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1 Introduction
In this work, for any function f : R? — C, the translation and modulation operator are
defined as T,f(¢) = f(t —x) and M,,f(t) = e™*f(t) for all y,w € R?, respectively. Also we

write the Lebesgue space (L”(R?), || - ||,,), for 1 < p < 0. Let w be a weight function on R,

Il
that is, a measurable and locally bounded function w satisfying w(x) > 1 and w(x + y) <

w(x)w(y) for all x,y € R?. We define, for 1 < p < oo,
1,(R%) = {f|fw e 1 (RY)).

It is well known that I%,(R¥) is a Banach space under the norm ||f | o = Wi,

Let w; and w; are two weight functions. We say that w; < w; if there exists ¢ > 0, such
that wy (x) < cwo(x) for all x € R? [1, 2].

The Fourier transform f (or Ff) of f € L'(R) is given by

7 1 e —iwt
Fou = o= / e

The fractional Fourier transform is a generalization of the Fourier transform with a pa-
rameter « and can be interpreted as a rotation by an angle « in the time-frequency plane.
The fractional Fourier transform with angle o of a function f is defined by

Fof (u) = /+oo Ky(u, 0)f (2) dt,
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where
1-i : u2+t2 :
/%;tael( 5 )cota—lutcoseca’ if o is not multiple Of]T,
K, (u,t) = 8(t — u), ifa=2kr,keZ,

8(t + u), ifa=Q2k+1)r,keZ,

and § is a Dirac delta function. The fractional Fourier transform with a = 7 corresponds
to the Fourier transform [3-9].

The fractional Fourier transform can be extended to higher dimensions as [9]:

+00 +00
=f f 1<a1 ,,,,, an(ulr"-7un;tl:"')tny(tll"')tn)dtl"'dtn)

o0 o0

or shortly

Fof (u) = / e / Ky (u, t)f (t) dt,
where

.....

In this work we define the function spaces with fractional Fourier transform in weighted
Lebesgue spaces and discuss some properties of these spaces.

2 On function spaces with fractional Fourier transform in weighted Lebesgue
spaces

Definition 1 Let w and w be weight functions on R? and 1 < p < co. The space Ay (R%)

consist of all f € L (R?) such that F,f € L% (R?). The norm on the vector space Ag;;’(Rd)

1S

I llaze = fllw + 1 Faf llpo-
Theorem 2 (Ag;j’(Rd), I| - ||A;V';;’) is a Banach space for1 < p < oo.

Proof Let (f,)nen is a Cauchy sequence in Al‘;’,’;’(Rd). Thus (f,) nen and (F o fu)nen are Cauchy
sequences in Lb(Rd) and L%, (R%), respectively. Since Llw(Rd) and L%, (R¥) are Banach spaces,
there exist f € LL(R?) and g € L5 (R?) such that ||f, —flliw — 0, | Fofs —gllpo— 0 and
hence ||f, = flli = 0 and || Fofy — gll, = 0. Then (Ffy)nen has a subsequence (Fofy, )n; en
that converges pointwise to g almost everywhere. Also it is easy to see that ||f,, —f 1 — 0.
Then we have

| Fof ) = g@)| < |Falfie —N@)| + | Fufiy () - g()]

d -
/1 —icoto;
SH icota;
, 21
Jj=1
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« / |(f;1k _f)(t)i |€Z/d:1 (%(ujznjz)cot(xi—iu/-tj cosec ;) | dt
R4

+ |]:D(f;’lk(u) _g(u)|
li[ /1 lCOtOl/
j=1

From this inequality, we obtain F,f = g almost everywhere. Thus ||f, — f]|| ave = 0 and
fe AOV,V;I‘;)(Rd). Hence ( W“’(Rd) Il - ||Aww) is a Banach space. a

e =flln + [ Fafr () — ().

The following proposition is generalization of the one-dimensional and two-dimen-
sional versions. The proof of this proposition is very similar to the proofs of one-
dimensional and two-dimensional versions in [3, 5, 10, 11], and we omit the details.

Proposition 3 Let o = (o1, a3, ...,0), Where a; # kit for each index i with 1 <i <d and
ke Z. Then

(1) FulTf) ) = eDm 5 sneseosesivimsne) e,y coser, ..., g = yacosag) (1)
forall f € LN(RY) and y e R%;

(2) FoaM,f)(u) PYAL b NG COSGTHGYCOSG) T (ay — vy S, ..., tg — Vg Sinag)
forall f € LN(RY) and v e R4,

Theorem 4 Let o = (a1,0,...,04), where o; # ki for each index i with 1 <i <d and
keZ.
(1) Let1 < p < oo, wand w be weight functions on R?. Then the space AZ:;’(Rd) is
translation invariant.
(2) Let w be a bounded weight function on R?. Then the mapping y — T,f of R? into
AZ;’(R”I) is continuous.

Proof (1) Letf € Ayy (R?). Then f € L;,(]Rd) and Ff € L5 (R%). It is well known that the
space L}”(Rd) is translation invariant and holds || T,f/l1,, < w(y)|[f 1w for all y € R? [12].
Let b = (y1cosay, ..., Y4 €08 g). By using the equality (1), we get

|7T], = ( /R FATA w0 du>p

= (/d |.7-"o(f(u1 — Y1COS A, ..., U —ydcosad)|p
R

1

d (i,2 . NP
x ‘ez/':l(%y/ sm(x/cosa/-—m/-y/sma/)’ wp(u) du)P

< (/ |qu(u—b)|pwp(u—b)wp(b)du);
R4

= 0D IFof lpo
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for all y € R?. Hence, we have

ITof Naze < wDIf luw + @BIF of llpor < 00

This means that Ay (R9) is translation invariant.

(2) Letf € Al‘;’;;"(Rd). We will show that if lim,, ., ¥, = 0 for any sequence (y,),en C RY,
then lim,_. T,f =f, which will complete the proof. It is well known that the mapping
y — T,f is continuous from R% into L}V(Rd) (see [12]). Thus, we have

I Tyf =fllw— 0 ()

as n — 00. Also,

|FalTyf =Pl = 1Pl T = Fof |,

;i 2 i
d . . .
_ ||€§ /=1(%(y]n) sma]-cosa}-—zujj/,,, sine;)

T(y},, cos .4 cosag) (]:O(f) - ‘7:04f ”p,a}

,,,,,

o [ (¢S BOM snajeosay-iusina) ) o
o

Since Fof € L5,(RY), the mapping y — T,(F,f) is continuous from R? into L%, (R?) for
all y € R [12]. Then we obtain || T, )(}"af) - Fofllpo = 0 as n — oo. Now

O cosar,.., y‘é cosay
Zd (L(;/)Zﬁinavc0§av—iu'3/ sina;) .

let hy, () = |e=r=t"20 RS EREI RN 1| Fof (w)]. Since lim,. oy, = 0 and w is a

bounded weight function on RY, we see that lim,,_, » hﬁn(u)a)" (1) = 0 for all u € R%. Also,

since
coi2 . i
hy,, (u) _ ’ezjd:l(%(y/n) smot/vcosozj—lujj/n sina;) _ 1| ‘]:qf(u)’ < Z}IJ(M)’

and F,f € Lf,(R%), we can write h’;n(u)wp(u) < 22| Fof )P (u). Thus, by the Lebesgue
dominated convergence theorem,

“ (ez;il (30" sinajcosaj-iupysine) l)fvcf”p,w 0
as lim,,_, ., ¥, = 0. Hence,

1Tyf ~Fllagsy — O 3)
as n — 00. Combining (2) and (3),

1Ty f =fllawe = 1 Tyf = flliw + | Fa(Tyf —f)||p,a, —0

as n — o0. This is the desired result. O

Theorem 5 Let o = (o1,03,...,0y), where «; # kmr for each index i with 1 <i < d and
keZ.
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(1) Let1 < p < oo, wand w be weight functions on R%. Then AO“f"Z’(Rd) is invariant under
modulations.

(2) Let w be a bounded weight function on R?. Then the mapping z — M.f is continuous
from R into AX;;“(Rd).

Proof (1) Let f € AZ;’(Rd). Then f € L;,(Rd) and F,f € LL(RY). It is easy to see that

IMoflliw = Ifllw and M, f € L;,(]Rd). Let ¢ = (; sinay, ..., ngsinag) € RY. Thus by Propo-
sition 3, we have

7,010, = ([, 170000 o)’

p

= (/d |]:o¢f(”1—ﬂlSinal,...,ud—ndSinad)|
R:

1
d i 2 i o P ?
> |ezl-:1 (—én/. sinaj cos o +iun; cosoz/) | wp(u) du> P

1

< (/ |fJ(u—c)|pwp(u - c)wp(c)du)E
R4
= 0@ Fof llpw

for all n € R%. Hence, we get

IMof laze < f lhw + @I F of llpw < 00

(2) The proof technique of this part is the same as that of Theorem 4(2). So, for the sake
of brevity, we will not prove it. O

The following definition is an extension of the convolution in [13, 14] of two functions

to n dimensions.

Definition 6 Let o = (a1, as,...,x,), where o; # km for each index i with 1 <i <d and
k € 7. Then the convolution of two functions f,g € L'(R?) is the function f®g defined by

(fOg)(x) = /R ) Fgx—y) e j0j-%) cotay .

It is easy to see that f@g belongs to L' (R¢) by Fubini’s theorem.

Theorem7 Leta = (a1, ca,...,04), where o; # kit foreachindexiwithl <i<dandk € Z,
and f,g € L\(R?). Then

d
27 4 _1y2 cota;
fa(fcag)(u):[n = }z,_] 25 F f () Fug (),
i 1-icoty;

where Fuf and F,g are the fractional Fourier transforms of functions f and g, respec-
tively.
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Proof Let« = (o, @, ...,04), where o; # kr for each index i with 1 <i <d and k € Z, and
f,g € L*(R%). We can write from the definition of the fractional Fourier transform

d -
1- Lo 4 (L (u2+£2) cotaj—iujt; cosec o
Felront - [H\/ %} /Rd (FO)(t)e>im1 (205 4 oteyivtyeoseca) gy
j=1
|:1—[ /1 lCOtOl/i| / f(y g(t y)eZ} 19—t cotey

Z] 1( u; +t ) cotaj—iujt; cosec o) At dy
We make the substitution ¢ — y = k and obtain

7 (ng (u) B |:1—[ /1 lCOtOé]:| » ( Rdf()’)ezj 1 % u? +y] ) cotaj—iu;y; cosec @) dy)

« g(k)ezi:l (%ka cotaj—iujkj cosec &) dk

d ; d , 2
T 22— | gen 1—[\/@

) l—iCOt()[j . 27T

J=1 -1

Z‘il (%(u2+y2) cotaj—iujyj cosec &)
X e~ VRS d
([ y

Xg(k)ezl 1 ’ k U )cota/ iujk; cosec ) dk

d -
l_[ Zﬁx*%”,‘zc‘)“x/ ]‘[\/1_7 Leotay
—lCOtOt el 2

/ }—(xf(u k)e 1 L z k +us )cota, iujkj cosecaj) dk

4 - éuzcota,
|:l_[ —lCOtOlli| Y Fof bl agtu) O

Theorem 8 Leto = (o, ,...,04), where o; # krt foreachindexiwithl <i<dandk € 7.

L} (R?) is a Banach algebra under ® convolution.

Proof 1Tt is well known that L}”(]Rd) is a Banach space [2]. Let f,g € L;(Rd), then we have

roelh. = [ | roghmisdy

_ fRd
<, (/R |g<x—y>}w<x—y>dx)lf(y)\w(y)dy

= liglh f 1F)|wi) dy
]Rd
= gl @)

/ )l —y)ein oo dy‘w(x) dx
R4

It is easy to show that the other conditions of the Banach algebra are satisfied. O
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Theorem 9 Leto = (o,q,...,0), where o; # kit for each indexiwithl <i <dandk € Z.

A;’;’(Rd) is a Banach ©-convolution module over L} (R?).

Proof 1t is well known that A’ (Rd) is a Banach space by Theorem 2. Let f € AW’”(Rd)

and g € L} (R?). By using the 1nequa11ty (4), we get

_ Zd: —Ly? cota;
| 7o, = []_[ _lcota]} 10 G T £ (4) Fag ()

pw

- 1_[ —lCOtOl

to;
l_[ [1—ico 1-icoty;

4
(u)du)
v 7
( |fJ(u)|p(/ |g(t)|dt) wp(u)du>
R4 R4

1

- ||g||1( A NFS@ @ du)"

< IglhwllFef lpo-

- 1_[ lCOtOl

=l mar

d
/ g( ) ZI 1 (u +tl)cola} iujt; cosec ;) dt
R4

X

IA

Combining (4) and (5), we obtain

Ol = If Ol + | FulfOgQ)],,
< lglhwlf s + gl Fef

= I laze gl

( / |fJ(u)|P|fag(u)|PwP(u)du)

(5)

This is the desired result. It is easy to see that the other conditions of the module are

satisfied.

3 Inclusion properties of the space AZ{;{,"(R")
Proposition 10 Forevery 0 #f € AOV[V;;(R"’) there exists c(f) > 0 such that

c(Fw) < ITef Il g = WO F 1l 1

Proof Let 0 #f € A‘“(Rd) By [12], there exists ¢(f) > 0 such that
(W) < 1 Tof Nlw < w)If llw-

By using (6) and the equality || F o (Txf)ll, = | Fof ll»» we obtain

(W) < I Tef i < 1T lw + [ Fol TS,
S WOl + 1 Fef 1

O

(6)
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< w@f llw + w1 Fof
2IF Lz

forallf e Ag’:},(Rd). O

Lemma 11 Let wi, wa, w1 and w, be weight functions on R%. If Agh" (R?) C Ayy™ (RY),
then Ays” (R?) is a Banach space under the norm ||f||| = ”f”AZflp’“’l + ”f”A;Vg;‘”Z'

Proof Let (f,)uen is a Cauchy sequence in (Agy” R, |l - ). Then (f,),en is a Cauchy
sequence in (Agp” (RY), || - llazer) and (Aa oy 2 (RY), | - Il 4
nach spaces, there exist f € AW1 "I(R?) and g € Ay%™ (Rd) such that ||f, —f]| amen =

0, Ilﬁq—gllAgng — 0. Using the inequalities || - [l; < || - [lyw, < II- Il azen and |- |} <
I sy < 1<y, we obtain [f — 1l — O and [f — gll — 0. Also If ~ gl < Ify ~flh +
W —glli, we havef g Hence ||[f, —fll — 0 and f € Ay," (R?). That means (445" (RY),
Il - ) is a Banach space. O

bk ). As these spaces are Ba-

Theorem 12 Let w; and w, be weight functions on R%. Then Aglpl RY) Cc AY% 1(]Rd) if and
only if wy < wy.

Proof Suppose that w, < wy. Thus there exists ¢; > 0 such that wy(x) < ¢;w;(x) for all x €
R4, Also let f € Ay I(Rd ). Then we write

W llLwy < ctllfllnw, < 00.

Hence we have

IlfIIA;vgl = flhw, + 1Fof llp < crllf lliw + crll Fafllp = Cl”f”Ag/gl'

Therefore, Ay 1(]Rd) C A% 1(Rd)
Conversely, suppose that Ay (R?) C AL%'(RY). For every f € ALy (R?), we have f €

W2 1 R%). By Proposition 10, there are constants ¢y, ¢y, ¢3, ¢4 > 0 such that

awi(x) < ||To¢f||A‘v1vzl < cowi (%) 7)
and

csW2 (&) < I Tf 1l yupr = cawa(a) (8)

for all x € R?. It is well known from Lemma 11 that the space Ag’;l(Rd) is a Banach space
under the norm ||f ||, f € Au’p ! (R%). Then by the closed graph theorem the norms || - I, i

and || - || At are equivalent on Ay 1(]R‘i) So, there exists ¢ > 0 such that |Lf|| w1 < < |[f|| i

forallf € AW1 L (R?). Moreover, as T.f € AW21 R%), we have

1Taf s <l Tof - ©)
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Then, combining (7), (8), and (9), we obtain
caW2 (%) < I Tef Il ot < €N Tef 1l < ceamwa (x)-

Thus, wy(x) < Cf—gzwl(x). Let % = k. Then we find w, (x) < kw: (x) for all x € R, O

Proposition 13 Let wy, wy, w1 and w, be weight functions on R4, If wy < wy and wy < wy,
then Ay (RY) C Au3™ (RY).

Proof Assume that w, < wy and w; < w;. Then there exist ¢;,¢; > 0 such that wy(x) <
awi(x) and wy(x) < cywy () for all x € RY, Let f € Ay RY). As f € L,lv1 (RY) and F,f €
Lff,l (R%), we have flliw, < cillfllm < 00 and | Fofllpw, < c2llFofllpw < 00. Hence, we

obtain f € Ay%”?(R?), and then Ay%" (RY) C Ays™ (RY). d
4 Duality

Let the mapping @ : Ay¢(RY) — L, (R x L;(R?) be defined by ®(f) = (f, Fof) for 1 <
p<ooandlet H = @(A;’;’(Rd)). Then

12| = [, Fad| = Wl + 1 Fof o

isanormon H forall f € Ay} (R?). Moreover, we define a set K as

K= {0.0): (o) e L2 (RY) < 2 (),
/f(x)go(x)dx+/ .FJ(y)W(y)dy:Oforall(f,fJ)eH},
R4 R4

where L + L =1.
p P

The following proposition is proved by the duality theorem, Theorem 1.7 in [15].

Proposition 14 Let 1 < p < 00, and w and w be weight functions on R%. The dual space of

onf;’(Rd) is isomorphic to L, (RY) x L’;/_l (R/K where % +1% =1.
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