On Fuzzy Contra g^* Semi-Continuous Functions

M. Shukla

Department of Applied Mathematics, Gayan Ganga Insitude of Technology and Sciences Jabalpur (M.P.) 482011 India Email:shukla.madhulika07@gmail.com

Abstract

In this paper we introduce and study the new class of functions called fuzzy contra g^* semi-continuous and almost fuzzy contra g^* semi-continuous mappings on fuzzy topological spaces. We investigate some of their properties. Also we provide the relation between fuzzy contra g^* semi-continuous mappings and fuzzy almost contra g^* semi-continuous mappings.

Key words: Fuzzy topology, fuzzy generalized closed set, fuzzy g^*s -closed set, fuzzy contra semi-continuous function, fuzzy g^*s -continuous function, fuzzy almost contra continuous functions.

1. Introduction

The fuzzy semi-open and fuzzy semi-continuous mappings were introduced and generalized by Bin Shahana [4]. N. Levine [9] introduced the concepts of generalized closed sets in general topology in the year 1970. T. Fukutake, R.K. Saraf, M. Caldas and S. Mishra [6] introduced the notation of generalized semi-closed sets in fuzzy topological space. S. S. Benchalli and G. P. Siddapur [3] introduced and investigate g^*s -continuous maps in fuzzy topological spaces. In 2011, P.G. Patil T.D. Rayanagoudar and Mahesh K. Bhat [13] introduced and studied the concepts of contra g^*s -continuous and almost contra g^*s -continuous mappings in general topological spaces.

In this paper we introduce and study the new class of mappings called fuzzy contra g^*s continuous and fuzzy almost contra g^*s -continuous functions in fuzzy topological spaces. Also
we define the relation between of fuzzy contra g^*s -continuous and fuzzy almost contra g^*s continuous spaces and study some of their properties.

2. Preliminaries

Let *X* be a non empty set. A collection τ of fuzzy sets in *X* is called a fuzzy topology on *X* if the whole fuzzy set 1 and the empty fuzzy set 0 is the members of τ and τ is closed with respect to any union and finite intersection. The members of τ are called fuzzy open sets and the complement of a fuzzy open set is called fuzzy closed set. The **closure** of a fuzzy set λ (denoted by (λ)) is the intersection of all fuzzy closed which contains λ . The **interior** of a fuzzy set λ (denoted by $int(\lambda)$) is the union of all fuzzy open subsets of λ . A fuzzy set λ in X is fuzzy open (resp. fuzzy closed) if and only $int(\lambda) = \lambda$ (resp. $cl(\lambda) = \lambda$).

Definition 2.1: Let (X, τ) be a fuzzy topological space. A fuzzy set λ in the space X is called:

- (i) semi-open fuzzy set [1] if $\lambda \leq cl(int(\lambda))$ and semi-closed fuzzy set if $int(cl(\lambda)) \leq \lambda$.
- (ii) pre-open fuzzy set [4] if $\lambda \leq int(cl(\lambda))$ and pre-closed fuzzy set if $cl(int(\lambda)) \leq \lambda$.
- (iii) semi-preopen fuzzy set [13] (= β set) if $\lambda \leq cl(int(cl(\lambda)))$ and semi-preclosed fuzzy set if $int(cl(int(\lambda))) \leq \lambda$.
- (iv) regular open fuzzy set [1] if $\lambda = int(cl(\lambda))$ and regular closed fuzzy set if $\lambda = cl(int(\lambda))$.

The semi-closure (resp. pre-closure, semi-preopen) of a fuzzy set λ in fuzzy topological space (X, τ) is intersection of all semi-closed (resp. pre-closed, semi-preclosed) fuzzy sets in X containing λ and is denoted by $scl(\lambda)$ (resp. $pcl(\lambda), spcl(\lambda)$).

Definition 2.2: Let (X, τ) be a fuzzy topological space. A fuzzy set λ in the space X is called:

- (i) generalized closed fuzzy set (g-closed) fuzzy set [2] if cl(λ) ≤ η whenever λ ≤ η and η is open fuzzy set in(X, τ).
- (ii) generalized semi-closed fuzzy set (*gs*-closed) fuzzy set [2] if $scl(\lambda) \le \eta$ whenever $\lambda \le \eta$ and η is open fuzzy set in(*X*, τ).
- (iii) g^* closed fuzzy set (g^* -closed) fuzzy set [8] if $cl(\lambda) \le \eta$ whenever $\lambda \le \eta$ and η is gopen fuzzy set in(X, τ).
- (iv) g^* -semiclosed fuzzy set (g^*s -closed) fuzzy set [11] if $scl(\lambda) \le \eta$ whenever $\lambda \le \eta$ and η is g-open fuzzy set in(X, τ).

The complement of g-closed (resp. gs-closed, g^* -closed and g^*s -closed) fuzzy sets are called fuzzy g-open (resp. gp-open, g^* -open and g^*s -open) sets in fuzzy topological spaces. **Definition 2.3:** A fuzzy topological space (X, τ) is called T_p^* -space [6] if every g^*s -closed fuzzy set is a closed fuzzy set in *X*.

Definition 2.4: A function *f* from a fuzzy topological space (X, τ) to fuzzy topological space (Y, σ) is called:

- (i) fuzzy-contra continuous if $f^{-1}(\lambda)$ is fuzzy closed in X for every fuzzy open set λ of Y [5].
- (ii) fuzzy contra semicontinuous if $f^{-1}(\lambda)$ is fuzzy semiclosed in X for every fuzzy open set λ of Y [8].
- (iii) fuzzy *g*-continuous if $f^{-1}(\lambda)$ is fuzzy *g*-closed in *X* for every fuzzy closed set λ of *Y* [2].
- (iv) fuzzy *gs* continuous if $f^{-1}(\lambda)$ is fuzzy *gs*-closed in *X* for every fuzzy closed set λ of *Y* [2].
- (v) fuzzy g^* continuous if $f^{-1}(\lambda)$ is fuzzy g^* -open in X for every fuzzy open set λ of Y [8].
- (vi) fuzzy g^*s -continuous if $f^{-1}(\lambda)$ is fuzzy g^*s -open in X for every fuzzy open set λ of Y [].
- (vii) fuzzy almost continuous if $f^{-1}(\lambda)$ is fuzzy open in X for every fuzzy regular open set λ of Y [1].

3. Fuzzy Contra g^*s -Continuous Functions

Definition 3.1. A function $f: X \to Y$ is called **fuzzy contra** g^*s -continuous if $f^{-1}(\lambda)$ is fuzzy g^*s -closed set in X for every open set λ in Y.

Theorem 3.2. Every fuzzy contra continuous function is fuzzy contra g^*s -continuous function.

Proof: It follows from the fact that every fuzzy closed set is g^*s -closed set.[]

The converse of the above theorem need not be true as seen from the following example.

Example 3.3: Let $X = \{x_1, x_2\}, Y = \{y_1, y_2\}$ λ , and μ be a fuzzy set in X and Y defined as $\lambda(x_1) = 0.4, \lambda(x_2) = 0.6, \mu(y_1) = 0.3, \mu(y_2) = 0.7$. Let $\tau = \{0, \lambda, 1\}$ and $\tau' = \{0, \mu, 1\}$ be fuzzy topologies on sets X and Y respectively. The map $f: (X, \tau) \to (Y, \tau')$ defined as $f(x_i) = y_i, i = 1, 2$ is fuzzy contra g^*s -continuous map but not fuzzy contra continuous.

Theorem 3.4. Every fuzzy contra semi-continuous mapping is fuzzy contra g^*s -continuous function.

Proof. Straight forward and follows from the definitions.

The converse of the above theorem need not be true as seen from Example 3.3.

Theorem 3.5. If a function $f: (X, \tau) \to (Y, \sigma)$ is fuzzy contra g^*s –continuous and (X, τ) is fuzzy T_p^* -space, than f is fuzzy contra continuous.

Proof. Let λ be open fuzzy set in *Y*. Then $f^{-1}(\lambda)$ is g^*s -closed fuzzy set in *X*. Since *X* is fuzzy T_p^* -space. $f^{-1}(\lambda)$ is closed fuzzy set in *X*. Thus *f* is fuzzy contra continuous function.

Theorem 3.6. If a function $f: (X, \tau) \to (Y, \sigma)$ is fuzzy contra semi-continuous and (X, τ) is fuzzy T_p^* -space, than f is fuzzy contra g^*s -continuous.

Proof. Let λ be open fuzzy set in Y. Then $f^{-1}(\lambda)$ is semi-closed fuzzy set in X. Since X is fuzzy T_p^* -space. $f^{-1}(\lambda)$ is g^*s -closed fuzzy set in X. Thus f is fuzzy contra g^*s -continuous function.

Theorem 3.7. If a function $f:(X,\tau) \to (Y,\sigma)$ is fuzzy contra g^*s –continuous and (X,τ) is fuzzy T_p^* -space, than f is fuzzy contra semi-continuous.

Proof. Let λ be open fuzzy set in Y. Then $f^{-1}(\lambda)$ is g^*s -closed fuzzy set in X. Since X is fuzzy T_p^* -space. $f^{-1}(\lambda)$ is closed fuzzy set in X. And every closed fuzzy set is semi-closed fuzzy set. Thus f is fuzzy contra semi-continuous function.

Theorem 3.8. Let (X, τ) and (Y, σ) be two fuzzy topological spaces. The following statement are equivalent for a function $f: X \to Y$.

- 1. f is fuzzy contra g^*s continuous.
- 2. $f^{-1}(\lambda)$ is g^*s -open fuzzy set in X for each closed fuzzy set λ in Y.
- for each x ∈ X and each closed fuzzy set λ in Y containing f(x). there exist a g*s-open fuzzy set η in X containing x such that f(η) ≤ λ.
- for each x ∈ X and open fuzzy set µ in Y non-containing f(x), there exists a g*s-closed fuzzy set θ in X non-containing x such that f⁻¹(µ) ≤ θ.

Proof. (1) \Rightarrow (2). Let λ be a closed fuzzy set in (Y, σ) . Then 1- λ is fuzzy open. By (1), $f^{-1}(1 - \lambda) = 1 - f^{-1}(\lambda)$ is g^*s -closed fuzzy set in X. So $f^{-1}(\lambda)$ is g^*s -open fuzzy set in X. (2) \Rightarrow (1). proof as above. (2) \Rightarrow (3). Let λ be any closed fuzzy set in *Y* containing f(x). By (2). $f^{-1}(\lambda)$ is g^*s -open fuzzy set in (X, τ) and $x \in f^{-1}(\lambda)$. Take $\eta = f^{-1}(\lambda)$. Then $f(\eta) \leq \lambda$.

(3) \Rightarrow (2). Let λ be a closed fuzzy set in Y and $x \in f^{-1}(\lambda)$. From (3), there exists a g^*s -open fuzzy set η in X containing x such that $\eta \leq f^{-1}(\lambda)$. We have $f^{-1}(\lambda) = \bigcup_{x \in f^{-1}(\lambda)} \eta$. Thus $f^{-1}(\lambda)$ is g^*s -open fuzzy set in (X, τ) .

(3) \Rightarrow (4). Let μ be any open fuzzy set in *Y* non-containing f(x). Then 1- μ is a closed fuzzy set containing f(x). By (3) there exists a g^*s -open fuzzy set η in *X* containing *x* such that $f(\eta) \le 1 - \mu$. Hence $\eta \le f^{-1}(1-\mu) \le 1 - f^{-1}(\mu)$ and then $f^{-1}(\mu) \le 1 - \eta$. Take $\vartheta = 1 - \eta$. We obtain that ϑ is a g^*s -closed fuzzy set in *X* non-containing *x*.

The converse can be shown easily.

Definition 3.9. A function $f:(X,\tau) \to (Y,\sigma)$ is called **Fuzzy Contra** g^*s -irresolute if $f^{-1}(\lambda)$ is g^*s -closed fuzzy set in X for every g^*s -open fuzzy set λ in Y.

Theorem 3.10. A function $f:(X,\tau) \to (Y,\sigma)$ is fuzzy contra g^*s -continuous if and only if $f^{-1}(\lambda)$ is g^*s -open fuzzy set in X for every g^*s -closed fuzzy set λ in Y.

Theorem 3.11. Every fuzzy contra g^*s -irresolute mapping is fuzzy contra g^*s -continuous.

Proof. Let $f: X \to Y$ is fuzzy contra g^*s -irresolute function. Let λ be a fuzzy open set in Y. Then λ is g^*s -open fuzzy set in Y. Since f is fuzzy contra g^*s -irresolute. $f^{-1}(\lambda)$ is g^*s -fuzzy closed set in X. Hence f is fuzzy contra g^*s -continuous function.

Theorem 3.13. Let $f: X \to Y$, $g: Y \to Z$ be two functions then

- (i) $gof: X \to Z$ is fuzzy contra g^*s -continuous, if f is fuzzy contra g^*s -continuous and g are fuzzy continuous.
- (ii) $gof: X \to Z$ is fuzzy contra g^*s -continuous if f is fuzzy contra g^*s -irresolute and g is fuzzy g^*s -continuous.

4. Fuzzy Almost Contra g^*s -Continuous Function

Definition 4.1. A function $f:(X,\tau) \to (Y,\sigma)$ is called **Fuzzy almost contra** g^*s -Continuous if $f^{-1}(\lambda)$ is fuzzy g^*s -closed set in X for every regular open set λ in Y. **Theorem 4.2.** Every fuzzy contra g^*s -continuous function is fuzzy almost contra g^*s continuous. The converse of the above theorem need not be true as seen from the following example.

Example 4.3: Let $X = \{x_1, x_2\}, Y = \{y_1, y_2\}$ λ , and μ be a fuzzy set in X and Y defined as $\lambda(x_1) = 0.3, \lambda(x_2) = 0.5, \mu(y_1) = 0.3, \mu(y_2) = 0.4$. Let $\tau = \{0, \lambda, 1\}$ and $\tau' = \{0, \mu, 1\}$ be fuzzy topologies on sets X and Y respectively. The map $f: (X, \tau) \to (Y, \tau')$ defined as $f(x_i) = y_i, i = 1, 2$ is fuzzy almost contra g^*s -continuous map but not fuzzy contra g^*s -continuous.

Definition 4.4. A function $f: X \to Y$ is said to be fuzzy regular set connected [] if $f^{-1}(\lambda)$ is fuzzy clopen in X for every fuzzy regular open set λ of Y.

Theorem 4.5. If a function $f: X \to Y$ is fuzzy almost contra g^*s -continuous and almost continuous, then f is fuzzy regular set connected.

Proof. Let λ be a fuzzy regular open set in (Y, σ) . Since f is fuzzy almost contra g^*s continuous and fuzzy almost continuous, $f^{-1}(\lambda)$ is fuzzy g^*s -closed and open. Hence $f^{-1}(\lambda)$ is fuzzy clopen. Therefore f is fuzzy regular set connected.

Definition 4.6. A fuzzy topological spaces (X, τ) is called fuzzy g^*s -connected if X cannot be written as the disjoint union of two non-empty fuzzy g^*s -open sets.

Theorem 4.7. Let (X, τ) and (Y, σ) be two fuzzy topological spaces. The following statement are equivalent for a function $f: X \to Y$.

- 1. f is fuzzy almost contra g^*s continuous.
- 2. $f^{-1}(\lambda)$ is fuzzy g^*s -open set in X for every regular closed set λ in Y.
- for each x ∈ X and each fuzzy regular closed set λ in Y containing f(x). there exist a fuzzy g*s-open set η in X containing x such that f(η) ≤ λ.
- for each x ∈ X and fuzzy regular open set µ in Y non-containing f(x), there exists a fuzzy g*s-closed set θ in X non-containing x such that f⁻¹(µ) ≤ θ.

Proof. As theorem 3.8.

Theorem 4.8: Let *X*, *Y* and *Z* be fuzzy topological spaces and let $f: X \to Y$ and $g: Y \to Z$ be maps. If *f* is fuzzy contra g^*s -continuous and *g* is fuzzy almost continuous then $gof: X \to Z$ is fuzzy almost contra g^*s -continuous.

References

- (1) Azad K. K., On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math Apl. 82 (1981), 14-32.
- (2) Balasubramanian G. and Sundaram p., On some generalization of fuzzy continuous, Fuzzy Sets and Systems, 86 (1997), 93-100.
- (3) Benchalli S. S. and Siddapur G. P., Fuzzy g*pre-continuous maps in Fuzzy topological Spaces, Int. J. of Computer Appl. (0975-8887), Vol. 16- No. 2, Feb. 2011.
- (4) Bin Shahana A. S., On fuzzy strong semi-continuity and fuzzy pre continuity. *Fuzzy Sets* and Systems. **44** (1991), 303-308.
- (5) Erdal Ekici and Etienne E. Kerre, On Fuzzy Contra-Continuities, Advanced in Fuzzy Mathematics, Vol. 1 No. 1 (2006), pp. 35-44.
- (6) Fukutake T., Saraf R. K., Caldas M. and Mishra S., Mappings Fgp-closed sets, Bull. of Fukuoka Univ. of Edu. Vol. 52, Part III (2003), 11-20.
- (7) Jafari S. and Nori T., On contra- precontinuous functions, Bull. Malays Math. Sci. Soc.
 (2), 25(2) (2002), 115-128.
- (8) J.Dontchev and T. Nori, Contra-semicontinuous functions, Math Pannon 10(2)(1999), (1) 159-168.
- (9) Levine N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19 (2) (1970), 89-96.
- (10) Malghan S. R. and Benchali S.S., Open maps, closed maps and local compactness in Fuzzy Topological spaces, JI MATh. Anal.. Appl. 99No 2 (1984), 74-79.
- (11) M. K.R.S. Veerakumar, g*-semiclosed sets, Acta Cinencia Indica, Vol-29 M, (1) 081, 81-90 (2003).
- (12) Mukherjee M.N. and Ghosh B., Some stronger forms of fuzzy continuous mappings on fuzzy topological spaces, Fuzzy Sets and Systems, 38 (1990), 375-387.

- (13) Patil P. G., Rayanagoudar T. D., and. Bhat Mahesh K, On Some New Functions of g*pcontinuity in Topological Spaces, Int. J. Math. Sciences, Vol. 6, 2011, no. 20, 991-998.
- (14) Thakur S.S. and Singh S., On fuzzy semi-preopen sets and fuzzy semi-precontinuity., *Fuzzy Sets and Systems.*, **98** (1998), 383-391.
- (15) Veerakumar M. K. R.S., g[#]-semi-closed setsd in topology, Acta Ciencia Indica, Vol.xxix
 M, No. 1. 081 (2002).
- (16) Zadeh L.A., Fuzzy Sets, Inform. and control, 8 (1965), 338-353.

IJSER