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ON FUNCTIONS OF BOUNDED BOUNDARY ROTATION
MING-CHIT LIU

ABSTRACT. Let U= {z=re|r <1}. For k=2 let Vi be the class
of normalized analytic functions f(z) such that the boundary rota-
tion of f(U) is at most kx. Let A(r) be the integral

/| " 170 lodods,

L(r) the length of the image of the circle Izl =r under the mapping
f(2). In this paper the author proves that for 2E€ U if f(z) € Vi then

imsw (g, 10) (4018 ((27))

This generalizes to arbitrary 2=2 the recent result of Nunokawa
for the case k=2.

Let U be the unit disk, | z| <1. For fixed #2 2, by Vi we denote the
class of functions f(z) satisfying the following conditions:

(i) f(z) is analytic and f'(z) #0 for & U.

(ii) f(z) is normalized by the requirements f(0) =0 and f/(0) =1.

(iii) The boundary rotation of f(U) is at most kwr, that is

o [ |refi s 2

f(2)

where re? =2zE U.

The concept of bounded boundary rotation originates from
Lowner [1]. Extensive investigations are due to Paatero [3].

Let K denote the class of functions f(z) =2+ 2 .5 a, 2%, convex in
U,i.e. Re { 142" (2) /f' (2) } >0. Itisclear that V,=K.

Let C(r) denote the image of the circle |z| =r<1 under some
mapping f(z), L(r) the length of C(r). By A(r) we denote the integral

fozf for|f'(t)[2pdpdo T

which is the generalized area of the image of the set |z| =<7 under the

mapping f(2).
Recently, Nunokawa [2, p. 332] obtained:

k.
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THEOREM N. Iff(z2)EK (= V) then

@ 20y = o 4o )

asr—1.

In this paper we shall extend Theorem N to all classes Vi by
proving

THEOREM. Let 2=k < ., If f(2) E Vi, then
14+ r\\'/2
3) lim sup ( Sup L(r)) (rA (r) log ( )) <k
1EVE 1

r—1

PrOOF. Let a be a fixed constant, 0<a<r=|z| <1. Nunokawa
[2, p. 333] has shown that if f(z) has a nonvanishing derivative f'(z) in
U then

Lm=fhhﬂMW§C+M®UW” (2 = re¥),

where
c a 2r " , dad _ o
ff |40 + 70| dodp (¢ = pe¥)
and
B r 2x tf”(t) 2
J—j;fo R

We observe that since the functions f(z) of the class Vi comprise a
normal family there exists a constant 4 =A(a, k) depending only
upon ¢ and & such that C=<A4. An estimate for J for the class 7 fol-
lows from the following result due to Robertson [4, p. 1480]:

WL SOP
fo L+ d0—21r+pf0 I
k%p? 2wk?
§2r(1 + a _p2)> <o =

Then

T d 147
J<21rk2f e log( )
0 1"P2 1 -
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Since [3" |f'(2) l 2df = 27 it follows that A(r) log ((1+7)/(1—7)) is un-
bounded as r—1. Since @ can be chosen arbitrarily close to one the
inequality (3) follows at once.

REMARK. It is interesting to note that recently, M. S. Robertson
[5, p. 97] has considered a family of functions that includes the class
K as a proper subfamily. For —ir <a <iw, we say that f(z) €S, if

(i) f(2) is analytic and f'(2) #0 for z& U.

(i1) f(0)=0andf'(0)=1.

(iii) Forz& U,
reler (14 2)) >0

Clearly, So=K. We can extend inequality (2) from the class K to
all classes S, (I al < 1) as follows:
For f(z) €S, (| a| <3m) we have

14 n\\2
4) lim sup( Sup L(r)) (wA (r) log( )) = 2 cos a.
1E€8a 1 -

71 14

The proof of (4) is similar to that in our Theorem. Let f(z) €S..
Then there is a function P(z) with positive real part and regular in U,
P(0)=1,|P™(0)| £2(n!),n=1,2,3, - - - ,such that

e (1 + gl (z)) = P(2) cos a + ¢ sin a.

7@
e (of(2) |

0 = 2r
+fo 7@

2%
= 21r+f | (P(z) — 1) cos a %8
0

Then

I,

f//
1 -
+f()

8mr?cos?a 8w cos? a
<2r+ = (1 + o(1))
1—1 1 — 2

as r—1. Then (4) follows.
My thanks are due to the referee for some useful suggestions
shortening the original proofs.
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