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Abstract—Camera sensors are different from traditional scalar
sensors as different cameras from different positions can form
distinct views of the object. However, traditional disk sensing
model does not consider this intrinsic property of camera sensors.
To this end, we propose a novel model called full-view coverage.
An object is considered to be full-view covered if for any direction
from 0 to 2π (object’s facing direction), there is always a sensor
such that the object is within the sensor’s range and more
importantly the sensor’s viewing direction is sufficiently close
to the object’s facing direction. With this model, we propose an
efficient method for full-view coverage detection in any given
camera sensor networks. We also derive a sufficient condition
on the sensor density needed for full-view coverage in a random
uniform deployment. Finally, we show a necessary and sufficient
condition on the sensor density for full-view coverage in a
triangular lattice based deployment.

I. INTRODUCTION

Traditional sensor networks measure scalar phenomena in
the physical world. Camera sensor networks can retrieve much
richer information in the form of images or videos, and hence
provide more detailed and interesting data of the environ-
ment. Such networks promise a wide range of applications
in surveillance, traffic monitoring, habitat monitoring, health
care and even online gaming [2]. Because of the huge potential
in applications, camera sensor networks have drawn much
attention in the past few years [18], [23].

One fundamental research issue is how well the target field
is monitored, which is referred to as the coverage problem
in wireless sensor networks. Existing work on this problem
suggests a very simple model on characterizing the coverage:
an object is considered to be covered if it is within the sensor’s
sensing range, which can be a disk [9] or sector [8]. With
this generic model, extensive studies have been devoted to
the problem of how to achieve k-coverage over a given target
area [15], [21], [12], [3], where k is a predefined parameter
indicating the desired number of sensors (coverage degree)
covering each object.

However, camera sensors are different from traditional
scalar sensors. Camera sensors may generate very different
views of the same object if they are from different viewpoints.
For example, a camera sensor placed in front of a person
can obtain the face image, but it can only view his back if
it is behind him. In fact, studies in computer vision show that
the object is more likely to be recognized by the recognition
system if the image is captured at or near the frontal viewpoint
[7], i.e., if the object is facing straight to the camera. As the
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Fig. 1. (a) U is an object; dotted line defines the sensing range of Si and
U⃗Si is its viewing direction; (b) Although U and V ’s facing directions, d⃗U
and d⃗V , are the same, S1’s viewing direction is closer to U ’s facing direction.

angle between the object’s facing direction and the camera’s
viewing direction (denoted by the vector from the object to
the camera) increases (Fig. 1(a)), the detection rate drops
dramatically [19], [17]. As a result, the viewing direction of
the sensor has significant impact on the quality of coverage in
a camera sensor network.

As none of the existing coverage models can be used to
address the issues of viewing direction, we propose a novel
model called full-view coverage. An object is considered to be
full-view covered if no matter which direction the object faces,
there is always a sensor whose sensing range includes the
object and that sensor’s viewing direction is sufficiently close
to the object’s facing direction (rigorous definition is given in
Section II). Informally, if an area is full-view covered, it is
guaranteed that every perspective of an object at any position
is under the view of some camera sensor.

With this model, we study coverage issues arisen in camera
sensor networks. One important problem is that given a
deployed camera sensor network, how to determine if the
target field is full-view covered? Compared with the traditional
model, there are two factors that increase the complexity of
the problem in full-view coverage. First, the sensing range
of a camera sensor is a sector, which is supposed to be
more complex than a disk. Second, and more importantly, the
viewing direction of each camera sensor can vary from one
position to another, and hence even if some objects are known
to be covered (in traditional sense) by the same set of camera
sensors, they may receive different quality of coverage due
to position variance. For example, in Fig. 1(b), both objects
(U, V ) are covered by camera sensors S1 and S2, and they are
facing the same direction. However, the viewing direction of
S1 is closer to U ’s facing direction than to V ’s, meaning that
U receives better coverage (more likely to be recognized) than
V . Moreover, there are infinite number of positions (points)
to be considered in the target field and the object can face to
any direction, which further increases the difficulty.

Another important problem is how to derive an estimate of
the sensor density needed in a real deployment for full-view
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Fig. 2. The full-view coverage model.

coverage. In practice, sensors can be either deployed randomly,
e.g., being dropped from aircraft to an inaccessible zone, or
deployed deterministically, e.g., being placed manually in a
controlled environment. In both cases, a reliable estimation
can serve as a guideline for the real deployment. Since most
previous works mainly focus on disk sensing model, no result
can be applied directly to full-view coverage, where combined
effects of distance, camera’s orientation and viewing direction
make the geometric relationship between the objects and the
sensors much more complex, and hence make the problem
much more challenging.

Our contribution in this paper can be summarized as fol-
lows. First, we introduce a novel model that characterizes the
intrinsic property of full-view coverage in a camera sensor
network. Second, we propose an efficient method to deter-
ministically detect if a target field can be full-view covered
by any given set of camera sensors. Third, we derive an
estimate of the sensor density needed for full-view coverage
in a random deployment. Finally, we obtain a sufficient and
necessary condition on the sensor density needed for full-view
coverage in a triangle lattice based deployment and show that
the density needed in this deployment pattern is no more than
a factor of the density needed in any other deployment. To our
best knowledge, we are the first to consider full-view coverage
in camera sensor networks.

The remainder of this paper is structured as follows. Section
II introduces the full-view coverage model. Section III gives
the detailed description on full-view coverage detection for
a given deployed camera sensor network. Section IV shows
the density estimation for full-view coverage in a random
deployment. Section V presents the density calculation result
for full-view coverage in a triangular lattice deployment pat-
tern. Section VI presents the numerical results regarding our
estimation. The related work is reviewed in Section VII and
the paper is concluded in Section VIII.

II. NOTATIONS AND MODEL

Camera sensors1 are deployed to monitor a bounded region
A (target field). Each sensor Si has a sensing range r, a field-
of-view (FoV) angle φ and an orientation vector f⃗i, which
together define the sensing sector (Fig. 2(a)). We use Si to
denote the i-th sensor. Without ambiguity, Si also denotes the
sensor’s position. For any two points U, V , let ∥UV ∥ denote
the (Euclidean) distance between them. For any two vectors −→v1
and −→v2 , let α(−→v1 ,−→v2) denote the angle between them, which
ranges from 0 to π. A point P is covered by a sensor Si

1We may use cameras or sensors for short through out the paper.
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Fig. 3. (a) An example of a camera sensor network; how do we know if
A is full-view covered? (b) A sub-region R whose boundary consists of 5
segments:öTP ,öPQ,÷QM,øMW and WT .

if P is in the sensing sector of Si, i.e., ∥PSi∥ < r and2

α(
−→
fi ,

−−→
SjP ) < φ/2, where

−−→
SjP is the vector from Sj to P .

Definition 2.1 (Full-View Coverage) A point P is full-view
covered if for any any vector d⃗ (the facing direction), there is
a sensor Si, such that P is covered by Si and α(d⃗,

−−→
PSi) ≤ θ

(Fig. 2(b)). Here θ (∈ [0, π/2)) is a predefined parameter
which is called the effective angle. A region is full-view
covered if every point in it is full-view covered.

III. FULL-VIEW COVERAGE DETECTION

In this section, we propose an efficient method to detect
if the target region is full-view covered by a set of deployed
camera sensors.

A. Method overview

Given a set of deployed sensors, region A can be partitioned
into sub-regions, where each sub-region is defined to be a set
of points covered by the same set of sensors. The boundary
of each sub-region consists of either segments of lines or arcs
which are either part of the perimeter of the sensing sectors
covering the sub-region or part of A’s boundary. For example,
in Fig. 3(b), sub-region R is covered by 5 sensors and bounded
by 5 segments: ÷TP ,÷PQ,øQM,ùMW and WT .

We first show that the whole region is full-view covered
if and only if the boundary of each sub-region is full-view
covered. Then the most tricky part is to determine if every
point on a boundary segment is full-view covered, as there
are still infinite number of positions to consider and the
sensor’s viewing direction vary from one position to another.
To this end, we first show an equivalent condition on full-view
coverage (Lemma 3.2), and then propose a novel method based
on geometrical properties of the circumscribed circle and the
inscribed angle (Lemma 3.3). The intuition is that if a point is
full-view covered, there must be a set of sensors around it and
the angle between the viewing directions of any two adjacent
sensors is no more than 2θ. For any two sensors, we actually
identify the area (called safe region) in which for any point the
angle between the two sensors’ viewing directions is no more
than 2θ. Then we solve the detection problem by checking
if the segment is contained in the safe region of every two
adjacent sensors.

2For ease of analysis, we use “<” instead of “≤”, although not essentially.
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B. Detection Method Description

We need to verify if the condition in Definition 2.1 holds
for every point in A. Actually we only need to determine if it
holds on the boundary of every sub-region in A.

Lemma 3.1 (Boundary Condition) The region A is full-
view covered if and only if the boundary of every sub-region
is full-view covered by the given set of sensors.

Proof: The “only if” part is obvious. We only need to
show the “if” part. We actually show that for a given sub-
region R, if R’s boundary segments are all full-view covered,
then R is full-view covered.

Suppose there is an interior point V ∈ R and a vector d⃗,
such that for any sensor Si with ∥V Si∥ ≤ r, α(d⃗, ⃗V Si) > θ.
Now consider the intersection point of d⃗ and R’s boundary,
which is denoted by X (Fig. 4). We claim that X is not
full-view covered. In fact, consider a vector d⃗′ which is
parallel to d⃗ and originates from X . If X is full-view covered,
then there must be a sensor Sj such that ∥XSj∥ ≤ r,
α(d⃗′, X⃗Sj) ≤ θ. Clearly, Sj also covers V . Furthermore, we
have α(d⃗, ⃗V Si) ≤ α(d⃗′, X⃗Sj) ≤ θ, which is a contradiction.
Therefore any interior point of R is full-view covered if the
boundary is full-view covered. The claim is proved.

Given a segment PQ on the boundary of a sub-region R,
where P and Q are the two end points of the segment, we show
a way to determine if every point on the segment is full-view
covered. Note that every point on PQ is covered by the same
set of sensors. For any point V ∈ PQ, we can construct a
circular list of these sensors regarding their viewing direction
on V as follows (Fig. 5). Initially the list is empty. We begin
with any vector

−−→
V Si and place it into the list first. Then we

rotate
−−→
V Si around V in the counterclockwise direction until it

becomes parallel to the next vector
−−→
V Sj . Then we place

−−→
V Sj

into the list, right after
−−→
V Si. We continue rotating and placing

vectors sequentially into the list until we see the beginning
vector again. Then the list is completed. We denote the list
by CLV = {−−−→V SV1

, . . . ,
−−−→
V SVk

}, where k is the number of
sensors covering PQ. Then the condition in Definition 2.1 is
equivalent to the following.

Lemma 3.2 A given point V is full-view covered if and
only if for CLV constructed as above, the rotation angle from−−−→
V SVi to

−−−−→
V SVi+1 is less than or equal to 2θ for any 1 ≤ i ≤ k,

where Vk+1 = V1.
Proof: Suppose the condition holds. Then for any d⃗, there

are two sensor SVi and SVi+1 such that either the rotation angle
from

−−→
V Si to d⃗ or the angle from d⃗ to

−−−−→
V SVi+1 is less than or

equal to θ. Thus V is full-view covered.

If V is full-view covered but the rotation angle from
−−−→
V SVi

to
−−−−→
V SVi+1 is larger than 2θ for some i. Then consider vector d⃗

along the bisector of the angle. The angle between either
−−−→
V SVi

or
−−−−→
V SVi+1 and d is larger than θ. Therefore the condition is

true.
We need to determine if the above condition holds for any

V ∈ PQ. To this end, we introduce the concept of safe region.
For any two sensors Si and Sj , we define the safe region to
be the area in which for any point V , α(

−−→
V Si,

−−→
V Sj) ≤ 2θ; and

define the unsafe region to be the area in which for any point
V , α(

−−→
V Si,

−−→
V Sj) > 2θ (Fig. 6). The following lemma shows

an efficient method to identify the two regions.
Lemma 3.3 Given Si and Sj , there are two arcs øSiSj andøSiSj

′
which connect Si and Sj and are symmetrical with

respect to line SiSj , such that the unsafe region is the enclosed
region bounded by the arcs and the safe region is the open
region outside the unsafe region.

Proof: We prove the lemma by showing how to find
the two arcs. First we can find two different points Pθ and
P ′
θ on the perpendicular bisector of segment SiSj , such that

∠SiPθSj = ∠SiP
′
θSj = 2θ and they are on different sides of

SiSj . Without loss of generality, let Pθ be on the left side and
P ′
θ be on the right side (Fig. 6).
We draw the circumscribed circles of triangle △SiPθSj and

△SiP
′
θSj . Denote the centers of the circles by OSiSj and

O′
SiSj

, and the radius (which is the same for both) by rsafe.

Then arc øSiSj is the portion of the perimeter of ⊙OSiSj on

the left side and øSiSj

′
is the portion of ⊙O′

SiSj
on the right.

In fact, for any circle and a fixed chord (defined here by
SiSj) of the circle, all inscribed angles with two endpoints
at the ends of the chord are either equal or supplementary to
each other. Specifically, they are equal if the third points of the
angles are on the same side of the chord. Furthermore, for a
given point Pθ on the perimeter of the circle and another point
P on the same side of line SiSj as Pθ, if P is outside the circle
(∥POSiSj∥ > rsafe), then ∠SiPSj < ∠SiPθSj ; if P is inside
the circle (∥POSiSj∥ < rsafe), then ∠SiPSj > ∠SiPθSj .
The proof of this property can be found in any textbook on
Euclidean Geometry and hence omitted here.

Now we can give a necessary and sufficient condition for
PQ to be full-view covered under some constraint.

Theorem 3.4 Suppose for every point V ∈ PQ, the ordered
list CLV = {SV1 , ..., SVk

} is the same (in a circular way).
Then PQ is full-view covered if and only if it is within the
polygon bounded by {SViSVi+1 , 1 ≤ i ≤ k} and for any 1 ≤
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Fig. 7. (a) PQ is not full-view covered; (b) PQ is full-view covered.

i ≤ k, the unsafe region of SVi and SVi+1 does not intersect
with PQ, where Vk+1 denotes V1.

Proof: This is a result from Lemma 3.2 and 3.3.
We use an example to illustrate our idea (Fig. 7). In

Fig. 7(a), the distribution of the sensors are the same as in
Fig. 5(a). We draw the boundaries of the unsafe regions for
the 5 pairs of neighboring sensors (indicated by dotted circles)
as in Lemma 3.3, and check if they intersect with PQ 3.
As can be seen, PQ intersects with the unsafe regions of
S2S3, S3S4 and S5S1, and hence it is not full-view covered.
Fig. 7(b) shows the case when there are four other sensors
S6, S7, S8 and S9 covering PQ. In this case, PQ can be full-
view covered as no unsafe region intersects with it.

However, the ordered list CLV may not be the same for
every point V ∈ PQ. For example in Fig. 8, S1 is prior
to S2 in V ’s list, but S2 is prior to S1 in U ’s list. To
resolve this issue, we partition PQ into sub-segments. For
1 ≤ i ≤ k − 1 and i + 1 ≤ j ≤ k, if the line SiSj intersects
with PQ, we mark the intersection point on PQ. Then PQ is
partitioned into sub-segments defined by every two adjacent
marked points (including P and Q). Since there are at most
k(k−1) intersection points, the total number of sub-segments
is O(k2). Moreover, for a specific sub-segment XY , where X
and Y are two adjacent marked points, all points on it have
the same circular list of the sensors. Actually, if this is not
true, there must be two points U, V ∈ XY , and two sensors
S1, S2 ∈ SR, such that S1 comes before S2 in V ’s list but S2

is before S1 in U ’s list and there are no other sensors between
them (Fig. 8). Then line S1S2 must have an intersection point
with PQ, between X and Y , which is a contradiction to the
fact that X and Y are adjacent intersection points.

Now we have a complete procedure for full-view coverage
detection on a given segment of a sub-region’s boundary.
We can further apply this on all segments in A. For an
estimation of the total running time, the whole region can
be considered as a planar graph, where the vertices are the
crossing points of sensing sectors and edges are the segments.
As any two sensing sectors can have O(1) crossing points on
the perimeters, the number of vertices is O(N2), where N
is the total number of sensors. This further implies the total
number of segments is O(N4). Our detection method requires
O(k2) time on each segment, where k (≤ N ) is the number
of sensors covering this segment. Therefore the total running
time must be a polynomial function of N .

3In computation, this can be done by comparing the distance between the
circle’s center to PQ with the circle’s radius.
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Fig. 8. The circular lists for U , V are different: CLV = {S1, S2, . . . , Sk}
but CLU = {S2, S1, . . . , Sk}.

IV. SENSOR DENSITY ESTIMATION FOR FULL-VIEW
COVERAGE IN RANDOM DEPLOYMENT

In this section, we derive an estimation on the lower bound
of the probability that a region is full-view covered by a given
number of randomly distributed sensors. With this result, we
can estimate the sensor density needed to achieve full-view
coverage with any given probability (e.g., 0.99).

A. Technique Overview

Consider a random uniform distribution of N sensors in a
square region A. Without loss of generality, we assume A’s
area is unit. Given r, φ and θ, we calculate the probability
that A is full-view covered. Generally, if sensors are deployed
in a bounded region, the area very close to the boundary is
likely to have fewer sensors than the interior area, and hence
less likely to be covered as required. A common method to
avoid this boundary effect is to deploy the sensors in a slightly
larger region A′, e.g., enlarging the side length of A from d to
d+r [5]. The difference is negligible if A is sufficiently large.
We can also make the analysis clean by assuming the sensor’s
coverage reflects at the boundary; i.e., for each sensor S with
distance less than r to a boundary, we assume there is another
sensor outside the boundary at the position symmetrical to S
with respect to the boundary. In the following analysis, we
assume the boundary effect is negligible.

First we approximate the continuous region by discrete grid
points. This is a common way to estimate the probability of
area coverage [15]. We show that if the grids are sufficiently
dense and are all full-view covered by a set of sensors with
(r′, φ′, θ′), where r′ = r−∆r, φ′ = φ−∆φ and θ′ = θ−∆θ
for any given (∆r,∆φ,∆θ), then the whole region is full-view
covered by the same set of sensors with (r, φ, θ). Then we
estimate a lower bound of the probability that all grid points
are full-view covered. Based on this, we obtain a lower bound
of the probability that A is full-view covered.

In the following analysis, we first assume φ = 2π. This will
give the essence of our method. Note that the major challenge
of full-view coverage is due to the introduction of θ, not φ.
Then we extend the analysis for any 0 < φ < 2π. Note that in
practice φ = 2π can be considered as the case that each node
is bundled with multiple camera sensors, facing to different
directions to form a panoramic view. A camera that rotates
around with negligible rotation time can also be considered as
in this case.

B. Probability Estimation for φ = 2π

We use triangle lattices as the grids, although any other
grid patterns may also suffice. Grid points are the vertices
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Fig. 9. (a) The black dots are edge points of V ; (b) If V is in the unsafe
region of P1, P2, then P3 is an edge point.

of equilateral triangles with side length l. Each grid point P
has six neighbors with distance l from it (Fig. 9). They are
called P ’s 1-hop neighbors. Given A’s area fixed to be unit,
the choice of l depends on (∆r,∆θ).

Lemma 4.1 Given (∆r,∆θ), if l ≤ l0(∆r,∆θ), for any
point V ∈ A and any vector d⃗ from V , there is a grid
point P such that ∥V P∥ ≤ ∆r and α(d⃗,

−−→
V P ) ≤ ∆θ. Here

l0(∆r,∆θ) = 2∆r√
3+cot∆θ

.
Proof: Consider the set of all the grid points P with

∥V P∥ ≤ ∆r, which is denoted by GPV (∆r). Define an edge
point to be a grid point P ∈ GPV (∆r) such that P has an
1-hop neighbor not in GPV (∆r) and an 1-hop neighbor in
GPV (∆r).

All the edge points and the line segments connecting them
form a polygon just inside the circle centered at V with radius
∆r (Fig. 9(a)). Suppose the intersection point of vector d⃗ and
the above polygon’s boundary is between two neighboring
edge points P1, P2. We claim α(d, V P1) + α(d, V P2) ≤ 2θ,
which will prove the lemma.

Suppose the claim is incorrect. Then from Lemma 3.3, V
is in the unsafe region of P1, P2, which means ∥V OP1P2

∥ <
rsafe, where OP1P2 is the center of the circle defining the
unsafe region (Fig. 9(b)). From trigonometry knowledge, we
get rsafe = l

2 sin (2∆θ) . So

∥V OP1P2∥ <
l

2 sin (2∆θ)

Consider the triangles with P1P2 as one side and a third
vertex P3. P3 is either on the near side of P1P2 and closer from
V or on the far side of P1P2 and further from V . Consider
the case when P1 is on the far side. Then ∥V P3∥ > ∆r (since
if else, either P1 or P2 is not edge point).

On the other hand,

∥P3OP1P2∥ = rsafe · cos 2θ +
√
3

2
l =

l

2
(cot 2∆θ +

√
3).

If l is as in the lemma, from triangle inequality

∥V P3∥ ≤ ∥V OP1P2∥+ ∥P3OP1P2∥ < ∆r.

This is a contradiction. Thus the claim is proved.
Based on this result, we have the following condition

regarding the whole region’s coverage.
Lemma 4.2 Suppose φ = 2π and all grid points are full-

view covered by a set of sensors with r′ = r−∆r and θ′ = θ−
∆θ for some given (∆r,∆θ). If l ≤ l0(∆r, ∆θ) as indicated

V

P

Si

d

SiP r’

V

P

Si

d

SiP rmin

fi

Fig. 10. Grid point property: (a) there is no constraint on the distance
between P and Si (Lemma 4.2); (b) there is a lower bound rmin on the
distance between P and Si (Lemma 4.5).

in Lemma 4.1, then any point V ∈ A is full-view covered by
the same set of sensors with (r, θ).

Proof: We need to prove that for any point V ∈ A and
any vector d⃗, there is a sensor Si such that ∥SiV ∥ ≤ r and
α(

−−→
V Si, d⃗) ≤ θ.
Suppose P is the grid point found in Lemma 4.1. Since P is

full-view covered, there is a sensor Sj such that ∥PSj∥ ≤ r′

and α(
−−→
V P ,

−−→
PSj) ≤ θ′ (Fig. 10(a)). From triangle inequality,

∥V Sj∥ ≤ ∥V P∥+ ∥PSj∥ ≤ ∆r + r′ = r.

Thus V is covered by Sj , and furthermore,

α(d⃗,
−−→
V Sj) ≤ α(d⃗,

−−→
V P ) + α(

−−→
V P ,

−−→
V Sj) ≤ ∆θ + θ′ = θ.

Thus V is full-view covered by the sensors with (r, θ).
For any point V ∈ A, let CV denotes the event that V is

full-view covered.
Lemma 4.3 Suppose φ = 2π. Given N sensors with (r′, θ′)

uniformly distributed in A, the probability that a given point
V is full-view covered is

Pr(N, r′, θ′) , Pr[CV ] =
NX

k= π
θ′

�
N

k

�
pk(1− p)N−kf(k, θ′),

where π/θ′ is the abbreviation for ⌊π/θ′⌋, p = πr′2 and

f(k, θ′) =

π
θ′X

j=0

�
k

j

�
(−1)j(1− j

θ′

π
)k−1.

Proof: For a uniformly distributed sensor Si, the prob-
ability that it is within distance r′ from V is p = πr′2 and
the probability that exactly k sensors are within r′ to V isPN

k= π
θ′

�N
k

�
pk(1− p)N−k.

Consider the distribution of the sensor within the disk, since
the sensor is uniformly distributed in A, its distribution is also
uniform if conditioned on the disk area within distance r′ to
V . Furthermore, for each sensor Si within the disk, consider
its projection Pi on the perimeter of the circle centered at
V with radius r′. It is the intersection point of vector

−−→
V Si

and the circle. If we consider Pi’s position on the circle, it is
also uniformly distributed. From Lemma 3.2, given k sensors
within distance r′ from V (and hence able to cover V ), V is
full-view covered if and only if the angle between any two
adjacent vectors is no greater than 2θ. This is equivalent to
the event that the perimeter of a circle with unit length is
covered by k uniformly distributed arc segments with length
θ′/π (Fig. 11). The latter probability is given by f(k, θ′),
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Fig. 11. Si’s coverage range is projected as an arc on the circle.

which is shown in [20]. Therefore we have the probability
shown in the lemma.

From Lemma 4.2 and 4.3, we obtain a lower bound on the
probability for region A to be full-view covered.

Theorem 4.4 Given r, θ and φ = 2π, the probability that
region A is full-view covered by N uniformly distributed sen-
sors is lower bounded by Pr(N,

√
N−1√
N

r,
√
N−1√
N

θ)M , where
Pr(N, x, y) is given by Lemma 4.3, M = ⌈ 8√

3
l−2
0 ⌉ and

l0 = l0(
r√
N
, θ√

N
) is given by Lemma 4.1.

Proof: From Janson’s Inequality [15] and Lemma 4.3,
the probability that all grid points are full-view covered by N

sensors with r′ =
√
N−1√
N

r and θ′ =
√
N−1√
N

θ is no less than
Pr(N, r′, θ′)M , where M is the number of grid points in a
unit area. Then from Lemma 4.2, the whole area is full-view
covered by sensors with r = r′+∆r and θ = θ′+∆θ, where
∆r = 1√

N
r and ∆θ = 1√

N
θ, if the grid points are full-view

covered by the same set of sensors with (r′, θ′). Therefore we
have the lower bound shown as above.

C. Probability Estimation for φ < 2π

We use similar technique as above. Note that Lemma 4.1
and 4.2 are the keys to the establishment of the above result.
The rationale behind it is that if the grid points are sufficiently
dense and all full-view covered, then the whole region can be
full-view covered if we slightly enlarge the sensor’s radius
and the effective angle. However, we assumed φ = 2π there,
which means any point V within ∆r to a grid point P can
also been covered by the sensors that cover P , and hence
makes the analysis clean. If φ < 2π, the sensor covering P
may not cover V due to the sensor’s orientation, no matter
how close they might be to each other. A natural solution is
to expand φ′ to φ. However, it is difficult to guarantee a small
bound on the increasing step (α1 in Fig. 10(b)), and if we can
not reasonably bound this value, the error of the estimation
would be large. To overcome this difficulty, we require the
grid points to be full-view covered by sensors which are at
least certain distance (a tiny lower bound) away from it. Then
we can establish similar results as in Lemma 4.1 and 4.2.

Lemma 4.5 Suppose each grid point can be full-view
covered by sensors that are at least rmin distance away and
with parameters r′ = r − ∆r, θ′ = θ − ∆θ, and FoV
angle φ′ = φ − ∆φ, for some predefined (∆r,∆θ,∆φ). If
l ≤ l(∆r,∆θ,∆φ), then any point A is full-view covered by
the same set of sensors with (r, θ, φ). Here l(∆r,∆θ,∆φ) =
min{2∆r,∆φ·rmin}√

3+cot∆θ
.

Proof: We need to show that for any V ∈ A and any
facing direction (vector d⃗), there is a sensor Si such that
∥V Si∥ ≤ r, α(

−−→
SiV ,

−→
fi ) ≤ φ/2 and α(

−−→
V Si, d⃗) ≤ θ, where−→

fi is the orientation vector of Si. We first observe that if

l is as indicated as above, it also satisfies the condition in
Lemma 4.1. So there must be a grid point P such that
∥V P∥ ≤ min{∆r,∆φ · rmin/2} and α(d⃗,

−−→
V P ) ≤ ∆θ.

Moreover, among the sensors that cover P , there must be a
sensor Si such that ∥V Si∥ ≤ r and α(

−−→
V Si, d⃗) ≤ θ. We only

need to show that α(
−−→
SiV ,

−→
fi ) ≤ φ/2.

Note that α(
−−→
SiV ,

−→
fi ) ≤ α1+α2, where α1 = α(

−−→
SiV ,

−−→
SiP )

and α2 = α(
−−→
SiP,

−→
fi ) (Fig. 10(b)). As P is covered by

Si, α2 ≤ φ′/2. From trigonometry knowledge, we know
α1 ≤ tanα1 = ∥V P∥ sin β

∥V P∥ cos β+∥PSi∥ , where β = α(
−−→
PSi,

−−→
V P ).

Notice that ∥V P∥ ≤ ∆φ · rmin/2, ∥PSi∥ ≥ rmin and
sinβ ≤ 1. Therefore α1 ≤ ∆φ/2, and hence α(

−−→
SiV ,

−→
fi ) ≤

φ′/2 + ∆φ/2 ≤ φ/2.
For any point V ∈ A, let Crmin

V denote the event that V
is full-view covered by sensors which are at least rmin(< r)
distance away.

Lemma 4.6 Given N sensors with (r′, θ′, φ′) uniformly
distributed in region A, the probability for a given point V to
be full-view covered by sensors at least rmin(< r′) away is

Pr(N, rmin, r
′, θ′, φ′) , Pr[Crmin

V ]

=
NX

s= π
θ′

�
N

s

�
ps(1− p)N−s

sX
k= π

θ′

�
s

k

�
qk(1− q)s−kf(k, θ′),

where π/θ′ is the abbreviation for ⌊π/θ′⌋,p = π(r′2 − r2min),
q = φ′/2π, and f(k, θ′) is as in Lemma 4.3.

Proof: First note that given a sensor Si with rmin ≤
∥V Si∥ ≤ r′, since its orientation vector is uniformly dis-
tributed in [0, 2π), the probability that V is covered by Si

is q. Also note that the probability that a sensor falls into the
closed strip, with r′ as outer radius and rmin as inner radius,
is p. The meaning of f(k, θ′) is the same as in Lemma 4.3.
By combining these together, we have Pr[Crmin

V ] as shown
above.

Now we can give a lower bound of the probability that A
is full-view covered.

Theorem 4.7 Given (r, θ, φ), the probability that region A is
full-view covered by N uniformly distributed sensors is lower
bounded by Pr(N, r√

N
,
√
N−1√
N

r,
√
N−1√
N

θ,
√
N−1√
N

φ)M , where
Pr(N,w, x, y, z) is given by Lemma 4.6, M = ⌈ 8√

3
l−2⌉ and

l = l( r√
N
, θ√

N
, φ√

N
) is given by Lemma 4.5.

Proof: From Lemma 4.5 and 4.6, this can be proved by
following the same argument as in Theorem 4.4.

V. SENSOR DENSITY ESTIMATION FOR FULL-VIEW
COVERAGE IN DETERMINISTIC DEPLOYMENT

Deterministic deployment is the best way to achieve full-
view coverage in a controlled environment, e.g., in indoor
surveillance where camera sensors can be placed at any
place as required. In traditional disk model, triangle lattice
based deployment is proved to be optimal in terms of sensor
density [13]. In this section, we construct a deployment pattern
for full-view coverage based on triangle lattice. We show a
necessary and sufficient condition on the grid length such that
the whole area can be full-view covered. Based on that, we
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Fig. 12. Necessary condition for triangle lattice: (a) θ ≥ π/6; (b) θ < π/6.

derive an estimation on the sensor density needed for full-
view coverage in the triangle lattice based deployment and
show that it is at most a factor from the optimal deployment
pattern.

A. Triangle Lattice

The triangle lattice is constructed as follows. First we place
⌈2π/φ⌉ sensors together on a single point and let them face
different directions to form a single node with φ = 2π. Then
we place the sensor nodes on the vertices of the equilateral
triangles with grid length l. Region A has unit area and it is
assumed to be sufficiently large compared with r and hence
we ignore the boundary effect in deployment.

B. Density Estimation for Triangle Lattice Based Deployment

The grid length l of the triangle is critical. If it is too large,
there will be points not full-view covered. If it is too small,
the deployment density and hence the cost may be too high.
Given the sensor radius r and the effective angle θ, we want
to calculate the best l such that every point in A is full-view
covered.

Actually if we replace (∆r,∆θ) by (r, θ) in Lemma 4.1,
we immediately have a sufficient condition on l.

Lemma 5.1 Suppose sensors are deployed on the vertices
of the triangle lattices with grid length l. Given (r, θ), if l =
l(r, θ) = 2r√

3+cot θ
, then every point in A is full-view covered.

Proof: This is a direct result from Lemma 4.1.
In fact, this is also a necessary condition for full-view

coverage in the triangle lattice based deployment.
Lemma 5.2 If region A is full-view covered, the grid length

should be no smaller than l = l(r, θ) = 2r√
3+cot θ

.
Proof: There are two cases: θ ≥ π/6 and θ < π/6. If θ ≥

π/6, consider the situation in Fig.12(a). M is the intersection
point of EG and the boundary of the unsafe region of C,D,
which is a portion of the circle centered at OC,D. Let V be a
point on the segment EM and with distance ϵ(> 0) to M . Let
r′ = ∥EV ∥. Since V is in the unsafe region of C,D, which
means ∠CV D > 2θ, there must be a grid point P such that
either ∠CV P < 2θ or ∠DV P < 2θ and P can cover V . This
can only happen if r ≥ r′ (and hence P is E) because if not,
there would be no grid point between line V C and V D which
can cover V . Let ϵ → 0 and hence r → r′ = ∥EM∥, which
implies the critical value of l.

If θ < π/6, consider the situation in Fig.12(b). In this case,
the boundary of the unsafe region of C,D intersects with line
EC on H and intersects with line DG on B. First we notice
that H is also the intersection point of the boundary of the
unsafe region of E,D and line EC. In fact, if we denote
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Fig. 13. Number of sensors in triangular lattice based deployment.

this intersection point by H ′, then ∠EH ′D = 2θ according
to Lemma 3.3. Similarly, ∠EHD also equals to 2θ. Since
H and H ′ are on the same line, they are the same point.
Then since HE is parallel to BD, ∥HB∥ = ∥DE∥, which
further equals to ∥CD∥ and ∥CG∥. Thus polygon HCGB
is a parallelogram, which means ∥HC∥ = ∥BG∥. From this,
we know △HCF and △BGE are congruent triangles, which
means ∥HF∥ = ∥BE∥. By a similar argument as in the above
case, we know that if r is smaller than ∥HF∥, there is a point
sufficiently close to H such that it is not full-view covered.
Now consider the case when θ → 0. This implies ∥HF∥ =
∥BE∥ → ∥BG∥ and ∥BG∥ → ∥EM∥(→ ∞), which further
implies ∥HF∥ = ∥EM∥ and hence we have the critical value
of l.

From the critical value of l obtained above, we calculate
the required sensor density for the triangle lattice based
deployment. We compare it with other possible deployment
patterns.

Theorem 5.3 Given (r, θ, φ), the sensor density for the
triangle lattice based deployment is π

φ|Al| which is no more

than θr2

2|Al| of the density of any other deployment patterns.

Here |Al| =
√
3r2

3+2
√
3 cot θ+(cot θ)2

, which is the area of a
equilateral triangle with side length l.

Proof: First, from Lemma 5.1 we know l and hence the
area of each triangle with side length l, which is exactly |Al|
shown as above. Then note that each triangle has 3 vertices,
and each vertex is the intersection point of 6 triangles. Thus
the total number of grid points in a unit area region is |A|

|Al| ·
3
6 =

1
2|Al| . Thus the total number of sensors needed is 2π

φ · 1
2|Al| =

π
φ|Al| .

On the other hand, for any deployment patterns, each point
in A should be covered by at least π/θ sensors. Note that each
sensor can only cover φr2/2 area of A, which is the area of
the sensing sector. Thus the total number of sensor needed is
at least π/θ

φr2/2 = 2π
θφr2 .

Finally, the ratio of the above two values yields the bound
on the scaling factor in the theorem.

Figure 13 is an illustration on the number of sensors
needed for full-view coverage in an 100m×100m field when
triangular lattice based deployment is used (θ is from π

6 to π
3 ,

for r = 5, 10, 15 and φ = 2
3π, 2π respectively).

C. Discussion

Finally, we make some remarks on the orientation of
camera sensors. In practice, some high power cameras may
periodically rotate around, and hence cover more area than
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Fig. 14. Density vs. Probability: r = 5 (left) and r = 25 (right).
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Fig. 15. Percentage vs. Density: r = 5 (left) and r = 25 (right).

static cameras. If the rotation time is negligible compared with
the object’s moving speed, the camera can be considered as
having 2π FoV angle, and hence our results in this section
and Section IV-B can be applied directly. If the rotation time
is non-negligible, coverage delay may become another factor
that have impact on the quality of coverage [24]. Further study
is needed to understand the performance regarding the effects
of both viewing direction and coverage delay.

VI. SIMULATION AND NUMERICAL RESULTS

In this section, we show some simulation results on full-
view coverage. The purpose of the simulation is two-fold. First
we want to validate the theoretical results on sensor density
estimation for full-view coverage. Second we want to have a
pictorial view of the relationship between sensor density and
the percentage of full-view coverage.

A. Simulation Setup

The target field A is a 100m×100m square region. We use
two settings for sensing radius: r = 5m and r = 25m. In both
cases, we deploy the sensors in the field with area of (100 +
2r)m× (100 + 2r)m to circumvent the boundary effect. The
difference is that when r is 5m, it is much smaller compared
with the side length and hence the deployment field is almost
the same as A. But if r = 25m, it is comparable to the side
length and hence the density results (both in the simulation
and theoretical estimation) are for the enlarged deployment
field. The FoV angle is fixed to be φ = π/3, and we use
three values for the effective angle, i.e., θ = π/6, π/4, π/3
(or 30, 45, 60 in degree) respectively.

In the first part of the simulation, we vary the number of
sensors from 10000 to 90000 for r = 5m, and from 1000
to 6000 for r = 25m, to observe the full-view coverage
probability. We adopt the methodology as in [15] to calculate
the probability in simulation. Each experiment is run 100
times, and the results are averaged. As comparisons, we also
give the theoretical estimation for each configuration. Note r
is normalized to 0.05 and 0.25 respectively.

In the second part of the simulation, we vary the number
of sensors from 4000 to 40000 for r = 5m, and from 200
to 2000 for r = 25m, to observe the percentage of full-view
coverage. The percentage of full-view coverage is defined to
be the percentage of points that are full-view covered. Each
result shown here is the statistical average of 100 experiments.

B. Simulation Result Analysis

Figure 14 shows the results of the sensor density under
different probability requirement for full-view coverage. We
use x-axle to denote the probability and y-axle to denote
the sensor density. The results shown here are for probability
requirement above 0.9, which would be of more interest in
practice. The sensor density is normalized by dividing the total
number of sensors by the target field’ area. The results shown
here are for r = 5 and r = 25. In both cases, the sensor
density needed for full-view coverage increases as the required
probability increases, although the density for r = 25 is much
lower than the density for r = 5 (reflected by the range on
y-axle). The theoretical results (indicated by ‘estimate’ in the
figures) serve as upper bounds for the real densities (indicated
by ‘simulation’ in the figures) in all cases, which means as
long as the sensor density reaches the theoretical bound, the
coverage probability is guaranteed. Moreover, the theoretical
bounds are very close to the real deployment density. The
difference becomes even smaller as the required probability is
higher. This further validates the theoretical estimation.

Figure 15 shows the results on the percentage of full-view
coverage under different sensor densities. The percentage of
full-view covered points increases very quickly as the sensor
density increases. By comparing this figure and Figure 14,
we can see that although the density needed to achieve full-
view coverage for the whole target field may be high, the
density needed for a high percentage (but not 100%) of full-
view coverage is much lower. For example, when θ = π/4
and r = 25, 90% of the field is full-view covered when the
density is around 0.1 (1000 sensors). But if we want to achieve
full-view coverage for the whole area with probability 0.9, the
density should be above 0.25 (2500 sensors).

VII. RELATED WORK

Coverage problem under disk sensing model has been
studied extensively in the past few years. More comprehensive
surveys on coverage detection (verification) methods can be
found in [1], [9]. Here we only review the most relevant work.
In [11], it is shown that an area is k-covered if and only if the
perimeter of all sensor’s sensing range (disk) is k-covered.
A polynomial-time detection algorithm has been proposed
based on this perimeter coverage property. In [6], the idea
of perimeter coverage has been developed into a distributed
protocol in which no location but only distance information
is assumed to be known by the sensors. Based on the same
assumption, Kasbekar et al. [12] show that the target field is
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k-covered if the intersection points of the perimeter of any
two sensors’ sensing disks are k-covered. They also present
a distributed protocol which schedules the sensors to prolong
the lifetime of the network with coverage guarantee. Another
direction on coverage detection is to utilize the property of the
Voronoi Diagram. Some interesting works are [10], [22], etc.

Sensor density estimation for k-coverage has been studied
in [14], [25]. In [14], three kinds of deployments, square grid,
uniform distribution and poisson distribution, are considered.
Each sensor is assumed to work with probability p. Critical
condition on the relationship among the number of sensors,
sensing radius and the working probability (p) for the target
field to be almost surely k-covered has been established. As
people realized that requiring the whole target field to be k-
covered (full coverage) is not always necessary, various models
on partial coverage are proposed. Barrier coverage [14] and
trap coverage [5] are two such variants. In barrier coverage,
the sensing disks of the active sensors form a strip zone which
serves as a barrier, and any object crossing the target field
is supposed to be detected by the sensors on the barrier. In
trap coverage, coverage holes are allowed to exist as long
as the diameters of the holes are bounded. Sensor density
estimation for these coverage requirements are derived [14],
[4], [16], [5]. The optimal deterministic deployment pattern
for 1-coverage is based on triangle lattices, which has been
proved in [13]. One of the latest results on achieving both
coverage and connectivity in deterministic deployment under
disk model can be found in [3].

The above studies under disk coverage model inspire our
work in this paper. The major difference between theirs and
ours is that full-view coverage requires consideration of three
factors: the distance between the point and the sensor, the
viewing direction of the sensor, and the orientation of the
sensor, while in disk model, only the distance needs to be
considered. All these issues make the full-view coverage
problem much more complicated and challenging.

VIII. CONCLUSION

Camera sensor network has drawn much attention in the
research community due to its huge potential in many ap-
plications. One fundamental research issue in camera sensor
network is how to define coverage. Since traditional disk
sensing model does not address the issue of viewing direction,
which is intrinsic to camera sensors, we introduce a novel
model called full-view coverage. A target field is said to be
full-view covered if for any point V and an arbitrary facing
direction (i.e., a vector d⃗), there is always a sensor Si such
that V is in Si’s sensing range and the angle between d⃗ and
the direction vector

−−→
V Si is smaller than a predefined value θ.

With this model, we propose an efficient method for full-view
coverage detection in any given camera sensor network. We
also derive a sufficient condition on the sensor density needed
for full-view coverage in a random uniform deployment.
Finally, we show a necessary and sufficient condition on the
sensor density for full-view coverage in a triangular lattice
based deployment.

The results in this paper can be used to evaluate the coverage
of any deployed camera sensor networks where a deterministic
guarantee on the detection result is desired, and the results also
provide a guideline for real deployment of large scale camera
sensor networks.
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