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ON FULLY DISCRETE GALERKIN APPROXIMATIONS
FOR PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS

OF PARABOLIC TYPE

NAI-YING ZHANG

Abstract. The subject of this work is the application of fully discrete Galerkin
finite element methods to initial-boundary value problems for linear partial
integro-differential equations of parabolic type. We investigate numerical
schemes based on the Padé discretization with respect to time and associated
with certain quadrature formulas to approximate the integral term. A pre-
liminary error estimate is established, which contains a term related to the
quadrature rule to be specified. In particular, we consider quadrature rules
with sparse quadrature points so as to limit the storage requirements, without
sacrificing the order of overall convergence. For the backward Euler scheme,
the Crank-Nicolson scheme, and a third-order (1,2) Padé-type scheme, the
specific quadrature rules analyzed are based on the rectangular, the trapezoidal,
and Simpson's rule. For all the schemes studied, optimal-order error estimates
are obtained in the case that the solution of the problem is smooth enough.
Since this is important for our error analysis, we also discuss the regularity of
the exact solutions of our equations. High-order regularity results with respect
to both space and time are given for the solution of problems with smooth
enough data.

1.  INTRODUCTION

The main purpose of this work is to formulate and study fully discrete
Galerkin finite element approximations of solutions of initial-boundary value
problems for linear partial integro-differential equations of parabolic type. The
emphasis will be on discretization with respect to time.

Let Q be a bounded domain in Rd with sufficiently smooth boundary dSi,
and let 0 < t° < oo. We shall consider equations of the form (ut = du/dt,
J = (0,t0])
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134 NAI-YING ZHANG

ut(x, t) + Au(x, t) =   /  B(t, s)u(x, s)ds + f(x, t)
Jo

(1.1) = Bu(x,t) + f(x,t),        (x,t)£SixJ,
u(x,t) = 0,     (x, t) £dSix7,
uix, 0) = uoix),     X £Si.

Here, A is an elliptic operator of the form
d

A=-Exé¡(aijix)-k)+ao{x)I'

where the matrix (a,;(x))f =1 is symmetric and uniformly positive definite,
and aoix) is nonnegative on Si. Further,

B(t,s)= Y -q7. [bij(x\t,s)—)+YbAx\t,s)— + bo(x-,t,s)I
i,j=l      ' ^ I'      7=1 J

is a partial differential operator of at most second order. We shall assume that
the coefficients a^ix), aoix), è,v(x ; t, s), bjix ; t, s), boix ; t, s), and / =
fix, t) are real-valued functions, sufficiently smooth for our purposes.

Such problems and variants of them arise in various applications, for in-
stance, in models for heat conduction in materials with memory, the compres-
sion of poro-viscoelastic media, reactor dynamics, the compartment model of a
double-porosity system, and epidemic phenomena in biology. We refer to [12,
13, 16] for detailed lists of references.

Denote by (• , •) the standard inner product in L2 = L2(Si) and by A(- , •)
and B(t, s; • , •) the bilinear forms on TTq'xTTq1 = 7701(i2)x7701(Q) correspond-
ing to A and B(t, s), respectively. We write problem (1.1) in variational form
as

(ut,v) + A(u,v)=  /  B(t,s;u(s),v)ds + if,v)
Jo

= B(u(t) ,v) + if,v),        v £ 770',  t £ J,
W(0) = Mo •

We shall now turn to Galerkin finite element approximations of problem
(1.1). Let {Sn} be a family of finite-dimensional subspaces of 77q parametrized
by a small positive parameter h. We first pose the analogue of the problem
above on the subspace Sn to get a spatially discrete problem

iuh,t,x) + Aiuh,x)=  \ Bit,s;u„is),x)ds + if,x),
(1.2) Jo
{     ' X£Sn, t£j,

uh(0) = Uoh £Sh.
We assume that {Sn} possesses the standard approximation property such that,
for some fixed integer r > 2, we have

(1.3) mf{\\u-x\\ + h\\u-x\\i}<Chs\\u\\s,        u £ H0X nHs,   I < s < r,
x&sh
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FULLY DISCRETE GALERKIN APPROXIMATIONS 135

where || • || and ||-||i are the usual norms in L2 and 77q , respectively, and
771 = HsiSi) is the standard L2 Sobolev space of order s with norm || • ||j •

It was shown in Thomée and Zhang [ 14] that, for the semidiscrete problem
(1.2) with properly chosen approximate initial data u0n , we have the error
estimate

(1.4) \\Un(t)-u(t)\\<Chri\\Uo\\r +J   \\ut\\rds\ , t£j,

which is formally the same as that for the corresponding purely parabolic prob-
lem (B = 0).

The main purpose of this paper is to further discretize equation (1.2) with
respect to time. A natural way to do this is to replace unt by a backward
difference quotient and apply a quadrature rule to the integral term. We consider
such a scheme first.

Let A > 0 be the stepsize in time and t„ = nk. Further, let dtUh" =
(Uf¡ - U¡¡~x)/k and let {conj \ 0 < j < n, t„ £ J} be a family of quadrature
weights such that, for tpJ = <p(tj), we have

""' rl"
on(<P) = Yœ"J^J ~ /    <P(s)ds,        tn£j.

j=0 J°

We then obtain what we shall refer to as a backward Euler type scheme,
n-l

(dtunh, x) + A(unh ,x)=Y œ"JB^" > 0 ; Uh ' x) + (f(tn), X),
(1.5) >=°

X £ Sh ,  tn£J,

Un - Uoh £ S„ .
A natural candidate for the quadrature formula is the rectangular rule, whose

quadrature weights are a>nj = k . However, to then calculate U¡¡, we must use,
and thus store, all the previous values of the solution, Ujj, ... , Uhn~x ; hence, a
vast amount of memory will be needed. More precisely, to compute Ufi , t„ £
J, the solution needs to be stored at [t°/k\ time levels. This becomes a major
obstacle in practical calculations. Another disadvantage of the rectangular rule is
that it requires a large amount of computation. Thus the number of time levels
used in the quadrature will be one of our key criteria in choosing quadrature
rules in this work. One way to reduce the storage requirement significantly is to
employ quadrature formulas with high-order truncation error, so that a larger
stepsize, or fewer quadrature points, may be used, without losing the order
of accuracy of the scheme. We will propose quadrature rules based on the
trapezoidal rule and on Simpson's rule. We shall therefore focus our attention
on a class of quadrature rules whose quadrature weights {co„j} are dominated
by some weights {(Oj), i.e., \co„j\ < w}■, 0 < j < n , t„ £ J, with YljZo wj ^
C, t„ £ J. This class contains not only the rectangular rule, but also other
rules with some special features.

A second way to approximate the solution of problem ( 1.1 ) is to apply higher-
order discretization in time, so that fewer time steps are taken in the calculation
for the same accuracy. As a first example of this, we consider a Crank-Nicolson
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136 NAI-YING ZHANG

type scheme,
n-l

(dtUhn , X) + A<JJ¡, X)=Y UnjB(tn-X,2 , tj i UJh , X) + (f(tn-l/l) , X) ,
(1.6) J=°

X£Sh,  tn£J,

T¡h = Uoh £ Sh ,

where Ü» = (Ug + Unh~x)/2 and i„_1/2 = (f„ + r„_i)/2.
Keeping these two schemes in mind, we move the discussion to a more general

setting, in which we use time-discrete schemes based on Padé approximation of
order p . We will establish a preliminary error estimate

\\Uhn - uit„)\\ < Ciu){hr + kp + Uglobal quadrature error||},        tn £ J,

where the so-called global quadrature error is a term whose order of convergence
is determined by that of the basic quadrature error q'(<p) = o'(<p) - ¡¿' <p(s) ds,
i = I, ... , n . For schemes based on the backward Euler, Crank-Nicolson, and
the third-order (1,2) Padé approximation, we choose appropriate quadrature
formulas so that the overall error bound reads

\\Uhn-u(tn)\\<C(u){hr + kp}, tn£J.

The error estimates we obtain, however, will demand high regularity of the
solution of (1.1), particularly when using rules with high-order truncation error.
For instance, Simpson's rule requires that J0' \\ut\\rds and J0 ||Z)4M||fi?i be finite.
Since the regularity of the solution is of such importance for our numerical
methods, and since some of the desired high regularity results with respect to
both space and time are not available in the literature, we devote some effort to
showing such regularity under appropriate conditions on the prescribed data.

The first contribution to the numerical solution of integro-differential equa-
tions of parabolic type known to the author was made by Douglas and Jones [6]
in the 1960's, using the finite difference method. The analysis of finite element
methods for partial integro-differential equations of parabolic type has become
an active research area only recently. Yanik and Fairweather [ 16] studied fully
discrete Galerkin finite element approximations to the solutions of a nonlin-
ear partial integro-differential equation whose integral term contains at most
first-order derivatives in space.

Sloan and Thomée [10] considered the discretization in time of a general
integro-differential equation in an abstract Hubert space setting, where A is a
selfadjoint positive definite operator and B(t, s) = k(í , s)B. Here, B is an
operator satisfying ^"'TtyH < C\\tp\\, (p £ D(B), independently of time, and
K(t, s) is a scalar function. In order to reduce the memory and computational
requirements of these methods, they first proposed the application of quadrature
rules with relatively higher-order truncation error. The backward Euler type
scheme with a quadrature formula based on the trapezoidal rule, and the Crank-
Nicolson type scheme based on Simpson's rule were analyzed in detail.

As we have mentioned before, time-continuous spatially semidiscrete Galer-
kin approximations to problem (1.1) have been examined by Thomée and Zhang
[14]; optimal-order error estimates (1.4) were given. (An alternative proof of
this result by means of a nonconventional projection can also be found in Can-
non and Lin [4] and in Lin, Thomée, and Wahlbin [8].)
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FULLY DISCRETE GALERKIN APPROXIMATIONS 137

Comprehensive surveys of the development of this subject are given by
Thomée [12, 13].

The present work is based in an essential way on the ideas of Sloan and
Thomée [10], and may be considered as an attempt to further develop the results
obtained there, and to carry over the results obtained in [14] for the semidiscrete
problem to completely discrete schemes. The rest of this paper is organized as
follows.

Section 2 is devoted to the existence, uniqueness, and regularity of solu-
tions of integro-differential equations of parabolic type, with emphasis on re-
sults needed in our analysis of numerical schemes. We show that the solution
of the initial-boundary value problem (1.1) has any desired degree of regularity
in both space and time, if the prescribed data satisfy the appropriate regularity
and compatibility conditions.

In §3, as a preparation, we first introduce a concept called Ek-stability and
present two sufficient conditions for this. We then give a preliminary error
estimate for the fully discrete Galerkin approximation. Finally, we present a
bound for the global quadrature error which appears in this estimate and will
be recalled frequently afterwards.

Based on these results, we study in the last three sections some concrete
quadrature formulas. In §4 we analyze backward Euler type schemes. We
concentrate on quadrature rules with dominated weights. Several quadrature
formulas are presented and analyzed, with emphasis on how to reduce the stor-
age requirement. Section 5 contains our discussion of Crank-Nicolson type
schemes. This time a class of quadrature rules using so-called persistent domi-
nated weights is considered. Two quadrature rules are given as examples. Sec-
tion 6 discusses the third-order subdiagonal Padé discretization. An overall error
estimate with a third-order convergence rate in time is obtained for a scheme
that employs a modified Simpson's rule to approximate the integral term and
uses a starting procedure to calculate the first two time steps of the solution.

2. Existence, uniqueness, and regularity

The purpose of this section is to show existence, uniqueness, and regularity
of the solutions of integro-differential equations of parabolic type, primarily as
groundwork for our analysis of numerical methods. A review of the references
considering problem (1.1) can be found in [1].
2.1. Existence and uniqueness. Let us first define some notation and recall
some results for the purely parabolic case (B = 0) of (1.1) (cf., e.g., Pazy [9]).

Let X be a Banach space. We introduce the Banach space C(X) = {«:/—>
X\ u is continuous} with norm ||m||c(a-) = SUP,67 llM(0IU • For S £ (0, 1), we
let CÔ(X) = {u: J —* X | u is Holder continuous with exponent S} with norm

.. \\u(t) - uis)\\x
tjts, s,t€J I'      Al

We also let CxiX) = {u: J —* X \ u is differentiable and u, £ C(X)} with norm
IMIc'W = IMIc(*) + ll"/||c(X) •

In addition to 771, we shall use the space Hs = Hs(Si) = {v e Hs\Ajv = 0
on dSi for j < s/2) with norm \v\s = \\Asl2v\\. We recall the fact that | • \s
and || • \\s are equivalent on Hs.
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We know that the homogeneous (/ = 0) purely parabolic (B = 0) case of
(1.1) has a unique solution u(t) = E(t)uo for uq £ L2. Furthermore, given
s > 0, we know that, for all uq £ Hs, we have E(t)uo £ C(HS) and

(2.1) \E(t)uo\s < C\uo\s,        t>0.
The following lemma gives a standard existence and regularity result for the
purely parabolic case of (1.1).

Lemma 2.1. Let 0 < S < 1. If f £ Câ(L2) and u0 £ H2, then the initial-
boundary value problem (1.1) with B = 0 has a unique solution

u(t) = E(t)uo + f E(t- s)f(s) ds = E(t)uo + Êf(t)
Jo

such that u £ CX(L2) n C(772) and

(2.2) l|Wr(OII + l"Wl2<C(|Mo|2 + ll/llc^2)), t£j.
The proof follows §4.3 of Pazy [9].
We now carry the above result over to the integro-differential equation (1.1).

For problem (1.1), by the well-known regularity result for elliptic problems that

(2.3) \\tp\\H2 < C\\Atp\\   Vtp£H2,
we have

\\B(t,s)tp\\ + \\B*(t,s)<p\\<C\\A(p\\   VpeTY2,  0 < s < t < t° ,
where B* is the adjoint of B with respect to L2. A direct consequence is
\\B(t,s)A-x\\ <C and \\A~XB(t, s)q>\\ <C\\f\\ Vtp £ H2 , 0 < s < t < t° . The
above is also true if we replace B(t, s) by its time derivatives.

Theorem 2.2. If u0 £ H2 and f £ CS(L2) for some S £ (0,1), then the
problem (1.1) has a unique solution u £ CX(L2) n C(H2). Furthermore,

(2.4) I|W((0II + I"W|2<C(|M0|2 + ||/||^(L2)), t£j.
Proof. By Duhamel's principle, we may write (1.1) formally as

(2 5) u(t) = j E(t-s)Bu(s)ds + (E(t)uo + J E(t-s)f(s)ds)

= Ku(t) + F(t).

If we can prove that (2.5) has a solution u £ C(772), then Bu+f £ CsiLi), and
hence, by Lemma 2.1, u is the unique solution of a purely parabolic equation
that has Bu + f as the right-hand side and u £ CX(L2) n C(H2). Hence, u is
also the unique solution of (1.1). Thus, we shall prove that (2.5) has a unique
solution u £ C(H2) and that (2.4) holds. This will be verified by showing that
(2.5) is a well-posed Volterra-type equation in the Banach space C(H2).

First we notice that, by Lemma 2.1, we have F £ CX(L2) n C(H2) and

(2.6) |F(0|2 <C(|«o|2 +11/ He'd,)).        t£l.
Next we quote from Thomée and Zhang [ 14] that the operator K is bounded
in C(772) and

\Ku(t)\2 <C i \u(s)\2ds,        t£j.
Jo
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Therefore, by the standard argument for the existence of a unique solution
of a Volterra integral equation, we conclude that (2.5) has a unique solution
u £ C(H2) and, in view of (2.6), that

\u(t)\2 < C\\F\\cm < C(\uo\2 + H/llcd«)).        t£l.
Using the integro-differential equation (1.1), we obtain also that, for t £ J ,

\\u,(t)\\ < \\Au(t)\\ + \\Bu(t)\\ + 11/(011 < C\\u\\cm + \\f\\c(Ll)
<C(\U0\2 + II/IICW-     D

2.2. Higher-order regularity. Later in the numerical analysis, we will need
higher-order regularity results for the solution. If we assume that, for some
m > 2, B(t,s): H'+2 -» 77'', 0 < i < m - 2, is bounded together with a
certain number of its derivatives, then by modifying the technique used in the
proof of Theorem 2.2, we can conclude that u £ C(H'+2) provided that the
data wo and / possess certain regularity properties. However, this condition is
unnatural, since these spaces involve boundary conditions associated with A.
In general, we can only expect B(t, s) : H'+2 —► 77'. Therefore, we shall derive
a higher-order regularity result, which basically only requires the boundedness
of B(t, s) in Sobolev spaces without boundary conditions associated with A.

Theorem 2.3. Let u be the solution of the initial-boundary value problem of( 1.1)
and let n > 1 and 0 < S < 1. Assume that

(2.7a) DJ,u(0)£H2nH2{n-J),        0<j<n-l,

and

(2.7b) 7)//€C,5(L2)nC(772<n-J-|)),        0 < j < n - 1.

Then
DJ,U£C(H2{"-J)),        0<j<n,

and
D\u £ C(H2),       0 < ; < n - 1.

Furthermore,
n n-l

Y Hellet//*»-») < c£iid;h(0)||„2<,,-„
(2.8)      Mv       ; n-l n-l

+ CY \\DÍf\\cHL2) + cY\\DJtf\\cm»-^) ■
j=0 7=0

Proof. We shall prove this theorem by induction on n . By Theorem 2.2, we
know that the theorem holds for n = 1. We now assume that it holds for
n = m , m > 1. We shall prove that the theorem is true for n = m + 1 . Thus,
we assume that

(2.9a) £>/w(0) £ H2 n H2(m+x-j),        0<j<m,

and

(2.9b) D\f £ CS(L2) n C(H2(m-j)),        P<j<m.
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Differentiating equation (1.1) formally, we obtain

(2.10) (ut)t + Au, = B(t, t)u + B!,u + f .
We shall write this in the same form as equation (1.1), so that we may use the
induction hypothesis.

We easily obtain

B(t,t)u(t)= \ B(t,t)ut(s)ds + B(t,t)u0.
Jo

Similarly, after changing the order of integration, we obtain

Btu(t) =  / Bt(t,s) /  ut(x)dxds+ / Bt(t,s)u0ds
Jo Jo Jo

=   /   / Bt(t, x) dx u,(s) ds +      Bt(t,s)u0ds.
Jo  Js Jo

Using the above facts, we find

(u,), + Aut=  j (ß(t,t)+ i B,(t,x)dxjut(s)ds

+ (ß(t,t)+ f B,(t,s)dsjUo + f,

= Bxu, + B2u0 + f = Bxut + F.

Let us thus consider the integro-differential equation

/211\ v, + Av = Bxv + F,        t£l,
v(0) = u,(0).

Since the operator Bx = B(t, t) + // B,(t, x) dx is a second-order partial differ-
ential operator, and since, by our assumption, ut(0) £ H2 and F £ CS(L2), we
conclude by Theorem 2.2 that (2.11) has a unique solution v £ C(H2)nCx(L2).
Let U(t) = /q v(s) ds - uq . We find by integrating (2.11) that U is the unique
solution of (1.1). Thus, we obtain immediately that U = u and v = u,, and
hence, by (2.9), we have

DJtv(0) = DJYxu(0) £H2n 772<"'-;>,        0 < ; < m - 1.

Moreover, by the definition of F and (2.9), we have

\\D{F\\cHLl) < \\DJB2uo\\ct{L2) + \\D{+Xf\\a(Ll)

< C\\uo\\„i + \\DJYxf\\ci(Ll),       0 < ; < m - 1,

and

WDjFWcr^-j-o) < C||w0||//2<m-,> + C||D/+7llc(//^-,-l)),        0 < j < m - 1.
Now by using the induction hypothesis, we obtain

D{v £ C(H2{m-j)),    0 < ; < m,        D{v £ C(H2),     0<j<m-l,
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and further

Y PV+I*Hc(jï*--J>) = Y WtVWcm"-}))
7=0 7=0

m—l m—I

<CY WDjvmU^-n + CY \\DJtF\\cHL2)
7=0 7=0

m-l

(2.12) +CY\\DiF\\c(H«-J-»)
7=0

m m

< CYWDium^^-n + CYWtfWc^)
7=0 7=1

m

+ CYWtf\\c(H^-n).
;=i

It remains to show that u £ C(772(m+1)) and to estimate ||K||c(ff2c»+i>) • We
shall accomplish this by showing that u is the solution of a Volterra equation
that is well-posed on C(772(m+1)). We write the original equation as

(2.13) u = A'xBu + A-x(f-ut).

By the regularity result for elliptic problems, we know that A~x : H2m —> 772'OT+1)
is bounded. Thus A~xB(t, s) is an operator bounded in 772(m+1), uniformly
for 0 < s < t < t°. Hence the operator A~XB defined by A~xBu(t) =
¡¿A~xB(t,s)u(s)ds is a Volterra operator in C(772(m+1>).

By (2.12), we have u, £ C(H2m) and by (2.9), / € C(H2m), and hence
A~lu, £ C(772(m+1)) and A~xf £ C(772<m+1)). Therefore, (2.13) is a Volterra
equation in C(772(m+1)) and hence

IMIcfff2«"»-») ^ C\\A~  (Ut - f)\\c(HV'"+V) ̂ C\\Ut\\c(W>") + C\\f\\c(H2'") ■

In view of (2.12), this implies that (2.8) holds for n = m + 1 .   D

From equation (1.1) we obtain D,u(0) = -Auo + f(0). Differentiating (1.1),
we obtain (2.10), and hence

D2u(0) = -ADtu(0) + B(0, 0)u0 + f,(0) = A2u0 - Af(0) + B(0, 0)u0 + f,(0).

Repeating this process, we can express Dju(0) in terms of the prescribed data.
In doing so, we see that the conditions required by Theorem 2.3 also implicitly
contain certain compatibility conditions for the given data at t = 0.

3. Time discretization, stability, and preliminary error estimate

This section is devoted to time discretization of integro-differential equations
of parabolic type. Since we are primarily interested in the discretization of the
time variable, we first discuss an abstract parabolic integro-differential equation
in a Hilbert space, and then turn to the concrete situation of a partial integro-
differential equation of parabolic type in space and time.
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3.1.   Discretization in time.  Let A„ and B„(t, s): Sn —> Sn be defined by

iAhp, x) = Aip, x)   and   (Bh(t, s)p, x) = B(t, s; p, x),        p,X£Sh.
We can thus rewrite the spatially discrete problem (1.2) as

(3 js       un,t + Ahuh=   I  Bn(t,s)uh(s)ds + fn = Bhuh(t) + fh,        t £J,

Uh(0) = Uoh,
where fn = Pnf with Ph: L2 —► S„ being the L2-projector.

In regard to both (1.1) and (3.1 ), we shall thus consider the time discretization
of the following problem on a Hubert space 77 :

ut + Au=  [ B(t,s)u(s)ds + f(t) = Bu(t) + f(t),        t£j,
\3-¿) JO

uiO) = «o,
where A is a selfadjoint, positive definite linear (unbounded) operator in 77
with dense domain DiA) c 77. We shall assume that A has a compact inverse.
It follows that -A generates an analytic semigroup 7s(i) = e~At.

For our later discussion, it is convenient to introduce the following concept:
we say that the doubly parametrized operator Bit, s) is dominated by the oper-
ator A if DiA) c DiBit,s)) = D(B*(t, s)) c 77 for all 0 < s < t < t° , and if
there exists a constant C such that

(3.3)       \\B(t,s)<p\\ + \\B*(t,s)tp\\<C\\A<p\\   Vtp£D(A),  0 < s < t < t°,
where 7T(r, s) is the adjoint operator of Bit, s) with respect to the inner
product of 77. If Bit, s) is dominated by A , one can easily show that

\\B(t,s)A~x\\ <C,        0<s<t<t°,
and

\\A-xB(t,s)<p\\ <C\\<p\\   V<p£D(B(t,s)),  0 < s < t < t°.
We shall assume that B(t, s) in (3.2) is dominated by A , together with some
of its derivatives with respect to t and s.

For problem ( 1.1 ), we have already shown that the partial differential operator
B(t, s) and its derivatives with respect to / and 5 are dominated by A . For
the spatially discrete equation (3.1), we have families of operators {An} and
{Bh(t, s)} . We thus say that a family of operators {Bh(t, s)} is dominated by
{Ah} if there exists a constant C independent of h suchthat

\\Bh(t,s)x\\ + \\B*h(t,s)x\\<C\\AnX\\   VX£Sh,  0 < s < t < t° ,
and similarly for time derivatives of Bh. This implies

\\Bh(t,s)A-x\\<C   and    \\A~X Bhit, s)\\ < C,        P < s < t < t° .
When B(t, s) = y(t, s)A, where y(t, s) is a bounded scalar function, we

have that Bh(t, s) = y(t, s)Ah ; trivially, {B„} is dominated by {Ah}. Further,
when B = B(t, s) is a first-order partial differential operator, then since

11X11? < CA(x , X) = C(AhX , X) < C\\AnX\\ 11*111,
we have

(Bhx,p) = B(x,p) < C\\x\\x\\p\\ < C\\Ahx\\ \\p\\,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FULLY DISCRETE GALERKIN APPROXIMATIONS 143

and hence
\\Bhx\\<C\\Anx\\, XeSn.

Similarly,
\\B*„X\\ <C\\AhX\\, XeSn.

It is now obvious that a family of operators of the form

Bn(t, s) = y(t, s)An + a discrete first-order operator

is dominated by {An}.
When B is a general second-order partial differential operator, it is more

difficult to verify that {Bn} is dominated by {An}. However, we claim that
this is so as long as the standard inverse inequality

(3.4) \\x\\i<Ch-x\\x\\,        X&Sn,
holds for the finite element space Sn ■ To show this, we first recall a lemma of
Thomée and Zhang [14, Lemma 2.1].

Lemma 3.1. Let B(t,s; • , •) be a bilinear form on H¿ x 770' corresponding to
a second-order partial differential operator B(t, s). Then

\\B(t,s;g,A-xf)\\<C{\\g\\+h\\g\\x}\\f\\
for 0 < s < t <7, Vf£L2, g£Hx.

With p, x £ S„ , the above lemma and (3.4) yield

(BnX, p) = B(x, p) < C(\\p\\ + h\\p\\x)\\AnX\\ < C\\p\\ \\A„x\\ -
Since the same argument works for B*h , we conclude that {Bn} is dominated
by {Ah}.

Let us recall a time discretization procedure for the corresponding purely
parabolic problem of (3.2), i.e., with B = 0. More details can be found in [2,
3, 11]. Let r(z) be a rational function approximating the exponential e~z to
order p > 1, i.e., such that
(3.5) r(z) = e~z + 0(zp+x)   forz^O,

and such that

(3.6) |r(z)| < 1    forz>0.

Let t, = t„>; £ [0,t„], i = 1, ... , m, be distinct real numbers, and let
{Si(z)}'jLx = {gn,i(z)}yLx be rational functions which are bounded on z > 0.
We consider a scheme of the form

m

Un = r(kA)Un-x+kYgl(kA)f(tn-x,k),        t„ £ J,
(3-7) ,=I

U° = u0.

By defining Ek = r(kA) and Gkf{tm) = £* i gt(kA)f(tn - x,k), we write (3.7)
in short form as

„a, Un = EkUn-x+kGkf(tn),        tn£J,

(3-8) C/° = Mo.
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We shall apply the above time discretization to the integro-differential equa-
tion and use various quadrature formulas to approximate the integral term. Let
t'n = tn - tik and let o"'T( be a quadrature rule with weights {fc^'j} such that,
for <p £ C([0, i0]) and with tf>> = tpitj),

(3.9) on^i(p) = on^itp) = Y^ñWK f"   '  (P(s)ds.
7=0 Jo

We shall consider the time-discrete scheme
Un = EkU"-x+kGkoniBU) + kGkfitn),        tn£J,

{      } U° = uQ,
where

m n—l

Gko"iBU) = Gko"(B(tn ,-)U) = YgiikA) Y»8*«¿ > 0)^7' •
;=1 7=0

Note that (3.10) is explicit with respect to the quadrature term.
Now we finally turn to our main consideration, the full discretization of

problem (1.1). Applying discretization (3.10) to the semidiscrete equation (3.1),
we obtain the following fully discrete Galerkin scheme:

Uhn=EknUh"-X+kGknOn(BnU) + kGk„Phf(tn), t„ £ J ,

( } US = Uon,
where Ekh and Gkn are defined by replacing A by An in the definitions of
Ek and Gk, respectively, and on(BnU) is defined by replacing B by Bn in
on(BU).

In this paper, we shall assume that g¡(z), i = I, ... , m , are real fractions.
The backward Euler discretization (1.5) is of this form with

m = l,     x = 0,     r(z) = ——,     and   giz) =
1 + z' ÔV  '      1 + z'

which has order p = 1. If we choose

1               ,    S         ^-Zß At,                  lm=l,     x = -,    r(z) = ——'-TT, and   giz) =
2'      v ;     l + z/2' 6V ;      l + z/2'

we obtain the Crank-Nicolson discretization (1.6), for which p = 2.

3.2. Stability and Ek-stability. To study the stability of (3.11), we introduce
a concept which we will call Ek-stability. Let {VJ}"~0X, tn £ J , be a sequence
in DiA) and define W" = 7*7/(F) iteratively by

Wn =EkW"-x +kGkoniBV),        tn£j,

w° = o.
A quadrature formula is called Ek-stable if there exist nonnegative {a>j}"~0x ,
t„ £ J, such that ¿~2"Zo œi ^ c and' for any {yj} c D(A) >

n-l

\\F£(V)\\<cY°>j\\rJ\\>     t^J-
7=0
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Moreover, we define Fk"h- and Ts^-stability, respectively, when problem (3.11)
is under consideration, with constant C independent of A. The following
theorem shows the importance of Ek -stability.

Theorem 3.2. If the quadrature formula defined by (3.9) is Ek-stable, then scheme
(3.10) is stable; that is,

m     n

||t/"||<C||M0|| + CA^^||/(ij)||, tn£J.
(=1 7=1

In the proof we need the known discrete version of Gronwall's Lemma.

Lemma 3.3. Let {nn} be a sequence of nonnegative real numbers satisfying
n-l

(3.12) r\n < ßn + Y œi^i   fom>0,
7=0

where <y, > 0 and {/?„} is a nondecreasing sequence of nonnegative numbers.
Then

nn < ßn exp ¡Y œJ)    forn>\.

We give a proof here for the reader's convenience.

Proof of Lemma 3.3. Let S„ = ££¡0 co'rl' • ^ *s sufficient to show that

(3.13) Sn<ßnU*piYco,)-l\ ,       n>\.

We shall use induction to prove this. Since no < ßo, we have

Sx = (o0rio < cooßo < ßo(eWo - 1) < ßx(ew° - 1)

for n = 1. Assume now that (3.13) holds for S,■■, 1 < /' < n . To complete the
proof we shall prove that it holds for S„+x . By definition of S„ and (3.12), we
have

Sn+X -Sn = OJ„n„ < 0)n(ßn + Sn) ,

and hence
Sn+l < OJ„ßn + (l+0}„)S„.

By our induction assumption and the monotonicity of ß„ we then obtain

Sn+l < ßn <COn + (I + OJn) iexp lYœi) - l)  \

= ßn<(l+(o„)explYo>i) - 1 \

< ßn j e"" exp í¿ w, j - 11 < ßn+x íexp l¿ œ,) - 1 j ,

and hence the proof is complete.   G
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Proof of Theorem 3.2. The proof is quite straightforward. Let U" = U" + U2 ,
where we define Uxn, U% £ D(A) by

Uxn = Ek U{n~x + kGkoniBU),        t„£J, subject to £/,° = 0,
and

c/2" = Ek U%~1 + kGkfitn),        tn£j, subject to t/2° = U°.
By (3.6) and some spectral analysis, we have ||7ifc|| = ||r(A/i)|| = supA>0 |r(AA)| <
1, and similarly, \\Gkfit„)\\ <CE™, ||/(?„)|| ; hence,

m m     n

m\\<\\u^-x\\+ck 5]ii/(/n)ii <■■■ <\\uo\\+ckYY\\M)\\>    l"eJ-
(=1 1=1 7 = 1

Therefore, by U" = F"iU) and the Tí*.-stability of this scheme, we obtain

l|cHI<||C/f|| + ||t/2l
m     n n-l

<||f7o|| + CA^^||/(ij)|| + C^^||^||,        tn£J,
i=l 7=1 7=0

which leads to the conclusion by using Lemma 3.3.   D
3.3. Some sufficient conditions for Ek-stability. The Ek-stability of a scheme
is important not only to prove the stability of the time discretization, but also to
obtain error estimates. We now give some sufficient conditions for a quadrature
formula to be Ek -stable.

We say that a quadrature rule has dominated quadrature weights {ojj¡} if
there are weights {co¡} such that |w7,| < co,■, 0 < /, < t¡ < t° , and Ylllo a)' -
C, tn £ J . If the time-stepping is based on the subdiagonal Padé approxima-
tion, i.e., r(z) = p(z)/q(z), where both p(z) and q(z) are real polynomials
with degp < deg<?, then our first theorem shows that the domination of the
quadrature weights is sufficient for Ek -stability.

Theorem 3.4. Let the time-stepping be based on the subdiagonal Padé approxi-
mation and accurate of order p = 1. Assume that B(t, s) is an operator such
that the D\B, i = 0, I, are dominated by A . If the quadrature rule defined by
(3.9) has dominated weights {oi„,}, then the quadrature rule is Ek-stable.

For subdiagonal Padé approximation, we shall assume throughout this paper
that |r(z)| < 1 for z > 0. A fact that we shall use in the proof is that, in this
case, the generated time-stepping procedure is known to have the smoothing
property [11], i.e.,
(3.14) \\AEnk\\<Ct~x,        tn£J.
Proof of Theorem 3.4. Without loss of generality, we assume m = 1 . Denote
g(kA) by Gk and t¡ - xk by tj for short. To estimate Fk(V), we split it as

n 7-1

F^kYK^kY^i^^t'j^t^-BiH^tiW'
7 = 1 /=0

n 7-1
+ kY Enk~'GkA Y cOj.iA-xBit'n , ti)V¡

j=1 ;=0
= I + II.
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Since Bt is dominated by A, we have

\\A-xiBit'j, t,) - Bit'n , U))<p\\ < Citn - tj)\\<p\\,        <p £ DiA),

and hence, by the smoothing property (3.14) of Ek , we obtain

n 7-1

||I|| < CkYitn - tj)-1Ylo»iU~\B(fjttt)-B(t'H,tt))Vl\\
7=1 ¡=0

<CkY(tn-tj)-X(tn-tj)Y^Wl\\<CY0Ji\\V'\\.
7=1 (=0 ;'=0

It remains to estimate II. Changing the order of summation, we have

II= E \k E a>l,fikEl~iA\ A-xB(t'n,t,)V
(3.15) /=1 V  J=i+X I

n

= YGmA-'Bit'^uW1.
i=i

By spectral analysis, we obtain

\\Gni\\ < CcoiSxxpYkX\r(kX)\"-J\g(kX)\ < Ceo, sup  kig^[ .
x>o —^ a>o 1 - \rw\

Set s(X) = A|g(A)|/(l - |r(A)|). Since |r(A)| < 1 for A > 0, we need only bound
s(X) as A —► 0 and A —> +oo. By (3.5), it easily follows that \s(X)\ < C as
A —> +oo. Furthermore, since deg(p) < deg(q) and |Ag(A)| is bounded, we
obtain |s(A)| < C as A —> 0. Altogether, we obtain ||t7„,-|| < Cco¡, and so

n-l n-l

nun<cYui\\A~XB(tn,ti)v\\ <cY^iWñi- °
i=0 1=0

Besides what has been discussed above, there are other time-stepping proce-
dures that do not have the smoothing property, for instance, the Crank-Nicolson
discretization. Let us consider the class of time discretizations that are strictly
accurate of order p = 1, i.e.,

m

(3.16) riz)-l = -zYsM-
i=\

For more discussion on this, we refer to Thomée [11, Chaps. 7 and 8] and the
references therein. For simplicity, we shall restrict ourselves to the case m = 1 .

For a quadrature formula with dominated weights {cu,}, if the dominated
weights satisfy

n-l

(3.17) Y \<*>j+x,i -03jj\<Cco¡,        0 < i < n - 1,  t„ £ J,
7=1+1

we say that the quadrature rule has persistent dominated quadrature weights.
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Theorem 3.5. Let the time discretization be strictly accurate of order p = 1 and
m = 1. Assume that B and B, are dominated by A. If the quadrature rule
defined by (3.9) has persistent dominated weights {œnj}, then the quadrature
rule is Ek-stable.
Proof. In this proof, let us denote oj •x by a'', and tj - xk by i; for short.
Since the time discretization is strictly of order 1, we have Gk = g(kA) =
~iEk - I)A~x/k , and therefore, by summation by parts, we obtain

mV) = kYEnk-}Gko?iBV) = -YiEnk-}+x-E"k-])A-xoi'iBV)
7=1

n
7 = 1

= -YEk~J(aJ+l' - of)(A-xBV) + (E^o"'(A-xBV) - ax ' (A~x BV))
7 = 1

= 1 + 11.
By the stability of Ek , since B is dominated by A , and since the quadrature
formula has dominated weights, we obtain immediately

||II|| < YcOiWA-iBit'^tiW'W < C¿u),|IH|.
!=0 1=0

It remains to estimate I. We split I into three terms as follows:
n-l /   7 7-1 \

I= -J2E"k~JA~l [Ya>j+i>iBVj+x,u)vi-Y<aiiBVi>ti)yi)
7=1 \/=0 1=0 /
n-l

= -YK'JA'^J+ujB(t'J+i,tj)vj
7=1

- YK~JA~l \Y>i+\,i - 0)joBit'j+x, t,)V>)
7 = 1 \l=0 /

n-l /7-1 \

7=1 \/=0 /
= I, + I2 + I3 .

In a manner similar to the estimate of II, we obtain
n-l

l|iill<c$>jH|.
7=1

Since Bt is also dominated by A , we have

\\A-i(B{fj+l,ti)-Bifj,ti))9\\ =
t

A~xBt(x, ti)dx(p

<CA|M|,        t'j,t'J+x £J,  U£J,
for <p £ D(A), and hence

Pall < ckYYmWV'W < cY^iWW.
7=1  1=0 1=0
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Changing the order of summation, and using our assumption that the quadrature
rule has persistent dominated weights, and that B is dominated by A , we have

III2I
n-2 n-l
Y Y Enk-j(a)j+x,,-(Oji)A-xB(t'J+x,ti)V'
í=0 7=1+1

^ CE f E \o>j+i,i-Vji\) Il H < c|>||H|.
¡=0   \7=i+l / 1=0

These estimates lead to
n-l

||I||<C2>,||K'||.   □
1=0

Clearly, the above results hold also for is*./,-stability.

3.4. A preliminary error estimate. This subsection will prepare us for our later
discussion of the error estimate for fully discrete Galerkin approximations. Let
us introduce an auxiliary approximate solution U¡¡ £ Sn obtained by applying
the discretization method (3.8) to a purely parabolic equation with right-hand
side (Bu + f)(t), i.e.,

Unh = EkhUnh-x +kGkhPh(Bu + f)(t„),        tn£J,

U¡ = Uon -

We shall denote the basic time-stepping error by

(3.18) ên = Ûnh-u(tn),

which has been well studied in the literature (see Thomée [11] and the references
therein).

Denote by qn''(<p) the basic quadrature error, i.e.,

qn(<p) = q"^((p) = q"'\tp) = an^(<p) - f" <p(s)ds.
Jo

We define the local quadrature error

q"(Bh<p) = qn'x'(Bhtp) = on^(Bn<p) - ['" Bh(tn , s)tp(s) ds
Jo

and the global quadrature error

Q"kh(<p) = kYE"kh-JGkn<lJ(Bn<p)

(3.19) 7=1
n

= kYEnk;JYsi(kA)QJ'Tl(Bn<p).
7 = 1 1=1

We shall frequently make use of the elliptic projector Rn : H0X —> Sn defined by

A(R„tp ,x) = A(<p,x),        V £ H¿ ,  x £ Sn ,
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which has the well-known approximation property

(3.20) \\iRh-I)u\\ + h\\iRh-I)u\\x<Chs\\u\\s,        l<s<r.
For {(pj}nj=o , we write \\\<pn\\\ = max0<;<„ H^'H.

We shall now give a preliminary error estimate, in which only the basic time-
stepping error and the global quadrature error remain to be specified.

Theorem 3.6. Let u be the solution of the initial-boundary value problem in
(1.1), and let U£ be the approximate solution given by the scheme (3.11) using
a time-stepping strictly accurate of order p = 1 and a quadrature formula defined
by (3.9). Let ên be the basic time-stepping error and Qkn the global quadra-
ture error defined by (3.18) and i3.19), respectively. Assume Bh and BnJ are
dominated by An . If the quadrature rule is Ekn-stable, and if

II "On ""oil < Chr\\Uo\\r,
then, for tn £ J,

\\U£ - Uitn)\\ < Chr jllMollr + f" ||«/(*)||r ¿s} + C\\\ê"\\\ + C|||(&(ÄAu)||| .
Proof. We write

(3.21) e" = iUnh - Ug) + fit - uit„)) = Zn+e\
where Z" £ Sn is the only term that needs to be estimated. Following Wheeler
[15], let 8" = U¡¡ - R„uit„). Then, by definition, we have

Z" = Ti^Z"-1 + kGkhoniB„U) - kGknPhBuitn)
= EknZ"-x +kGkhoniBh8) + kGkh(on(B„Rnu) - BhRhu(tn))

+ kGkh(BhRhu(tn)-PhBu(tn))
3

= Ekhz"-l + Yh>      t„£J,
7=1

z° = o.
We now split Z" further into Z" = Zf + Z2" + Z3" , where Zf = EkhZf-x +1,,
t„£ J, and Zf = 0. By the /^„-stability of the quadrature rule, we have

n-l

(3.22) HZfll = \\Fk»nid)\\ < CY^Wh        tn £J.
i=0

By the definition of the global quadrature error, we have

ZÏ = QnkniRhu),        tn£j.
Assuming for a moment that

(3.23) ||Z3"||<CAr{||Uo||r + y"||M/||rrfj}, tn£J,

we obtain

||Z"|| < Chr jllMollr + £ \\U,\\rds} + ||ß2Ä(üA«)|| +CY<»jW\\ >
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and hence, for t„ £ J,

|0"||<CA'-j||«ol|r + jf'"||«t(i)||r}

+ \\\ên\\\ + \\\Qh(Rhu)\\\ + cYa>j\\6q.
7=0

The proof will be completed by applying the discrete Gronwall Lemma 3.3.
It remains to prove (3.23). Denote YJjL\ gi(kAn) by Gkn . We further split

Z3M into Z3" = Zj", + Z3"2 such that

Z3", = EkhZ;-x + kGkh(BhRhu(tn) - PhBu(tn)),

Z3"2 = EkhZ£x + kiGkh - Gkn)iBnRhuitn) - PnBu(tn)),
0   _ 70
31 - ^32Z-i\ — Z-1-) — u

Let us first estimate Z31 . By iteration we have

n

Z3", = A Y Enk;jGkh(BhRhu(tj) - PhBu(tj)).
7 = 1

Let B(tp(t), y/) = J0l B(t, s; tp(s), y/)ds. For x £ Sh , we then have

n

(Z3",, x) = k Y(BhB-hUitj) - Buitj), Enk-jGkhX)
7 = 1

= kYB(P(tj),E"kn-jGkhX).
7 = 1

Since the discretization is strictly accurate of order p = 1, we have Gkn -
k  XA.XiEkn - 7) ; hence, summation by parts yields

(z3", >x)=YbWj) . W+1 - **V)V*)
7 = 1

= -Jß(/?(/„),^-|x) + Jß(/J(r1),^-'7ifcV)
n-l

7=2

By Lemma 3.1 and (3.20), we obtain

\B(p(tn),A-xx)\ + \B(p(tx),A-hxE"khx)\

<C j\\\p\\ + h\\p\\X)ds\\x\\<Chr^\Uo\\r + £\\ut\\rds
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Similarly, we obtain

|n-l
YB(p(tj+i)-p(tj),A-xEnk-ix)
7=2

n-l

7=2
n-l

7=1

jt'+l-^Bipis),A;xE^x)ds

Bis,s;pis),A-xE"k-Jx)ds

f'+lBipis),A-xEnk-]x)ds
J'j

n-l  (   tt<c¿z\r (ii^)ii+^ii^)iii)^ii^v^i
7=1   {"'i

+ /" I (\\p(x)\\ + h\\p(x)\\x)dxds\\Enk-Jx\
Jtj      Jo

< Chr £ \\u\\rdx\\x\\ < Chr j||Mo||r + f \\UtWrds} \\x\\ ■

Therefore, we obtain

(3.24) |(Z3B,, x)\ < Ch" j||«o||r + f \\u,\\rds} Hxll,

which leads to the required bound for Z%¡ .
We now bound Z^2 . By our definitions, we have

_ m rh
(Gkh - Gkh)(p(tj) = - Y 8>(kAh) /   Ds9(s) ds,

,=i Jt'j

and hence, since k\\Angi(kA„)\\ < C and denoting Tn = A^x ,

\\(Gkn-Gkn)<p(tj)\\<Ck-
™   r'j'"    r'jY   ii ̂a
,_i Jr.

<p(s)\\ds
i=l "•>

< C max \\ThDs(p(s)
0<s<tj

By the stability of Ekn and using the above inequality with tp = B„RnU-PhBu,
we obtain

(3.25)

For any x e Sn , we have

Z3"2|| < C max ||r„A(5„7?„M(5) - 7>„t3m(s)
0<s<t„

(A-xDs(BhRhu(s)-PhBu(s)),x)

= B(s,s;p(s),A-hix) + B,(p(s),A-lx),
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which yields, by Lemma 3.1 and (3.20), that

\(ThDsiBhRhuis)-PhBuis)),X)\

< C j||/>(5)|| + h\\pis)\\x + J\\\p\\ + A|r|,)¿i} llxll

<CA' {Mr-tI'HMíMtJ
This and (3.25) lead to the desired bound for Z32.   D

3.5. A bound for the global quadrature error. To estimate the global quadrature
error, we could use the fact that, by the stability of Ekh,

m

iiöfc"„ii<Eiii^,T'(ß^M)iii'
i=i

and then estimate the local quadrature error instead. For instance, for the
rectangular rule, ||<7"(ç>)|| < CA/0'" \\Dstpis)\\ds. This implies, since R„ = A^x A
and Bh is dominated by Ah , that

\Qnkn\\<Ck ['"iWAuW + WAuSds.
Jo

However, the regularity of the solution with respect to space required by the
above error bound is unnecessarily high. In the following lemma we present a
bound for the global quadrature error which leads to an error estimate demand-
ing less regularity of the solution.

Let <5>n(t, s) = A^B„Ph ■ If Bn is dominated by An , then ||<PA|| < C. We
shall frequently use the boundedness of this operator and its derivatives.

Lemma 3.7. Let the time-stepping be strictly accurate of order p = 1 and m = I,
and let Qkn(V>) be the global quadrature error defined by (3.19). Assume Bn and
Bn t are dominated by An. If the quadrature formula is Ek„-stable, then, for
tn£J,

\\Qnkn(RhU)\\ < Chr jllMollr + £ \\ut\\rds} + C¿ ||(^+1'T - ^T)(<M)|| ,

where qJ is the basic quadrature error and q° •T = 0.
Proof. By the definition of Qkh(<P), after changing the order of summation, we
obtain

n

Qkn(<P) = kYEnkn"Gkh<l'(Bn<p)
i=l

(3.26) =kYE^Gkh'Y(<IJ+UT-oJ'T)(Bn<p)
1=1 7=0

= E \k E Kh^khAh) (qi+x'T-Qi'z)i<f>hV),
j=0   V    1=7+1 /
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where, for convenience, we have defined q°'z = 0. Since the discretization is
strictly accurate of order 1, we have

* E EZk'GkkA
1=7+1

and hence

(3.27)

E(^v-^v'+1)
1=7 + 1

= ||7-^VII<C,

n-l

\\Q"kn(<p)\\ < CY\\(<lJ+l'r - ^'X)(^h<P)\\.
7=0

It therefore suffices to show

(3.28) ||ß^((7?A-P„)M)||<C/lr jllMollr + jf"||M,||r<fo}, tn £ J .

Denote (Rn - 7ja)m(í) by e(t) ; we have

||e(/)||<CA' jllMollr + y"||«í(í)||rdí|.
Note that by our definitions, we have

(3.29) Qnkn(e) = Fk"n(e) - ^^G^^f^
7 = 1

Since the quadrature rule is £*.„-stable, we obtain
n-l

(3.30)
1=0

Similarly to the proof of (3.27), denoting tj - xk by t'}, we have

CX>/||e(í,)|| < Chr jllMollr + J " ||M,(j)||r<fr}

(3.31)

Since

(3.32)

kYK~JGkhBh^(tj)
7=1

<cY\\®he(t'J+x)-<î>he(t>j)\\.
7=0

tohCit'j+x) - Wj) =  [J+" ®h(t'j+x, s)e(s)ds
Jv

+ r'j
/   (<t>n(t'j+x,s)-<t>h(t'j,s))e(s)ds,
Jo

we obtain immediately

\\^heifj+l)-d>heifj)\\ < C fi+l ||e(i)||rfj + CA f' \\e(s)\\ds,
Jt\ Jo

and hence, by (3.31) and (3.32),

(3.33)
kYEnk-JGkhBhe(tj]

7=1 7o
<C       \\e(s)\\ds

<Chr jllMollr + J" \\Ut\\rds
Taking (3.29), (3.30), and (3.33) together completes the proof.   G
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4. Backward Euler type schemes
The purpose of this section is to analyze the backward Euler type scheme

(1.5) in detail. Various quadrature formulas are presented, with the emphasis
on reducing the memory storage requirement.

Let S(n) be the number of nonzero quadrature weights {(oni}"~01 used in the
quadrature rule on((p). For each rule discussed, we shall give an upper bound
of S(n) for 0 < tn < t°, denoted by Sma.x ■ This is also the upper bound for
the number of the levels at which the solution needs to be stored in calculating
the numerical solution Ufi on the whole interval [0, t°].

The backward Euler time discretization is strictly accurate of order p = 1 ,
and the basic time-stepping error is bounded by (see Thomée [11])

(4.1)  \\ên\\ < Chr UuoWr + J " \\u,(s)\\rds\ + Ck J " \\utt(s)\\ds, tn£J-

In this section, we shall refer to BE-stability when we mean Ek -stability for
the backward Euler type scheme. Thus, we have:

Theorem 4.1. Let u be the solution o/(l.l) and U[¡ the solution of the back-
ward Euler type scheme (1.5). Assume that the quadrature rule is BE-stable. If
\\uoh - "oil < CAr||Mo||r, then, for t„ £ J,

\\U¡¡ - U(t„)\\ < Chr jllMollr + £ \\ut\\rds}

+ Ck i'"\\utt\\ds + C\\\Qnkh(RnU)\\\.
Jo

Since the smoothing property holds, by Theorem 3.4, we shall give quadrature
formulas with dominated weights in order to keep the BE-stability.

4.1. The rectangular rule. The simplest quadrature rule that we shall discuss
is the rectangular rule, i.e,

(4.2) <Tni<p) = kY<Pj.
7=0

Obviously, this rule has dominated weights, and hence is BE-stable.

Theorem 4.2. Let u be the solution o/( 1.1 ) and U¡¡ the solution of the backward
Euler type scheme (1.5) using the rectangular rule (4.2). Assume Bn , B^\, B^\,
and B^\s are dominated by An . If ||m0/¡ - «oll < CAr||Mo||r» then, for t„ £ J,

\\U£ - U(t„)\\ < Chr jllMollr + £ \\ut\\rds\

+ CaJ||mo|| + |"(|M| + ||mí<||)¿jJ.
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Proof. By Theorem 4.1 and Lemma 3.7, we need only estimate the quadrature-
related term £"=o ||(^+1 - qJ)i<&nu)\\. We have

iqj+x - qj)i®nu) = iqj+x - qJ)(<*>n(tJ+x,•)"(' ))

(4-3) +qJ((<t>h(tj+x, -)-<S>h(tj, •))«(•))
= I,+I2.

Since
(qJ+x-qJ)(<p) = fJ+\tJ+i -s)Ds<p(s)ds

J'j

and Bn and BJ^s are dominated by A„ , we obtain

lililí < Ck r+'(||M(5)|| + \\ut(s)\\)ds < Ck2\\u0\\ + Ck r+1 \\ut(s)\\ds.
Jtj Jt,

Similarly, since BJ1X\ and Bn2\s are dominated by An , we obtain

III2II < CA2 / ;(||m(5)|| + \\u,(s)\\)ds < Ck2\\u0\\ + Ck2 [J \\ut(s)\\ ds.
Jo Jo

Therefore, we get

E IK^+I - 9y)(**")ll < Ck {»"oil + £ \\ut(s)\\ ds} .   D

4.2. Modified trapezoidal rule. As we have mentioned before, we may reduce
the memory requirement by using a trapezoidal rule based on longer subinter-
vals. We shall discuss a modified trapezoidal rule which is similar to a quadra-
ture formula introduced by Sloan and Thomée [10].

Let mx = |A-1/2J, where |xj denotes the largest integer less than or equal
to x , and set Ai = mxk and lj = jkx. We define ;„ to be the largest integer
such that ?/„ < tn . We apply the trapezoidal rule with stepsize kx on [0, Î/J
and then the rectangular rule with stepsize A on the remaining part [7;„, t„].
More precisely, we introduce the following modified trapezoidal rule.

(4.4)        o»(<p) = kj-Y(<pÇtj) + <pÇtJ+x)) + k  Y   <p(tj) = o!l(<p) + oxn(<p).
7=1 j=jnm,

An upper bound of the storage for this rule is given by Smax = t°/mxk + mx .
Since m, = 0(A-'/2), we have Smax = 0(k~x'2).

Let cox = k and
>2 = {kl'
1    to,

Ai,       ;' = 0(modwi),
otherwise.

»-' ,.,iWe define <y, = of2' + w], and find easily that ^Z"=0 ojXj < t° and

Y^<ÍZk^21^^ct°-
7=0     7=1

Therefore, the co¡ are dominating weights, and hence this rule is BE-stable.
We now give an error estimate for the backward Euler type scheme using the

trapezoidal rule. The regularity requirement of this scheme is the same as that
for the purely parabolic problem.
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Theorem 4.3. Let u be the solution of (I.I) and U¡¡ the solution of the backward
Euler type scheme (1.5) using the trapezoidal rule defined by (4.4). Assume Bn > t
and B¡¡\, P < i < 2, are dominated by Ah . If ||m0„ - m0|| < CAr||M0||r, then,
for t„£ J,

m - «(Mil < Chr jllMollr + j " \\Ut\\rds\

+ CA|||Mo||+   I    i\\ut\\ + \\uu\\)ds\ .

Proof. We know that rule (4.4) is BE-stable. By the preliminary error estimate
in Theorem 3.6 and Lemma 3.7, we need only prove

(4.5) Y IK<7;+1 - 9;')(**")ll < Ck jllMoll + ji'"(||M(|| + ||Mtt||)<fo} .

We consider (4.3) again. Since the step length of the trapezoidal part is bounded
by CAi, we easily obtain

\\qn(<p)\\ < Ck £(\\D2tp(s)\\ + \\DMs)\\)ds,        tn £ J.
Jo

Thus, I2 of (4.3) is bounded by

||I2|| < CA2  A||M(5)|| + ||Mt(j)|| + ||M„(i)||)rfj.
Jo

We further define

q"(<p)= \o!¡((p)- £" <p(s)ds) + \oxn(f)- £ <p(s)ds\

= qï(<p) + qnx(<p).

Let
f (S - tj_X)(s - tj_x/2) , S £ [Ij-x , íy_i/2],   ;' > 1 ,
I (S - tj)(s - tj-x/l) . S £ [tj-X/2 , tj],   j>l,

and
y/xis) =-(s - tj+x),        s£(tj,tj+x], j>P;

we have

rhn . /•'"
q¡l(<p)= ip2(s)Df<p(s)ds   and   qxn(<p)=       y/x(s)Dstp(s)ds.

Jo Jli,

Since

and

(^+l-^)(^)= f %2(s)D2s(p(s)ds

iqnx+x - q"x)i<p) = /"" Wi(s)Dsfis)ds- ¡' " ipxis)Dstpis)ds,
J'n Jtjn
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we obtain

\\h\\<Ck [J+\\\u(s)\\ + \\Dsu(s)\\)ds
Jtj

'(||M(5)|| + ||A"WII + I|7)2M(5)||)^.
:  / (ll«(
J'tjJ

Now (4.5) is a direct consequence of the bounds for lx and I2.   D

4.3. A modified Simpson's rule. In the previous subsection, in order to re-
duce the storage requirement without the loss of overall accuracy, we used the
trapezoidal rule with a larger meshsize to approximate the main part of the in-
tegral term. Pursuing this idea one step further, we now propose a quadrature
formula based on Simpson's rule in order to reduce the number of quadrature
nodes even further.

This will be done by first using Simpson's rule on subintervals of length
0(A'/4). The number of such subintervals of [0, tn] is 0(A-1/4). The length of
the remaining subinterval is at most 0(A'/4). On this remainder, we apply the
trapezoidal rules with meshsizes first 0(kxl2) and then 0(/c3/4). The remaining
subinterval is now of length 0(k3/4), and here we use the rectangular rule with
meshsize A . The quadrature error of this combined rule is then 0(k) and the
storage requirement is 0(A~1/4).

We now make the above precise. Let mo = LA_1^4J and define k¡ = m'0~xk ,
1 < i* < 4. We shall now describe the choice of the quadrature points {l„j} in
[0, t„]. We shall often denote these by {7;} for short, since the dependence on
n will be clear. First define lj = jk^, 0 < j < p¡,n , where p$n is the largest
even integer such that lP4a < tn . Next, on the remaining subinterval [lPin, tn],
whose length is at most 2fct, we use quadrature points with meshsize k^, and
thus define lj = 7P4n + (j - p4n)A3, p4„ < j < Pin , where pin is the largest
integer such that 7P3n < t„ . We then define the remaining quadrature points in
[0, tn] by using meshsizes k2 and kx in turn. In this way, we can write the
quadrature points by

( JkA, 0<j<p4„,
~tp<„ + (j - An)A3 , An <j< P3n ,

ïp3„ + U - Pin)k2 , Pin <j< Pin ,
tP2n + (j - P2n)kx , P2n<j<Pln,

where p2„ and pXn are the largest integers such that 7P2n < tn and lPln < t„.
Thus, we divide [0, tn] as

[0,tn]=    \{Jlïj-l,~tj])ul     U     fc-l'Ôl
\7=1 / \7=/>4»+l

Pin \ i      P\n

U F7-1.01M U rtj-i,~tj]
\j=Pin+l ) \7=P2n+l

= I4Ul3Ul2Uli .

We shall use Simpson's rule with stepsize kn, on I4, and the trapezoidal rule
with stepsize k¡ on I3 and with stepsize k2 on I2. On lx , we shall use the

tj =
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rectangular rule with stepsize kx = k.  Thus, the modified Simpson's rule is
defined by

<r"(<p) = T   E MÔ-i) + M'tj) + <P('tJ+i)}
7 = 1

j is odd

k     Pi"(4.6) +y E {<p('tj-i) + <p('tj)}
7=P4n + l

r. Pin P\n~l

+ y   E {<P(tj-i) + <P(~tj)} + kY'PCtj)
j=Pln+l J=P2n

= aî(9) + aS{9) + <rï{9) + e?(f).
To give an upper bound of the number of levels that need to be stored, we

first notice that the number of quadrature points in I4 is bounded by i°/A4.
Since the length of I3 is less than kA , the number of quadrature points in I3
is bounded by A4/A3, etc. Thus, we have

Smax = t°/k4 + k4/ki + k3/k2 + k2/kx = t°/k4 + 3m0 = CKA"1/4).

The analysis of Simpson's rule is similar to that of the rectangular and trape-
zoidal rules. We first note that this rule is BE-stable by showing that it has
dominated quadrature weights. For 1 < / < 4, we define

Since we have

and

œi=[ki,       j = P(modm¡0-x)
1     \ 0 otherwise.

""' « /0

7=0 M0 K<

\œ »i <E~7
1=1

we can choose the (a¡ thus defined as the dominating weights.
Moreover, since the difference of qJ+x(<p) and qJ((p) occurs only on

4

UPa.7'W,]>
1=1

we obtain
4    f'p

\\(qj+x-qJ)(<p)\\<CkYl  '  "\\D'Ms)\\ds.
¡=i J'p,.j

On the other hand, we easily obtain

r'i 4
\\qJ(<p)\\<Ck2       YWD'su^Wds-

Jo   ,= i
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Therefore, similarly to the proof of Theorem 4.2, we obtain

«-1 rtn    4

¿Zwi+X -?m«)ii < ck ["Ymuis^ds

<Ckhu0\\ + £^il\BlAs)\\ds\.

Hence, by Theorem 3.6 and Lemma 3.7, we obtain:

Theorem 4.4. Let u be the solution of ( 1.1 ) and U^ the solution of the back-
ward Euler type scheme (1.5) using the modified Simpson's rule defined by (4.6).
Assume B„ t and B^' , 0 < /' < 4, are dominated by A„. If ||m0„ - «oil <
C/jr||Mo||r, then, for t„ £ J,

llttf - "(Mil < Chr jllMollr + £ \\ut\\rds}

+ ckhu0\\ + £Y\\D'su(s)\\ds) ■

Note that the application of Simpson's rule requires higher regularity with
respect to time than the last two quadrature formulas.

5. Crank-Nicolson type schemes
In this section we discuss the fully discrete Crank-Nicolson type schemes of

(1.6). By Thomée [11], for t„ £ J, the basic time-stepping error is bounded by

||é"|| < CAr jllMollr + £ \\ut\\rds} + Ck2 £(\\uttt\\ + \\Autt\\) ds.

This time, we shall use the term CN-stability to refer to Ek -stability. Since
the Crank-Nicolson time discretization is strictly accurate of order p = 2, we
obtain immediately from Theorem 3.6 the following result.

Theorem 5.1. Let u be the solution of the initial-boundary value problem in
(1.1), and let U¡¡ be the Crank-Nicolson approximate solution defined by (1.6).
Let Qlnif) be defined by (3.19). Assume that B„ and Bh , are dominated by
A„ . If the quadrature rule is CN-stable, and if ||m0„ - m0|| < CAr||Mo||r, then we
have

\Wnn - Uitn)\\ < Chr jllMollr + J " \\u,\\r ds}

+ Ck2   r(||Mf„|| + MM„||)rfj + C|||ß^(ÄAM)|||, tn£J.
Jo

We shall give two quadrature formulas below; both of them have persistent
dominated quadrature weights and hence are CN-stable.

5.1. A modified trapezoidal rule. The simplest second-order quadrature for-
mula is the trapezoidal rule. We shall apply the standard trapezoidal rule with
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meshsize A on [0, tn-x] and the rectangular rule on [tn-x, tn-1/2] to define a
modified trapezoidal rule.

(5.1) Oni<p) = I Yitpitj) + tpitj-x)) + \<P(tn-l) = On2(<P) + Ox"((p) .
7=1

Obviously, the storage requirement for this rule is Sma¿ < t°/k = 0(k~x). In
the previous section we have seen that the storage requirement of the backward
Euler type scheme using the trapezoidal rule is 0(k~x/2). We shall prove that
the Crank-Nicolson type scheme using the trapezoidal rule (5.1) is second-order
with respect to time, so that a larger time stepsize may be used for the same
overall accuracy. Hence, in this respect the storage requirements for these two
schemes are of the same order.

We find immediately that this rule has dominating weights tOj = A and

n-l

Y \œj+i ,j — coj/l = 0,       P < i <n - I, t„ £ J.
7=1+1

Hence, the quadrature rule (5.1) has persistent dominated weights, which shows
the CN-stability of this rule by Theorem 3.5.

We now give the error estimate for the fully discrete Crank-Nicolson type
scheme using the modified trapezoidal rule.

Theorem 5.2. Let u be the solution o/(l.l) and U¡¡ the solution of the Crank-
Nicolson type scheme ( 1.6), using the modified trapezoidal rule (5.1). Assume that
Bn, BnJ, and Bn'\, i = 1, 2, are dominated by Ah . 7/"||m0„-Mo|| < CAr||Mo||r,
then, for tn £ J,

||C/; - «(Mil < Chr jllMollr + £ \\ut\\rds\

+ Ck2 jllwoll + J "(INI + Hwwll + MK«||)<fr} •
Proof. By Theorem 5.1 and Lemma 3.7 we need only prove that

¿||(^'1/2-^'-1/2)(0„M)||<CA:2 /'"(||m(5)|| + \\u,is)\\ + \\ultis)\\)ds.
7=0 Jo

We shall start from (4.3). Since this time

{aJ,V2_qj,-l/2){(/)) = k(p{tj)_   ft}{'2ç,(S)ds,
■Vl/2

we obtain

\\iqJ'l/2-qJ>-l'2)i<p)\\<Ck2 i'J+m\\D2g,(s)\\ds,
Jh-m

and hence

lililí < Ck2 l'XI\\\u(s)\\ + \\DSU(S)\\ + ||7J>2M(5)||)^.
-Vi/2
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We easily obtain

III2II < Ck3 fJ~'(\\u(s)\\ + \\Dsu(s)\\ + \\D2u(s)\\)ds
Jo

+ Ck2 i'+ll2(\\u(s)\\ + \\Dsu(s)\\)ds.
J'j-l/2

These bounds for L and l2 lead to the desired conclusion.   D

5.2. A modified Simpson's rule. The storage requirement for the modified
trapezoidal rule defined by (5.1) is 0(A_1). As we did before for the backward
Euler type scheme, we may use a quadrature rule with higher-order truncation
error on fewer quadrature points to reduce the memory requirement without
sacrificing the accuracy. We now present such a quadrature formula based on
Simpson's rule.

Let mx = |_A-1/2J and Ai = mi A. Define jn to be the largest even integer
such that jnkx < tn ■ We introduce the quadrature points

0 < ; < jn ,
+ (j-jn)k, jn<j<ln,

where 7/n = tn-x ■ We now apply Simpson's rule with stepsize kx on [0, 7/J ,
the trapezoidal rule with stepsize A on {tjn, t„-x], and the rectangular rule with
stepsize A/2 on [tn-x, tn-1/2], i.c> we set

°"(<P) = T E Mö-i) + M'tj) + <P(tj+0}
7=1

7 odd
(5"2) A ̂  A

7=7»
= o?(ç>) + oï(<p) + oxn(tp).

The storage requirement for this rule is

Smax < r°/Ai + A,/A < t°/mxk + mx = 0(k~x'2).
We now show that this quadrature formula has persistent dominated weights,

and therefore is CN-stable. It is easy to see that the quadrature rule has domi-
nating weights of the form

CAi,       7 = 0 (modwi),

7-7   -Sjkl'
h -tnJ~\ jnkX

H CA,        otherwise.
We thus need only prove the validity of (3.17). Consider a fixed i = 2lmx + io ,
where 0 < io < 2mx . By the definition of u>¡,■, when j ^ 0 (mod2wi),
we have 0)7+1,, - to,,, = 0 for j > i. Now let 7 = 0 (mod2wi). If j >
2(1 + l)mx , both fe>7+i,, and C0j¡ are quadrature weights corresponding to
the part of on(<p) determined by Simpson's rule, and hence toy+i,/ -0)jy¡ = 0.
Since the only remaining j > i is j = jo = 2(1+ l)mx , and since the quadrature
weights are dominated by a>¡, we obtain

n-2

Y   K+l ,' - W7'l = Ko+1 .1 - W7o,'l < 2W, .
7 = 1+1
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Following the outline of the proofs of Theorems 4.3 and 4.4, we may conclude
that

E IK«''1/2 - ij¡~l/2)(<t>u)\\ < ck2 jiiMoii + £ Y WDiM\ ds\ .

and therefore we obtain:

Theorem 5.3. Let u be the solution 0/(1.1) and U¡¡ the solution of the Crank-
Nicolson type scheme (1.6) using the modified Simpson's rule (5.2). Assume that
Bn, Bn,t, and Bn^s, i = I, ... , 4, are dominated by Ah. If ||m0/¡ - «oll <
CAr||Mo||r. then, for tn £ J,

\W"h  - U(tn)\\ < Chr jllMollr + £ \\u,\\rds}

+ck2 j iiMoii+£ (y iia'kii + \\Au"\\) ds\ ■

6.  A THIRD-ORDER PADÉ APPROXIMATION

In this section, we consider higher-order Padé approximations; in particular,
a third-order case.

6.1. Higher-order Padé type scheme. Following common practice, we shall
call a time discretization accurate of order p if, in addition to (3.5), we have,
for I = 0, ... , p - I,

Setting

»M-(^(**>-tt/f)-t'i»W.

'*^*-S7
(6.1) l = 0,...,p-l,

p!   (.„s Y(~X)i
7=0

we shall say that it is strictly accurate of order p if

(62) 7/W = 0, l = 0,...,p-l,
[-> yp(X) = 0(l),       X^O.

For instance, the backward Euler and Crank-Nicolson discretizations are strictly
accurate of order p = 1 and p = 2, respectively.

Let us consider the subdiagonal Padé discretization that is strictly accurate
of order p, p > 1 . By Brenner, Crouzeix, and Thomée [3], if \\u0„ — «oil <

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



164 NAI-YING ZHANG

CAr||«o||r, then we have the error estimate

\\ên\\ <CAri||M0||r + ín    SUP   ||M/(j)||r [
I 0<i<i„ J

+ CA" ji„||M^(0)||2 + (1 + tn) £ Wuf^is^ds} .

Therefore, for a scheme using an Ti*./,-stable quadrature formula, we have by
Theorem 3.6 that

||t/" - «(Mil < CiuW + kp) + C|||ßfc"„(7?„M)|||.
6.2.   Third-order (1,2) Padé approximation.  For simplicity, we shall only give
a scheme based on the third-order (1,2) Padé approximation

I ,_        2z-6
r[Z)~    z2 + 4z + 6-

When n < 2, we shall chose xx = 0, x2 = 1/2, and t3 = 1, and further

glW = A2 + 4A + 6'     g2W = X2 + 4X + 6>     g^À) = X2++4X + 6 '

When n > 3 , we set x,■■ = i, 1 < i < 3 , and let

...       A+ 23/2 ... -8 5/2
gl W  =    1?    ,    /M    ,    ¿  ' 82W  =    O    ,    ai    ,    r  » ^3   -A2 + 4A + 6'     6¿K '     X2 + 4X + 6'    6i     X2 + 4X + 6'

Thus, we obtain a time-stepping procedure strictly accurate of order 3.
Since the subdiagonal Padé approximation has the smoothing property, quad-

rature formulas with dominated weights are Ek -stable with respect to the above
time discretization. Now we shall construct a third-order quadrature formula
by means of Simpson's rule. More specifically, denote the largest even integer
less than or equal to n by j„ . When n < 3, we use the rectangular rule on
[0,/„_T,.],i.e.,

(6.3a) on'Tii<p) = kin-Ti)tpiO).

When n > 3, we apply Simpson's rule on [0, tjH_t] and the trapezoidal rule on
[tj„-i > *n-iJ > lie->

on'Xi(<P) = \  Y (<P(tj) + 4(p(tj+x) + tp(tj+2))3
7=0(6.3b)

+ j (" - < - Jn)(<P(tjn) + f{tn-i)) ■

Since, clearly, the quadrature weights of (6.3) are dominated by CA , the quadra-
ture formula is Ek -stable. Furthermore, we have

:2,       n<2,
>3,

and, by the stability of Ekn , we have

tf'MSft :
\\Qnkh(<P)\\ < C max ¡k max \\q1 >x'iBh<p)\\+ max \\q*'x¡iBh<p)\\\.

l<i<m [\     1<7<2 3<7<n J
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By Rn = Ahx A, and since Bh and its derivatives are dominated by Ah , we
further obtain

\\Q"kn(Rhu)\\<C(u)k\        tn£J.
This leads to the following theorem.

Theorem 6.1. Let u be the solution of the initial-boundary value problem in ( 1.1 )
and Ujj the approximate solution generated by the third-order (1,2) subdiag-
onal Padé-type scheme described above using the modified Simpson's rule given
by (6.3). Assume that Bnt and D'sB„(t, s), 0 < i < 3, are dominated by An .
If ll"on - "oil < CAHIwollr', then

\\UZ-u(tn)\\<C(u){hr + k3}, tn£J.
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