend ideas of numeralwise representability to
higher types; but in Section 8.2 we decomposed codes ,_ using certain recursive
operators so one minor extension proves useful in the proof of universality.
We write P for the set of all partial functions from N to N. We shall need to use

the fact that certain (simple) recursive operators 8: P�P can be represented in a
suitable sense in PCF. More generally we should consider 8: Pk_N

l
�N and

8: Pk_N
l
�P. The idea is to use the type @O @ as a substitute for P, since every

map @� @ in a model will numeralwise represent (in the strict sense) a unique
partial function, that is, an element of P. However, we face a number of problems.

1. Not every partial function need be numeralwise representable in the model.
For example, in the initial model T the representable functions are exactly the
partial recursive functions.
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2. The same partial function may be numeralwise represented by distinct
maps in the model. For example, the constant term *x . 0 and the term defined
implicitly by the recursive equation

f (x) =
def

if x=0 then 0 else f (pred0)

will generally denote different maps but both will represent the constant function
with value 0.

3. We can no longer dodge issues of sequentiality. Some recursive operators
8: P�N can in no sense be represented in PCF: consider, for example,

8(,)=0 � either ,(0)=0 or ,(1)=0.

As regards point 3, we shall simply have to be careful to check PCF represen-
tability: in the cases where we need it, it is quite trivial. (There are in effect a
number of exact characterizations of PCF-definability at this level in the literature.)
As regards the first two points it seems best to cope with them as follows. First
recall from Proposition 2.9 that for any finite partial numerical function we can find
a term of PCF (in the sense of Remark 2.3) which numeralwise represents the func-
tion in T. Such terms weakly represent their functions in any model but represent
(without qualification) them in any adequate model. Second, we can restrict atten-
tion to (Scott) continuous functions: any recursive operator is continuous and thus
determined by its values on finite functions, and a PCF-representable operator
must be of this form. This motivates the following definition.

Definition 8.2. Suppose that C is a cartesian closed category and that N is an
object of C equipped with 0: 1�N and s: N�N. Take numerals n: 1�N as usual
and adopt the notion of (numeralwise) representability of partial functions from
Section 2.4. A map 8: Pk_N

l�N is represented by F: (NON)k_N l�N just
when for any numerals n1 , ..., nl : 1�N in C and maps f1 , ..., fk : N�N in C

representing ,1 , ..., ,k #P we have

8(,1 , ..., ,k , n1 , ..., n l)=m iff F ( f1 , ..., fk , n1 , ..., n l)=M: 1�N.

A map 8: Pk_N
l�P is represented by F: (NON)k_N l� (NON) just when the

corresponding map 8: Pk_N
l+1�N is represented by the exponential transpose

F� : (NON)k_N l+1�N in the sense just given.

Remark. We have given this definition quite generally but it has a clearer sense
if one assumes that all finite partial functions are representable in C and that we
are concerned only with the representability of continuous 8. The reader may wish
to reflect on the following easy observations about representability in the initial
model T.
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Proposition 8.2.

(i) For any F: (@O @)k_@l� @ in T there is a unique recursive operator
8: Pk_N

l�N such that F represents 8.

(ii) If 8 is a continuous operator represented by F in T then 8 is the recursive
operator represented by F.

We close this section by showing that a term F which represents a continuous
functional 8 in the initial model, does so also in CA. The proof relies on a number
of results which it seems best to collect together at this stage. First we need some
simple facts about representability of partial functions from Section 2.4.

(1) If C is an adequate model for PCF and f: @k� @ represents ,: Nk�N in
T then f represents , in C (Proposition 2.9)

(2) For any model C of PCF if n�s : @ then n=s : @ (Proposition 3.3).

(3) For any model C of PCF, if f�g: @kO @ represents ,, �: Nk�N then
,��.

(4) Suppose the model C of PCF satisfies the context lemma and that (the
observational quotient) CA@ is standard. If f, g: @kO @ represent ,, �: Nk�N with f
strict in CA, then

,�� if and only if f�g.

(Proposition 3.5).
We can apply these results to CA.

(a) CA is standard and (hence) so is CA@ .

(b) CA is adequate (Proposition 7.5).

(c) CA satisfies the context lemma (Theorem 6.1).

Second, the proof depends on some continuity properties of CA.

(5) CA is enriched over dI-domains in such a way that a finite element
{: @O @ is either a constant function and therefore PCF-definable or strict and there-
fore represents a finite partial function. In either case we can find g: @O @ in T such
that if { represents �:N�N in CA then g represents � in T. It follows by (1)
above that g represents � in CA and hence by (4) above that g&{ in CA.

Proposition 8.3. Suppose that F: (@O @)k_@l� @ represents the continuous
functional 8: Pk_N

l�N in the initial model T of PCF. Then F represents 8 in CA.

Proof. For simplicity we treat the case of F: (@O @)_@� @ representing 8: P_N

�N in T. Take _: (@O @) representing , #P in CA.
Suppose first that 8(,)(n)=m in CA. As 8 is continuous there is a finite ��,

with 8(�)(n)=m. Take a strict g representing � in T. We have by assumption
F(g)(n)=m in T and hence in CA. Applying (4) above to CA we get g�_ in CA.
But then m=F(g)(n)�F(_)(n) in CA and so by (2) above F(_)(n)=m.
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Suppose conversely that F(_)(n)=m in CA. By (5) above we can take {�_ finite
in @O @ with F({)(n)=m and we can find g: @O @ in T with g&{ in CA and both
g and { representing �: N�N in CA. We deduce that F(g)(n)=m in CA and
hence as CA is adequate F(g)(n)=m in T. By assumption we deduce that
8(�)(n)=m. Now {�_ and so a fortiori {�_ (Remark 3.1), and so by (4) above
��,. As 8 is continuous we deduce 8(,)(n)=m. K

8.4. Notational Preliminaries

Before starting the main construction we establish some notation.

(i) We need a natural number code m� =(m0 , ..., mk&1) for sequences of
natural numbers and a function to add a number at the head of a list

m V (m0 , ..., mk&1) =
def

(m, m0 , ..., mk&1).

(ii) We consider pure types m�n+2. By Lemma 8.1 one is a (PCF-
definable) retract of the other. We write this as

em : m�n+2 and pm : n+2�m.

(iii) In analyzing _: m0_ } } } _mk&1� 0 we are led to consider

_$: m_m0_ } } } _mk&1�0

as we cannot (of course) keep fixed the number of arguments of ``substrategies.''
Hence we are led to represent elements of m0_ } } } _mk&1 as elements of
(@O n+2). We do this by means of PCF-definable retractions

fun: m0_ } } }_mk&1� (@O n+2)

tup: (@O n+2)�m0_ } } } _mk&1 ,

where

fun(a0 , ..., ak&1)=*x : @ .cond(eq x0)(em
0
a0)(cond(eq x1)(em

1
a1) } } } )

tup(F )=( pm
0
(F(0)), ..., pm

k&1
(F(k&1))).

(iv) We need a further PCF-definition. If F: @OA and a: A define a V F: @OA
by

a V F =
def

*x : @ .cond(eq x0) a(F(predx)).

The final piece of notation that we need arises from a basic lemma which we need
for the proof of universality. Recall the recursive operators 8$ and 8 from
Section 8.2.

Proposition 8.4. There exist PCF-terms H$ and H that represent 8$ and 8 in
the initial model T.
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Proof. In principle this is easy as we have simple equations

f_$(u)=f_(``[ } ( } u'')

f_
c
(``[ } v'')=f_(``[ } ( } )c } v'')

determining f_$ and f_
c
in terms of f_ ; however, the equivalence required for

representability requires a little thought. We treat the case of H$; the case of H is
similar.
First we need to observe in effect that being a finite play in accord with a strategy

is semi-decidable. One can readily define, using fixed points, a term

accord : (NON)_N�N

which represents the operator accord: P_N�N defined by

accord(,, n)=0 iff {
n=*u for some play u in accord with a
finite innocent strategy _ with ,_�,.

(The ideas used in the definition of accord were introduced in Section 5.6.) Then
we can define H$ in a proto-PCF by

H$(h)(n)=if (n=*u and accord(h, *``[ } ( } u'')=0) then h(*``[ } ( } u'').

To show that H$ represents 8$ take f: N�N in T representing ,: N�N and n #N.
Suppose first that 8$(,)(n)=m. Then there is 8{�,, { a finite innocent strategy,

and 8{$(n)=m. In particular it follows that n=*u where u is a play in accord with
{$, so that ``[ } ( } u'' is a play in accord with {. As accord represents accord we
deduce that accord( f, *``[ } ( } u'')=0 and so H$( f )(n)= f (*``[ } ( } u''). But
,{(*``[ } ( } u'')=,{$(n)=m so that ,(*``[ } ( } u'')=m and so f (*``[ } ( } u'')=m as
f represents ,. Thus H$( f )(n)=m.
Conversely suppose that H$( f )(n)=m. Then n=*u where accord

( f, *``[ } ( } u'')=0 and f (*``[ } ( } u'')=m. As accord represents accord and f
represents , we have accord(,, *``[ } ( } u'')=0 so that *``[ } ( } u'' is a play in
accord with some finite innocent _ with ,_�,. But also ,(*``[ } ( } u'')=m so we
can extend _ to { with ,{�, and ,{(*``[ } ( } u'')=m. But then ,{$(n)=,{$(*u)=
m so that 8$(,)(n)=m. K

8.5. A universal Function

The argument for universality rests on the construction of a suitable universal
function. We shall show how to define, for each natural number n, a PCF-term

U : @_(@O @)_(@O (n+2))O @

with a property which we now spell out.
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Suppose we have the following data:

(i) A code m� =(m0 , ..., mk&1) for a sequence m0 , ..., mk&1�n+2 of pure
types. We write m� also for the corresponding strategy in the arena @.

(ii) An innocent strategy _: m0_ } } } _mk&1� 0 in CA; f_ is the representing
innocent function and ,_ the partial function code (explained in Section 5.6). We
write ,_ also for the standard representation of ,_ as an innocent strategy in the
arena @O @ (see remark in Section 8.3).

Consider the composite in CA

(@O (n+2)) w�
tup m0_ } } } _mk&1 �

_ @.

The universal property of U is that this is observationally equivalent to (the
transpose of)

*F : (@O (n+2)) .U(m� , ,_ , F ) : (@O (n+2))O @.

If we introduce a free variable F of type (@O (n+2)) and unravel the definition of
tup, we can write the required property as

U(m� , ,_ , F )&_( pm0
F(0), ..., pm

k&1
F(k&1)) : (@O (n+2))� @.

Proposition 8.5. For each natural number n there is a PCF-term

U : @_(@O @)_(@O (n+2))O @

so that for any m� =(m0 , ..., mk&1) and _: m0_ } } } _mk&1� 0 in CA,

U(m� , ,_ , F )&_( pm
0
F(0), ..., pm

k&1
F(k&1)) : (@O (n+2))� @. (-)

Proof. Define U using the fixed-point operator to satisfy the following informal
equation:

U(m� , ,, F )={
if ,(``['')=``]d '' then d else
if ,(``['')=``('', the initial question in the i th game mi , then

v (in the general case that mi=m+2) if pm
i
(F(i))(*a : m .U(m V m� , H$(,),

em(a) V F )=c then U(m� , Hc(,), F ),

v (in the case m i=1) if pm
i
(F(i))(U(m� , H$(,), F ))=c then U(m� , Hc(,), F )

v or (in the case mi=0) if pm
i
(F(i))=c then U(m� , Hc(,), F ),

which we have written in a kind of proto-PCF using notation introduced in the
previous section. It is easy to translate this (in an ``up to observational equivalence''
sense) into true PCF; the only unobvious point of detail is made clear in the proof
below.
First we note that a simple continuity argument shows that it suffices to prove

that U has the stated property (-) for finite (compact) strategies _. Second, note
that the context lemma for CA turns (-) into what is essentially a point-wise claim.
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To prove (-) for a finite _ we proceed by induction on the structure of _. We
recall the analysis from our preamble. In the undefined case when _ does not
respond and the constant case when _ responds at once, the result is clear. (F does
not come into it at all.) Hence we turn to the inductive case.
We deal with the inductive case in the general circumstances that mi=m+2�2,

leaving the other simpler circumstances to the reader. Take a finite strategy
_: m0_ } } } _mk&0� 0. By our induction hypothesis we have the result (-) for _$
and also for each _c . In particular we have

U(m� V m, ,_$ , G)&_$( pmG(0), pm
0
G(1), ..., pm

k&1
G(k)): (@O (n+2))� @.

It follows that

U(m V m� , ,_$ , em(a) V F )&_$(a, pm
0
F(0), ..., pm

k&1
F(k&1)): m_(@O (n+2))� @

and so

*a .U(m V m� , ,_$ , em(a) V F )

&*a ._$(a, pm
0
F(0), ..., pm

k&1
F(k&1)): (@O (n+2))� (m+1).

Applying pm
i
(F(i)) we deduce that

pm
i
(F(i))(*a .U(m V m� , ,_$ , em(a) V F ))

&pm
i
(F(i))(*a ._$(a, pm

0
F(0), ..., pm

k&1
F(k&1)))

as maps (@O (n+2))�0.
Now we aim to show

U(m� , ,_ , F )&_( pm
0
F(0), ..., pm

k&1
F(k&1)) : (@O (n+2))� 0.

By the context lemma for CA it is enough to prove this equivalence pointwise, so
take \: @O n+2 an innocent strategy. Suppose then that

_( pm
0
\(0), ..., pm

k&1
\(k&1))=d

a value in CA. First it follows from our analysis of _ that we must have

pm
i
\(i)(*a ._$(a, pm

0
\(0), ..., pm

k&1
\(k&1)))=c

a value in CA. But then we have just seen that it is a consequence of the induction
hypothesis that

pm
i
\(i)(*a .U(m V m� , ,_$ , em(a) V \))=c.
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Now ,_$ &H$(,_) by Propositions 8.3 and 8.4, so we have

pm
i
\(i)(*a .U(m V m� , H$(,_), em(a) V \))=c.

Second, it follows from our analysis of _ that

_c( pm
0
\(0), ..., pm

k&1
\(k&1))=d.

But then again by the induction hypothesis

U(m� , ,_
c
, \)=d.

Again ,_
c
&Hc(,_) by Propositions 8.3 and 8.4, so we have

U(m� , Hc(,_), \)=d.

Putting these two facts together we see from the definition of U that

U(m� , ,_ , \)=d.

We have shown that _( pm
0
\(0), ..., pm

k&1
\(k&1))=d implies U(m� , ,_ , \)=d,

which is enough to show

_( pm
0
F(0), ..., pm

k&1
F(k&1))�U(m, ,_ , F )(@O (n+2))� @.

Now to establish the opposite inequality, take \: @O n+2 an innocent strategy
again and suppose that

U(m� , ,_ , \)=d

a value in CA. Now we require that the translation of our proto-PCF in true PCF
is such that this means that

pm
i
\(i)(*a .U(m V m� , H$(,_), em(a) V \))=c

is a value in CA and that

U(m� , Hc(,_), \)=d.

(This is easy to arrange.)
It follows that we can run the argument just given backward to deduce (in view

of our analysis of the output behavior of _) that

_( pm
0
\(0), ..., pm

k&1
\(k&1))=d.
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This show that

U(m� , ,_ , F )�_( pm
0
F(0), ..., pm

k&1
F(k&1)): (@O (n+2))O @.

Thus we have established (-).
Inductively we have established (-) for all finite strategies _ and hence by

continuity for all _. This completes the proof. K

We now come to the results which we discussed at the start of this section. In
case A=n+2 is a pure type, the function u discussed there is simply a special case
of the function U of the last proposition, but it follows easily from the fact that any
object in T is a retract of (the interpretation of) a pure type that universality at
pure types implies universality at all PCF-types. Hence we have established our
main results.

Theorem 8.1 (Universality).

(i) Every map between PCF-types in CA@ is PCF-definable in some (partial )
function parameter.

(ii) Every map between PCF-types in RA@ is PCF-definable.

Remark. We could prove a more general version of Proposition 8.1 if we
replaced the code

m� =(m0 , ..., mk&1)

with some system of codes for all possible sequences of arguments of height �n+2.
This would avoid the detour through pure types at the cost of some notational
complexity.

9. CONCLUSIONS AND FURTHER DIRECTIONS

In this work (comprising Parts I, II, and III) we begin by giving a survey of the
so-called full abstraction problem for PCF tracing its roots to old foundational
problems in recursion theory considered by Platek and also (in a related but
different direction) by Kleene, Gandy, and others. We then set out a (cartesian
closed) category of arenas and innocent strategies and show that this gives rise to
an order-extensional, order fully abstract model of PCF.

9.1. Comparison with Related Work

The nature of our approach, based on two-person dialogue games, goes back to
Berry and Curien in one tradition, and to Kleene and Gandy in another. (See
Section 1.4 for a discussion.) We are aware of related work of a similarly concrete
nature by several people.

Sazonov's approach. In the 1970's Sazonov (see, for example [65�68]) outlined
a concrete machine-oriented approach to the problem of providing a model for
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PCF satisfying the universality theorem. This work is not as well known as it
deserves to be and we give a brief indication of its nature.
In Sazonov's approach a (recursively sequential) function of higher type is

represented by some Turing machine with oracle (TMO). A TMO F communicates
with its arguments G1 , ..., Gk (all assumed to be of simple type) by asking for the
value of one such (G1 say) on TMOs of types appropriate to be arguments (of G1),
the codes for which are provided by the TMO F. The arguments of G1 are in effect
themselves TMOs parametrized by G1 , ..., Gk . In the published presentations the
arguments provided by F are explicitly of the form *x� . t(G9 , H9 , x� ) where t is an
applicative term and codes for the subsidiary arguments H9 are provided by the
TMO F; but clearly there are other equivalent formulations. Sequentiality of the
computation process is ensured by the requirement that a numerical answer must
be provided (by G1) before F can continue computation. What we effect by the con-
dition of innocence is provided more directly by Sazonov via the requirements that
questions essentially ask for extensional information (this can be seen by a
straightforward inductive argument) and that the questioning TMO only receives
the answer and not how it is received. The several arguments G1 , ..., Gk of F operate
independently and when they are called again a fresh copy of the TMO is made
available.
These ideas, while hard to formalize (for example, the interpretation of the

TMOs as extensional functions of finite type is given directly by a least fixed point),
are if anything more immediately intuitive than those involved in our more abstract
setting of games and innocent strategies. On the other hand Sazonov's approach
has a lurking syntactic quality: his questions have a specific syntactic form involv-
ing application in PCF. There is a sense, however, in which the relation of
Sazonov's approach with ours is very close. The order of communication of the
TMOs precisely mirrors the pattern of questions and answers in our approach. This
is clearly demonstrated by a translation of innocent strategies into Milner's
?-calculus. Elaborations of this can be found in [40]. The results can also be seen
as control information for TMOs in Sazonov's sense.

Gandy's approach. Robin Gandy has for some years been engaged in a project
to refine the dialogue ideas considered by Kleene [47] so as to provide a model for
PCF satisfying the universality theorem. In collaboration with his student Giovanni
Pani he has produced many examples and counterexamples and at least the outline
of a definition. Our comments on this approach are based on discussions with
Gandy and Pani and on a handwritten account by Gandy [30].
The discipline of questions and answers which we use has long been a part of

Gandy's framework; he calls it the no-dangling-question-mark condition, and one
of us (Hyland) learnt its significance from him. However, further restrictions are
needed to capture PCF definability and we do not fully understand the other com-
ponents of Gandy's approach. In [30] Gandy uses a notion of relevant record
which is superficially similar to our notions of P-view and O-view. We are unsure
of the exact form and the force of Gandy's notion. On the one hand Gandy raises
questions about consistency and extensionality which simply do not arise for inno-
cent strategies; and Pani's counterexample which motivates further restrictions on
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the notion of a good strategy is not given by an innocent strategy in our sense. On
the other hand parts of [30] suggest, and discussion with Gandy and Pani confirm,
that they have their eyes on a greater prize. For they appear to regard a relevant
record as if it coincides with purely extensional information and were this carried
through they would meet the Jung�Stoughton criterion.

The Abramsky�Jagadeesan�Malacaria (AJM) approach. At the same time as we
were working on our treatment of PCF in terms of innocent strategies, Abramsky,
Jagadeesan, and Malacaria were developing a different approach also involving
games and strategies [3]. We make some very tentative remarks about the relation
between the AJM game-theoretic approach and our own.
Both approaches make use of the discipline of questions and answers (which had

been identified earlier by Gandy), but they differ in terms of the notion of strategy.
Our approach exploits our new notion of innocent strategy, while AJM use the sim-
ple notion of history-free strategy which was already considered in Abramsky and
Jagadeesan's work on game semantics for multiplicative linear logic [2]. On the
other hand AJM rely on a rather subtle notion of move; moves and plays are con-
sidered up to equivalence under some group action. By contrast our notion of move
is relatively straightforward.
It seems that the intensional models of PCF which result from the two

approaches may well coincide. However, the underlying linear categories appear to
be different. Our impression is that a function such as strict-and (defined on the
obvious simple boolean game) will not be linear in the AJM setting, which it will
be in ours. This suggests that the AJM analysis is in some sense deeper than ours
and that our linear setting may be obtainable from theirs (for example, as the
Kleisli category of some comonad).

Nickau's approach. In a recent study [56], Nickau introduced the notion of
hereditarily sequential functions based on a game-theoretic setting similar to that
which we have introduced, i.e., each play describes the interaction between a func-
tional and its arguments during a computation. The background to and motivation
for Nickau's work were both different from ours. Nickau started from Kleene's for-
mulation of his dialogues and sought to vary the notion so that it would make clear
sense at all types and he was motivated amongst other things by an interest in ques-
tions of complexity of higher-order functions. Computable elements of the game
model he considers are strategies that depend on a certain abstraction of the history
of play (which he also refers to as view). Based on what we have seen, it would
appear that Nickau has independently discovered the notion of innocence. We
regard this confluence of ideas as a very positive sign!

Other related work. Stable bistructures, first introduced in Winskel's thesis
[79], are a generalization of event structures to represent function spaces at higher
types; the partial order of causal dependency is replaced by two orders, one
associated with input and the other output in the behavior of functions. Recently
both Curien [25] and Plotkin and Winskel [62] have independently showed that
stable bistructures give a (categorical) model of Girard's classical linear logic. While
the former builds on Winskel's unpublished work in the thesis, Curien's approach
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is based on a reconstruction of Winskel's earlier work along the lines of Girard's
coherence space. A key discovery of both is that the co-Kleisli category of the of-
course comonad is equivalent to a cartesian closed full subcategory of Berry's
bidomains, whose maps are continuous with respect to the extensional (Scott)
ordering and stable with respect to the stable (Berry) ordering. Unfortunately the
PCF-theory (inequalties on terms which hold in the model) of bidomains does not
include that of the Scott model. By equipping stable bistructures with an
appropriate notion of extensional conflict [81], Winskel was able to construct a
new model of PCF, combining both Scott and Berry orders, whose PCF-theory
does include that of the Scott model.

Mention should also be made of recent work by O'Hearn and Riecke [58]. They
have achieved a new characterization of the order-extensional, order fully abstract
model of PCF in terms of continuous functions that are invariant under a kind of
``Kripke logical relations,'' introduced earlier by Jung and Tiuryn [42] to charac-
terize *-definability. We believe that this model can be described in abstract
categorical terms along the lines indicated in [5]. This abstract character of the
model means that it is unreasonable to expect to extract information about
pcf-definability from it without a closer analysis. Such an analysis is given in effect
by Sieber in [70] which presents a construction of a model of PCF, fully abstract
up to rank three types, consisting of continuous functions that are invariant under
certain finitary logical relations.

FURTHER DIRECTIONS

Our study of the category CA of computational arenas and innocent strategies
(in Part II) has been quite extensive, but it is certainly not complete. In Part III
we show that the category CA gives rise to a fully abstract and universal model of
PCF. A number of questions pertaining to the fully abstract game model remain
open, some of which seem conceptually important. In addition there are many
possibilities for extension and generalization of our results. In this section we pick
out some of the more promising topics for further research and sketch some
preliminary results.

9.2. Linear Decomposition of CA

In this work we have consciously chosen a simple framework of games deter-
mined by computational arenas, which is suited to addressing the semantics of PCF
directly. The style of our approach is close to that of Kleene and Gandy in one
tradition, and to Berry and Curien in another. There is a wider framework (larger
categories of games) in which the function space of innocent strategies may be given
a linear decomposition of the kind pioneered by Girard. Here we shall be content
with just a brief account and hope to give a systematic presentation elsewhere.
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A general framework. Consider ``dialogue games'' given by a tree (or forest) of
moves:

v O starts and thereafter moves alternate between P and O.

v Moves are either questions or else answers and these are played so as to
satisfy the bracketing convention (last asked first answered).

v Moves are explicitly justified save that the initial O-question and some
further O-questions are not justified (or perhaps are notionally justified by some
``first cause''). Questions are justified by a preceding question of the other player,
answers are justified by the question they answer (i.e., the open bracket which they
close), and unjustified questions contain data as to the subgame which they initiate.

v There is a notion of P-view as before and a notion of O-view (note the
notion of O-view in A roughly coincides with that of P-view in `` v }A='' so that O
sees all the initial moves he or she may have cared to make), and we apply the
visibility condition that the justification of any move made is visible to the player
concerned (at the time he or she makes the move).

In this context we have the following.

Tensor product. A�B consists of sequences of moves (identifiably) from A or
B (with justification pointers) satisfying the general conditions above. In addition
we require that when sequences are projected into A or B (and the justification
indices adjusted appropriately) then we get a (legal) play in A or B.
Note that at any stage of the game the only P-move available will be in the game

in which O has just played, so it is automatic that only O can change games. (It
is true but essentially irrelevant that a P-view is always in one game or another.)
The empty game is the identity I for this tensor product.

Linear hom ( &b ). B &b C consists of sequences of moves (identifiably) from
B= (that is, B with roles of players reversed) or C (with justification pointers)
satisfying the general conditions above. We additionally stipulate that any initial
move in B= (which is to be a P-move in B&b C) may be justified by any initial
C-move. Again we require that when sequences are projected into C or B= (and
indices adjusted) then we get a legal play in C or B (with roles reversed).
Note that after the initial O-move (in C) the only O-move available will be in

the game in which P has just played, so it is automatic that only P can switch
games. (Of course O's view can contain information about both games.)
Note that A�B&b C$A&b (B&b C) as trees of moves with justification. (Play

takes place in three components A=, B=, C and only P will be able to switch.)

A linear category. The category has dialogue games as objects and innocent
strategies (in precisely the sense that moves depend just on the view) for P in the
game A &b B as the maps from A to B. The identity is still the copycat strategy.
This category is clearly symmetric monoidal closed.

A categorical product. A_B is obtained as the disjoint union of the game forests
for A and for B. So the opening O-move in C &b A_B is either in A or in B and
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determines that we are going to play either in C &b A or in C &b B. The terminal
object 1 is the empty game.

Of course exponential. Finally we need an exponential ! with all the good
properties identified in [7] and [12]. One good choice seems to be a kind of
merged infinite tensor product; that is, !A is given by sequences of moves named as
in A (with justification pointers) and satisfying general conditions above. We
stipulate that any play can be regarded as the interleaving of a sequence of plays
from A. The comonad structure =: ! A�A, $: ! A� !! A and comonoid structures
e: ! A� I and d: ! A� ! A� ! A($! (A_A)) need careful checking.

9.3. Linear Categories of Games

Further details of the above linear category of games can be found in [38].
Hyland's paper gives a systematic account of how games can provide an intensional
semantics for functional programming languages and for a theory of proofs. Other
aspects of linear categories of games are treated in [1], and Abramsky has recently
applied linear categories of games to provide models for idealized parallel Algol.

9.4. Towards a Calculus for Describing Strategies

It is unfortunate that even for relatively simple PCF-terms, a precise description
of their denotations as strategies very rapidly becomes unwieldy and opaque. One
way to remedy the situation is to have an expressive formal language that lends
itself to a succinct and economical representation of innocent strategies. Our first
attempt gives just such a representation in terms of an appropriately sorted
polyadic ?-calculus, reading input ?-actions as Opponent's moves and output
?-actions as Player's moves. This correspondence captures every essential aspect of
the dialogue game paradigm so precisely that the ?-representation may as well be
taken to be the basis for its formal definition. An account of this work can be found
in [40].
Although this representation is in complete accord with the dialogue game

framework, it is still not optimized for capturing the uniform or schematic nature
of (innocent) strategies which are denotations of *-terms. Here we have in mind the
various kinds of tit-for-tat strategies in which P simply copies O-moves from one
component of the play to the other. Such strategies also occur in various game
models of linear logic. It would be very useful to have a generic calculus capable
of capturing a general class of such parametric strategies. For a start, a descriptive
tool of this kind will no doubt simplify considerably the construction of a game
model for polymorphism. The existence of such a model is almost intuitively
obvious, but it is highly nontrivial to find the right formal machinery that gives a
reasonable handle for managing the complexity of syntactic details. Once such a
model is available, it would be highly interesting to determine its exact parametric
nature. Is it, for example, parametric in the sense of Reynolds? It has been
suggested to us that a calculus along the lines of Sangiorgi's higher-order ?-calculus
may well fit our requirements, but we have not yet investigated the matter.
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9.5. Abstract Machines

As we finished writing this paper Vincent Danos and Laurent Regnier were
making connections between the notions of legal position and innocent strategy on
the one hand, and the operation of their variant of Krivine's environment machine
on the other. In a similar spirit Baillot has described in detail a connection between
the history-free strategies of ajm and the Geometry of Interaction. This suggests an
explanation at the computational level of the equivalence between our approach
and ajm's to modeling PCF. We are not sure of the significance of the way in which
the Danos-Regnier variant of the environment machine encapsulates some form of
optimal hyper-lazy execution strategy (as they call it).
A related development is Curien's strategic abstract machine, a presentation of

which one of us saw after the completion of this paper. We are encouraged by the
close connections being drawn between our work and simple abstract machines,
and we hope to see some implementations.

9.6. Other Open Questions

There are a number of other open questions. We shall just mention two which
seem especially important. This first concerns the characterization of higher-type
sequentiality. In our view one cannot properly claim to understand higher-type
sequentiality until an appropriate axiomatic characterization has been obtained.
This is definitely related to what we call Kleene's problem in Sections 1.4 (see also
the discussion in Section 1.3). We believe that this is the main thrust of the full
abstraction problem.
The second question is a more mathematical one: is the observational quotient

enriched over CPOs? The observational quotient CA@ is enriched over the category
of posets. Is it enriched over the category of CPOs (and continuous functions)? We
do not know the answer to this question. A natural way to attack the problem is
to take advantage of the strong definability theorem (7.1) and argue syntactically,
but this approach does not seem to work.

10. APPENDIX: PROOF OF THE PROJECTION LEMMA

The proof is rather complex and it requires a detailed analysis of what we call
bounded segments in a function space arena.

A.1. Bounded Segments

Let s be a legal position of the arena AOB. A segment % of s beginning with a
P-move x and ending with an O-move y is said to be bounded if the two end-moves
x and y are an explicitly justifying pair, i.e., either both are questions, and x
explicitly justifies y, or the question x is explicitly answered by the answer y. Hence-
forth whenever x and y are thus related, we say that x explicitly justifies y. We call
% an (A, a)-bounded segment (respectively, a B-bounded segment) if either, and
hence both, end-moves are in the component (A, a) for some instance a of an initial
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A-move occurring in s (respectively B). We shall write (A, a)-bounded simply as
A-bounded. The two simplest bounded segments have the shapes b } v and
b } v } b } v , respectively. In both cases all moves of the bounded segment belong to
the same component.
We consider two ways by which a bounded segment may be decomposed. First,

spine decomposition is considered.

Lemma A.1. Any bounded segment % with end-moves x and y may be decomposed

in the following way;

%

b
x
} |pm } } } qm|

!m

} } } | pi } } } qi|
!i

} } } | p1 } } } q1|
!1

} v
y
,

where pi is an O-move which explicitly justifies the P-move qi , for each 1�i�m and

for some m�0.

Proof. Suppose not; then for some m�1, we have the following decomposition,

|pm } } } x } } } qm|
!m

} } } |pi } } } qi|
!i

} } } |p1 } } } q1|
!1

} v
y
,

where x is in !m but is not qm . By the visibility condition, x which explicitly justifies
y appears in ns�q1+

. But

Ns�q1

\= Ns<pm

\ } pm } qm } } } p1 } q1 ,

which does not include x. Hence we get a contradiction. K

Given a bounded segment % as in the preceding lemma, we call the following
subsegment of %

b
x

} v
pm
} b
qm
} } } v

p1
} b
q1
} v
y

the spine of %.

Projection decomposition. A bounded segment % with end-moves x and y may be
decomposed in terms of bounded segments in the following way,

| b } } } x } } } v |
%n+1

} | b } } } v |
%n

} } } | b } } } v |
%1

} b
y&

} v
y
,

where x and y are an explicitly justifying pair and for each 1�i�n+1, %i is a
bounded segment (with end-moves xi and yi) which may be either A-bounded or
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B-bounded. Let y& be the move which immediately precedes y in %. Note that x
may be the left end-move in %n+1 . Observe that apart from y&, every move in %
belongs to a (unique) constituent bounded segment.

Lemma A.2.

(i) Suppose % is A-bounded. For any 1�i�n+1, let m be a P-move in the
bounded segment %i . If m appears in Ns�y&

\ then %i is an A-bounded segment. In par-
ticular since by visibility, the P-move x (which explicitly justifies y) is in Ns�y&

\, we
conclude that the segment %n+1 is A-bounded.

(ii) The statement obtained from (i) by replacing the adjective A-bounded with
B-bounded is valid.

Proof. To prove the lemma, we use the following claim:

Claim. The O-view ns�y&+ has the following form,

ns�xil
+ } | il| } v

yil } b

xil&1 } |i l&1| } v

yil&1 } } } b
xi1 } |i1| } v

yi1 } b
y&

,

spine of %il&1
spine of %i1

where

v for some l�1, the sequence i1 , i2 , ..., il is a subsequence (not necessarily
initial) of 1, 2, ..., n+1;

v yi1 explicitly justifies y& and for each 1� j�l, yij+1
explicitly justifies xij

;

v for each 1� j�l, the segment xij
} |ij| } yij is the spine of the bounded

segment %ij which is A-bounded;

v m is an element of [xi1
, xi2

, } } } xil
, y&].

To prove the claim, first observe that by visibility the explicitly justifying move of
y& must appear in the P-view,

Ns�y1

\=Ns<xn+1

\ } b

xn+1

} v

yn+1

} b
xn
} v
yn
} } } b

x1
} v
y1
,

where xi explicitly justifies yi for each 1�i�n+1. Hence y& is explicitly justified
by yi1 , for some 1�i1�n+1 (and not by a move from Ns<xn+1

\ , for if so then x
is excluded from ns<y&+ , thus violating the visibility condition applied to y). Note
that yi1 is an A-move; hence the segment %i1 is A-bounded. By Lemma A.1 ns�y&+

has the form:

ns�xi1
+ } | i1| } yi1 } y&.

Inductively suppose ns�y&+ has the following form,

ns�xij
+ } | ij| } yij } xij&1

} | ij&1| } y ij&1
} } } xi1

} | i1| } y i1 } y&,
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where the segments %i1 , ..., %ij are all A-bounded. Now the last two moves of ns�xij
+

are w and xij
where w is the O-move which explicitly justifies xij

. By the visibility
condition w appears in the P-view:

Ns�yij+1

\=Ns<xn+1

\ } xn+1 b
xn+1

} v
yn+1

} } } b
xij+1

} v
yij+1

.

If w is in Ns<xn+1

\ then set l to be j; otherwise set ij+1 to k such that yk=w. Note
that yij+1

is an A-move; hence the segment %ij+1
is A-bounded. By Lemma A.1, we

have ns�y&+=

ns�xij+1
+ } | ij+1| } yij+1

} xij
} | ij| } y ij

spine of %ij

} } } xi1
} | i1| } y i1 } y&.

Hence the claim is established.
Let m be a P-move in %i . Suppose m appears in ns�y&+ . Then, by the Claim, m

appears in the spine of some %ij which is an A-bounded segment. Hence the lemma
is proved. K

Let % be an A-bounded segment in a legal position s of an arena AOB with
end-moves x and y. By an abuse of notation we define N%�B\ as the subsequence
of Ns�y�B

\ consisting only of moves in % occurring immediately after (and not
including) x.

Lemma A.3. Let % be an A-bounded segment in s with end-moves x and y.

(i) The segment N%�B\ has the following form,

N%�B\= b
pr
} v
qr
} } } b

p1
} v
q1
,

for some r�0 (as opposed to v } b } v } } } b } v ) where pi explicitly justifies qi for

each 1�i�r. Note that pi } } } q i is a B-bounded segment in s, for each 1�i�r.

(ii) For any P-move m in % which appears in ns<y+ , m does not belong to any

of the B-bounded segment pi } } } qi for 1�i�r.

The assertions obtained from the preceding by interchanging A-bounded segments

with B-bounded segments remain valid.

Proof. We prove both (i) and (ii) by induction on the length of s�y . The base
case of % of the form b } v for both (i) and (ii) is trivial. For the inductive case, con-
sider the projection decomposition of the A-bounded segment % as follows (using
the same notation as in Lemma A.1),

| b } } } x } } } v |
%n+1

} | b } } } v |
%n

} } } | b } } } v |
%1

} b
y&

} v
y
,

where for 1�i�n+1, %i is a bounded segment with end-moves xi and yi .
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For each 1�i�n+1, if %i is A-bounded then by the induction hypothesis of (i),
N%i�B

\ is pi, ri } qi, ri } } } pi, 1 } qi, 1 , for some ri�0. Note that x is by assumption a
P-move in %n+1 , and so, by Lemma A.2, %n+1 is an A-bounded segment. Since x

appears in ns<y+ , by the same analysis as the claim in the proof of Lemma A.2,
x appears in ns<yn+1+

. Applying the induction hypothesis of (ii) to the A-bounded
segment %n+1 (which has end-moves xn+1 and yn+1), we infer that x does not
appear in any of the B-bounded segment pn+1, i } } } qn+1, i , for any 1�i�rn+1 . So
suppose x appears between qn+1, l+1 and pn+1, l , for some 1�l<rn+1 . Then

N%�B\

is #n+1 } #n } } } #1 where the segment #i 's are defined as follows:

v for 1�i�n, we have

#i={
x i } y i
N%i�B

\

if % i is a B-bounded segment,
if %i is an A-bounded segment;

v #n+1= pn+1, l } qn+1, l } } } pn+1, 1 } qn+1, 1 .

Hence (i) is established for the inductive case. As for (ii) take any P-move in %

which appears in ns<y+. Then m appears in ns<yj+
for some A-bounded segment %j .

Applying the induction hypothesis of (ii) to the A-bounded segment %j , we infer
that m does not appear in the B-bounded segment pj, k } } } qj, k , for each 1�k�rj .
Hence the result follows. K

We are now ready to prove the projection lemma.

A.2. Proof of the Projection Lemma

(i) We prove by induction on the length of s. The base case is immediate but
the inductive case requires some work. If the last move m is a P-move, then
Ns\= Ns<m

\ }m. There are two cases. If the move preceding m in s is in B, then we
have:

Ns\�B=Ns<m
\�B }m by the induction hypothesis

P Ns<m�B
\ }m

=Ns�B\.

Suppose the move y1 preceding m
�
is in A. Let m be the B-move preceding m in Ns\.

We have

Ns\= Ns�m
�

\ } b
xr
} v
yr
} } } b

x1
} v
y1
} b
m

, (A.1)

A-moves

where xi explicitly justifies yi , for each 1�i�r, for some r�1, and they are all
A-moves.
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Example 4.5 shows that for each 1�i�r, the A-bounded segment xi } } } yi in s

may contain B-moves, some of which may appear in Ns�B\. To complete the
argument for the inductive case, it suffices to establish the following:

Claim.

Ns�B\= Ns�m

�

�B\ } | b } } } v |
$
r

} } } | b } } } v |
$2

} | b } } } v |
$1

}m,

where each $i is a segment of B-moves.
Then, from (A.1), we have

Ns\�B= Ns�m

�

\�B by the induction hypothesis

P Ns�m

�

�B\ }m

P Ns�m

�

�B\ } | b } } } v |
$
r

} } } | b } } } v |
$2

} | b } } } v |
$1

}m by the claim

=Ns�B\.

It remains to prove the claim. By (A.1) we infer that s has the following form,

s�m

�

} |xr } } } yr|
%
r

} } } |x1 } } } y1|
%1

}m,

where each segment %i#xi } } } yi is an A-bounded segment. It suffices to note that
by Lemma 10.1(i) each $i is just N%i�B

\.
The case of m being an O-move reduces to the preceding case. The proof for (ii)

is entirely symmetrical, and we omit it.
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ADDENDUM

June 2000: Selected Further References

Since the submission of the paper there has been much work related to issues
arising from it. A comprehensive survey of the material stimulated by the paper and
a proper analysis of the current position would take time and probably deserves a
separate account. We aim here to give no more than a list of pointers to some
recent work more or less based on, or inspired by, innocent strategies.
Several doctoral theses have been completed. It is appropriate first to mention

Nickau's thesis [18] which independently develops the idea of innocence from a
somewhat different point of view. McCusker's thesis [17] develops a category of
games which can model product, function space, sum, and recursive types, i.e., the
structure of Plotkin's functional language FPC. More recently, Hughes [13] has
constructed a fully complete innocent game model for System F, Laird's thesis [16]
gives a game-semantic analysis of functional control by dropping the well-bracket-
ing condition, and Harmer's thesis [10] gives an account of finite nondeterminism.
Abramsky and his co-workers have constructed fully abstract models for Algol-

like languages [1, 2, 4], and proposed descriptions of call-by-value innocent games
[3] (see also [12]). The idea of representing innocent strategies by the ?-calculus
has been taken up by Fiore and Honda who have given a translation of FPC-terms
into Pict-code (asynchronous polyadic ?-calculus without summation) in [9].
Interesting connections between innocent strategies and abstract machines have
been identified in a series of papers [5, 6, 8]. Danos and Harmer [7] have con-
sidered probabilistic strategies, extending the earlier work [11]. Finally Ker,
Nickau, and Ong [14, 15] have constructed universal models for the Nakajima-tree
and Bo� hm-tree *-theories based on what they call effectively almost-everywhere
copycat strategies.
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