ON FUNCTIONS OF BOUNDED BOUNDARY ROTATION

MING-CHIT LIU

Abstract. Let $U=\left\{z=r e^{i \theta} \mid r<1\right\}$. For $k \geqq 2$ let V_{k} be the class of normalized analytic functions $f(z)$ such that the boundary rotation of $f(U)$ is at most $k \pi$. Let $A(r)$ be the integral

$$
\int_{0}^{2 \pi} \int_{0}^{r}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|^{2} \rho d \rho d \theta
$$

$L(r)$ the length of the image of the circle $|z|=r$ under the mapping $f(z)$. In this paper the author proves that for $z \in U$ if $f(z) \in V_{k}$ then

$$
\limsup _{r \rightarrow 1}\left(\operatorname{Sup}_{f \in \nabla_{k}} L(r)\right)\left(\pi A(r) \log \left(\frac{1+r}{1-r}\right)\right)^{-1 / 2} \leqq k
$$

This generalizes to arbitrary $k \geqq 2$ the recent result of Nunokawa for the case $k=2$.

Let U be the unit disk, $|z|<1$. For fixed $k \geqq 2$, by V_{k} we denote the class of functions $f(z)$ satisfying the following conditions:
(i) $f(z)$ is analytic and $f^{\prime}(z) \neq 0$ for $z \in U$.
(ii) $f(z)$ is normalized by the requirements $f(0)=0$ and $f^{\prime}(0)=1$.
(iii) The boundary rotation of $f(U)$ is at most $k \pi$, that is

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right| d \theta \leqq k \pi \tag{1}
\end{equation*}
$$

where $r e^{i \theta}=z \in U$.
The concept of bounded boundary rotation originates from Löwner [1]. Extensive investigations are due to Paatero [3].

Let K denote the class of functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$, convex in U, i.e. $\operatorname{Re}\left\{1+z f^{\prime \prime}(z) / f^{\prime}(z)\right\}>0$. It is clear that $V_{2}=K$.
Let $C(r)$ denote the image of the circle $|z|=r<1$ under some mapping $f(z), L(r)$ the length of $C(r)$. By $A(r)$ we denote the integral

$$
\int_{0}^{2 \pi} \int_{0}^{r}\left|f^{\prime}(t)\right|^{2} \rho d \rho d \theta \quad\left(t=\rho e^{i \theta}\right)
$$

which is the generalized area of the image of the set $|z| \leqq r$ under the mapping $f(z)$.

Recently, Nunokawa [2, p. 332] obtained:
Received by the editors September 15, 1970.
AMS 1970 subject classifications. Primary 30A32; Secondary 30A04.
Key words and phrases. Analytic mapping, function of bounded boundary rotation, convex function, curve length, order of infinity.

Theorem N. Iff $(z) \in K\left(=V_{2}\right)$ then

$$
\begin{equation*}
L(r)=O\left(A(r) \log \frac{1}{1-r}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

as $r \rightarrow 1$.
In this paper we shall extend Theorem N to all classes V_{k} by proving

Theorem. Let $2 \leqq k<\infty$. If $f(z) \in V_{k}$, then

$$
\begin{equation*}
\limsup _{r \rightarrow 1}\left(\operatorname{Sup}_{f \in V_{k}} L(r)\right)\left(\pi A(r) \log \left(\frac{1+r}{1-r}\right)\right)^{-1 / 2} \leqq k . \tag{3}
\end{equation*}
$$

Proof. Let a be a fixed constant, $0<a<r=|z|<1$. Nunokawa [2, p. 333] has shown that if $f(z)$ has a nonvanishing derivative $f^{\prime}(z)$ in U then

$$
L(r)=\int_{0}^{2 \pi}\left|z f^{\prime}(z)\right| d \theta \leqq C+(A(r) J / a)^{1 / 2} \quad\left(z=r e^{i \theta}\right)
$$

where

$$
C=\int_{0}^{a} \int_{0}^{2 \pi}\left|t f^{\prime \prime}(t)+f^{\prime}(t)\right| d \theta d \rho \quad\left(t=\rho e^{i \theta}\right)
$$

and

$$
J=\int_{0}^{r} \int_{0}^{2 \pi}\left|1+\frac{t f^{\prime \prime}(t)}{f^{\prime}(t)}\right|^{2} d \theta d \rho
$$

We observe that since the functions $f(z)$ of the class V_{k} comprise a normal family there exists a constant $A=A(a, k)$ depending only upon a and k such that $C \leqq A$. An estimate for J for the class V_{k} follows from the following result due to Robertson [4, p. 1480]:

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|1+t \frac{f^{\prime \prime}(t)}{f^{\prime}(t)}\right|^{2} d \theta & =2 \pi+\rho^{2} \int_{0}^{2 \pi}\left|\frac{f^{\prime \prime}(t)}{f^{\prime}(t)}\right|^{2} d \theta \\
& \leqq 2 \pi\left(1+\frac{k^{2} \rho^{2}}{\left(1-\rho^{2}\right)}\right)<\frac{2 \pi k^{2}}{1-\rho^{2}}
\end{aligned}
$$

Then

$$
J<2 \pi k^{2} \int_{0}^{r} \frac{d \rho}{1-\rho^{2}}=\pi k^{2} \log \left(\frac{1+r}{1-r}\right) .
$$

Since $\int_{0}^{2 \pi}\left|f^{\prime}(z)\right|^{2} d \theta \geqq 2 \pi$ it follows that $A(r) \log ((1+r) /(1-r))$ is unbounded as $r \rightarrow 1$. Since a can be chosen arbitrarily close to one the inequality (3) follows at once.

Remark. It is interesting to note that recently, M. S. Robertson [5, p. 97] has considered a family of functions that includes the class K as a proper subfamily. For $-\frac{1}{2} \pi<\alpha<\frac{1}{2} \pi$, we say that $f(z) \in S_{\alpha}$ if
(i) $f(z)$ is analytic and $f^{\prime}(z) \neq 0$ for $z \in U$.
(ii) $f(0)=0$ and $f^{\prime}(0)=1$.
(iii) For $z \in U$,

$$
\operatorname{Re}\left\{e^{i \alpha}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>0
$$

Clearly, $S_{0}=K$. We can extend inequality (2) from the class K to all classes $S_{\alpha}\left(|\alpha|<\frac{1}{2} \pi\right)$ as follows:

For $f(z) \in S_{\alpha}\left(|\alpha|<\frac{1}{2} \pi\right)$ we have

$$
\begin{equation*}
\limsup _{r \rightarrow 1}\left(\operatorname{Sup}_{r \in S_{\alpha}} L(r)\right)\left(\pi A(r) \log \left(\frac{1+r}{1-r}\right)\right)^{-1 / 2} \leqq 2 \cos \alpha . \tag{4}
\end{equation*}
$$

The proof of (4) is similar to that in our Theorem. Let $f(z) \in S_{\alpha}$. Then there is a function $P(z)$ with positive real part and regular in U, $P(0)=1,\left|P^{(n)}(0)\right| \leqq 2(n!), n=1,2,3, \cdots$, such that

$$
e^{i \alpha}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=P(z) \cos \alpha+i \sin \alpha
$$

Then

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|^{2} d \theta & =2 \pi+\int_{0}^{2 \pi}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|^{2} d \theta \\
& =2 \pi+\int_{0}^{2 \pi}|(P(z)-1) \cos \alpha|^{2} d \theta \\
& \leqq 2 \pi+\frac{8 \pi r^{2} \cos ^{2} \alpha}{1-r^{2}}=\frac{8 \pi \cos ^{2} \alpha}{1-r^{2}}(1+o(1))
\end{aligned}
$$

as $r \rightarrow 1$. Then (4) follows.
My thanks are due to the referee for some useful suggestions shortening the original proofs.

References

1. K. Löwner, Untersuchungen über die Verzerrung bei konformen Abbildungen des Einheitskreises $|z|<1$, die durch Funktionen mit nicht verschwindender Ableitung geliefert werden, Ber. Kön. Sächs. Ges. Wiss. Leipzig 69 (1917), 89-106.
2. M. Nunokawa, A note on convex and Bazilevič functions, Proc. Amer. Math. Soc. 24 (1970), 332-335. MR 40 \#4437.
3. V. Paatero, Über die konforme Abbildung von Gebieten deren Ränder von beschränkter Drehung sind, Ann. Acad. Sci. Fenn. Ser. A 33 (1931), 77 pp.
4. M. S. Robertson, Coefficients of functions with bounded boundary rotation. Canad. J. Math. 21 (1969), 1477-1482.
5. ——, Univalent functions $f(z)$ for which $z f^{\prime}(z)$ is spirallike, Michigan Math. J. 16 (1969), 97-101. MR 39 \#5785.

University of Hong Kong, Hong Kong

