ON FUZZY POINTS IN SEMIGROUPS

KYUNG HO KIM

(Received 4 December 2000)

ABSTRACT. We consider the semigroup \underline{S} of the fuzzy points of a semigroup S, and discuss the relation between the fuzzy interior ideals and the subsets of \underline{S} in an (intra-regular) semigroup S.

2000 Mathematics Subject Classification. 03E72, 20M12.

- **1. Introduction.** After the introduction of the concept of fuzzy sets by Zadeh [8], several researches were conducted on the generalizations of the notion of fuzzy sets. Pu and Liu [5] introduced the notion of fuzzy points. In [6, 7, 8], authors characterized fuzzy ideals as fuzzy points of semigroups. In [1, 2, 3], Kuroki discussed the properties of fuzzy ideals and fuzzy bi-ideals in a semigroup and a regular semigroup. In this paper, we consider the semigroup \underline{S} of the fuzzy points of a semigroup S, and discuss the relation between the fuzzy interior ideals and the subsets of \underline{S} in an (intra-regular) semigroup S.
- **2. Preliminaries.** Let S be a semigroup with a binary operation "·". A nonempty subset A of S is called a *subsemigroup* of S if $A^2 \subseteq A$, a *left* (resp., *right*) *ideal* of S if $SA \subseteq A$ (resp., $AS \subseteq A$), and a *two-sided ideal* (or simply *ideal*) of S if A is both a left and a right ideal of S. A subsemigroup A of S is called a *bi-ideal* of S if $ASA \subseteq A$. Let S be a semigroup. A nonempty subset A of S is called an interior ideal of S if $SAS \subseteq A$. A function S from a set S to S to S is called a *fuzzy subset* of S. The set S is called the *support*, denoted by supp S, of S. The closed interval S is a complete lattice with two binary operations "S" and "S", where S is called a S for each S for each S for any S is called a S for any S for each S is called a S for any S for any

$$x_{\alpha}(y) = \begin{cases} \alpha & \text{if } x = y, \\ 0 & \text{otherwise,} \end{cases}$$
 (2.1)

for each $y \in X$. If f is a fuzzy subset of X, then a fuzzy point x_{α} is said to be *contained* in f, denoted by $x_{\alpha} \in f$, if $\alpha \leq f(x)$. It is clear that $x_{\alpha} \in f$ for some $\alpha \in (0,1]$ if and only if $x \in \text{supp } f$.

A fuzzy subset f of a semigroup S is called a *fuzzy subsemigroup* of S if

$$f(xy) \ge f(x) \wedge f(y),$$
 (2.2)

for all $x, y \in S$, a fuzzy left (resp., right) ideal of S if

$$f(xy) \ge f(y) \text{ (resp., } f(xy) \ge f(x)), \tag{2.3}$$

for all $x, y \in S$, and a *fuzzy ideal* of S if f is both a fuzzy left and a fuzzy right ideal of S. It is clear that f is a fuzzy ideal of a semigroup S if and only if $f(xy) \ge f(x) \lor f(y)$ for all $x, y \in S$, and that every fuzzy left (right, two-sided) ideal of S is a fuzzy subsemigroup of S.

3. Interior ideals of fuzzy points. Let $\mathcal{F}(S)$ be the set of all fuzzy subsets of a semigroup S. For each $f,g \in \mathcal{F}(S)$, the product of f and g is a fuzzy subset $f \circ g$ defined as follows:

$$(f \circ g)(x) = \begin{cases} \bigvee (f(y) \land g(z)) & \text{if } x = yz \ (y, z \in S), \\ 0 & \text{otherwise,} \end{cases}$$
 (3.1)

for each $x \in S$. It is clear that $(f \circ g) \circ h = f \circ (g \circ h)$, and that if $f \subseteq g$, then $f \circ h \subseteq g \circ h$ and $h \circ f \subseteq h \circ g$ for any f, g, and $h \in \mathcal{F}(S)$. Thus $\mathcal{F}(S)$ is a semigroup with the product " \circ ".

Let \underline{S} be the set of all fuzzy points in a semigroup S. Then $x_{\alpha} \circ y_{\beta} = (xy)_{\alpha \wedge \beta} \in \underline{S}$ and $x_{\alpha} \circ (y_{\beta} \circ z_{\gamma}) = (xyz)_{\alpha \wedge \beta \wedge \gamma} = (x_{\alpha} \circ y_{\beta}) \circ z_{\gamma}$ for any x_{α}, y_{β} , and $z_{\gamma} \in \underline{S}$. Thus \underline{S} is a subsemigroup of $\mathcal{F}(S)$.

For any $f \in \mathcal{F}(S)$, \underline{f} denotes the set of all fuzzy points contained in f, that is, $f = \{x_{\alpha} \in \underline{S} \mid f(x) \ge \alpha\}$. If $x_{\alpha} \in \underline{S}$, then $\alpha > 0$.

For any $A, B \subseteq \underline{S}$, we define the product of two sets A and B as $A \circ B = \{x_{\alpha} \circ y_{\beta} \mid x_{\alpha} \in A, y_{\beta} \in B\}$.

LEMMA 3.1 (see [7, Lemma 4.1]). Let f be a nonzero fuzzy subset of a semigroup S. Then the following conditions are equivalent:

- (1) *f* is a fuzzy left (right, two-sided) ideal of *S*.
- (2) f is a left (right, two-sided) ideal of \underline{S} .

LEMMA 3.2 (see [7, Lemma 4.2]). Let f and g be two fuzzy subsets of a semigroup S. Then

- (1) $f \cup g = f \cup g$.
- $(2) \ \overline{f \cap g} = \overline{f} \cap \overline{g}.$
- (3) $f \circ g \supseteq f \circ g$.

A fuzzy subsemigroup f of a semigroup S is called a fuzzy interior ideal of S if $f(xay) \ge f(a)$ for all $x, a, y \in S$.

LEMMA 3.3. Let f be a nonzero fuzzy subset of a semigroup S. Then the following conditions are equivalent:

- (1) f is a fuzzy interior ideal of S.
- (2) f is an interior ideal of \underline{S} .

PROOF. Let f be a fuzzy interior ideal of S, and let $x_{\alpha}, z_{\gamma} \in \underline{S}$ and $y_{\beta} \in \underline{f}$. Then since $\alpha > 0$, $\gamma > 0$, and $0 < \beta \le f(\gamma)$, we have

$$0 < \alpha \land \beta \land \gamma \le \alpha \land f(\gamma) \land \gamma \le f(\gamma) \le f(xyz). \tag{3.2}$$

Hence $x_{\alpha} \circ y_{\beta} \circ z_{\gamma} = (xyz)_{\alpha \wedge \beta \wedge \gamma} \in \underline{f}$. This implies that $\underline{S} \circ \underline{f} \circ \underline{S} \subseteq \underline{f}$, thus \underline{f} is an interior ideal of \underline{S} . Conversely, suppose that \underline{f} is an interior ideal of \underline{S} . Let $x, y, z \in S$. If f(y) = 0, then $f(y) = 0 \le f(xyz)$. If $f(y) \ne 0$, then $y_{f(y)} \in \underline{f}$ and $x_{f(y)}, z_{f(y)} \in \underline{S}$. Since f is an interior ideal of \underline{S} , we have

$$(xyz)_{f(y)} = (xyz)_{f(y) \land f(y) \land f(y)} = x_{f(y)} \circ y_{f(y)} \circ z_{f(y)} \in f.$$
 (3.3)

This implies that $f(xyz) \ge f(y)$, and hence f is a fuzzy interior ideal of S.

It is clear that any ideal of a semigroup S is an interior ideal of S. It is also clear that any fuzzy ideal of S is a fuzzy interior ideal of S. A semigroup S is called regular if, for each element a of S, there exists an element x in S such that a = axa.

THEOREM 3.4. Let f be any fuzzy set in a regular semigroup S. Then the following conditions are equivalent:

- (1) f is a fuzzy right (resp., left) ideal of S.
- (2) f is an interior ideal of \underline{S} .

PROOF. It suffices to show that (2) implies (1). Assume that (2) holds. Let x be any element in S. Then since S is regular, there exists element a in S such that x = xax. If f(x) = 0, $f(x) = 0 \le f(xy)$. If $f(x) \ne 0$, then $x_{f(x)} \in \underline{f}$ and $y_{f(x)} \in \underline{S}$. Since \underline{f} is an interior ideal of \underline{S} , we have

$$(xy)_{f(x)} = (xaxy)_{f(x)}$$

$$= ((xa)xy)_{f(x)\land f(x)\land f(x)}$$

$$= (xa)_{f(x)} \circ x_{f(x)} \circ y_{f}(x) \in f.$$
(3.4)

This implies that $f(xy) \ge f(x)$, and hence f is a fuzzy right ideal of S.

THEOREM 3.5 (see [7, Theorem 3.3]). Let S be a semigroup. If for a fixed $\alpha \in (0,1]$, $f_{\alpha}: S \to \underline{S}$ is a function defined by $f_{\alpha}(x) = x_{\alpha}$, then f_{α} is a one-to-one homomorphism of semigroups.

From Theorem 3.5, we can consider *S* as an extension of a semigroup *S*.

Let f be a fuzzy subset of a semigroup S. If \Re_f is the subset of $\underline{S} \times \underline{S}$ given as following:

$$\mathcal{R}_f = \{ (x_{\alpha}, x_{\alpha}) \mid x_{\alpha} \notin \underline{f} \} \cup \{ (x_{\alpha}, x_{\beta}) \mid x_{\alpha}, x_{\beta} \in \underline{f} \}, \tag{3.5}$$

then the set \Re_f is an equivalence relation on \underline{S} . We can consider the quotient set \underline{S}/\Re_f , with the equivalence classes \overline{x}_α for each $x \in S$. We will denote the subset $\{\overline{x}_\alpha \mid x_\alpha \in \underline{f}\}$ of \underline{S}/\Re_f by $E(\underline{f})$. If $\overline{x}_\alpha \in E(\underline{f})$, then $\overline{x}_\alpha = \overline{x}_{f(x)} = \{x_\lambda \mid 0 < \lambda \le f(x)\}$. If $\overline{x}_\alpha \notin E(\underline{f})$, then $\overline{x}_\alpha = \{x_\alpha\}$ (singleton set).

Let f be a fuzzy subsemigroup of S. If the product "*" on $E(\underline{f})$ is defined by $\overline{x}_{\alpha}*\overline{y}_{\beta}=\overline{(xy)}_{\alpha\wedge\beta}$ for each $\overline{x}_{\alpha},\overline{y}_{\beta}\in E(\underline{f})$, then $E(\underline{f})$ is a semigroup under the operation "*".

THEOREM 3.6. Let f be a fuzzy interior ideal of S. Then $E(\underline{f})$ is an interior ideal of $(\underline{S}/\Re_f,*)$.

PROOF. Let \overline{x}_{α} , $\overline{y}_{\beta} \in \underline{S}/\Re_f$ and $\overline{a}_{\gamma} \in E(\underline{f})$. Then since x_{α} , $y_{\beta} \in \underline{S}$, $a_{\gamma} \in \underline{f}$ and \underline{f} is an interior ideal of \underline{S} , $(xay)_{\alpha \wedge y \wedge \beta} = x_{\alpha} \circ a_{\gamma} \circ y_{\beta} \in \underline{f}$. Hence $\overline{x}_{\alpha} * \overline{a}_{\gamma} * \overline{y}_{\beta} = \overline{(xay)}_{\alpha \wedge y \wedge \beta} \in E(f)$. It follows that E(f) is an interior ideal of \underline{S}/\Re_f .

A semigroup *S* is called intra-regular if, for each element *a* of *S*, there exists elements *x* and *y* in *S* such that $a = xa^2y$.

THEOREM 3.7. A semigroup S is intra-regular if and only if the semigroup \underline{S} is intra-regular.

PROOF. Let $a_{\alpha} \in \underline{S}$. Then since *S* is intra-regular and $a \in S$, there exist x, y in *S* such that $a = xa^2y$. Thus $x_{\alpha} \in \underline{S}$ and $y_{\alpha} \in \underline{S}$ and

$$x_{\alpha} \circ a_{\alpha} \circ a_{\alpha} \circ y_{\alpha} = x_{\alpha} \circ (a^{2})_{\alpha} \circ y_{\alpha} = (xa^{2}y)_{\alpha} = a_{\alpha}. \tag{3.6}$$

Hence \underline{S} is intra-regular. Conversely, let \underline{S} be intra-regular and $a \in S$. Then for any $\alpha \in (0,1]$, there exist elements $x_{\beta}, y_{\delta} \in S$ such that

$$a_{\alpha} = x_{\beta} \circ a_{\alpha} \circ a_{\alpha} \circ y_{\delta} = (xa^{2}y)_{\beta \wedge \alpha \wedge \delta}.$$
 (3.7)

This implies that $a = xa^2y$ and $x, y \in S$.

THEOREM 3.8. For a fuzzy set f of an intra-regular semigroup S the following conditions are equivalent:

- (1) f is a right (resp., left) ideal of S.
- (2) f is an interior ideal of \underline{S} .

PROOF. It is clear that (1) implies (2). Assume that (2) holds. Let x, y be any elements in S. Then since S is intra-regular, there exist elements a,b in S such that $x=ax^2b$. If f(x)=0, $f(x)=0 \le f(xy)$. If $f(x)\ne 0$, then $x_{f(x)}\in \underline{f}$ and $y_{f(x)}\in \underline{S}$. Since \underline{f} is an interior ideal of \underline{S} , we have

$$(xy)_{f(x)} = (ax^{2}by)_{f(x)}$$

$$= ((ax)x(by))_{f(x)\land f(x)\land f(x)}$$

$$= (ax)_{f(x)} \circ x_{f(x)} \circ (by)_{f}(x) \in \underline{f}.$$
(3.8)

This implies that $f(xy) \ge f(x)$, and hence f is a fuzzy right ideal of S.

LEMMA 3.9 (see [3, Lemma 4.1]). For a semigroup S, the following conditions are equivalent:

- (1) *S* is intra-regular.
- (2) $L \cap R \subset LR$ holds for every left ideal L and right ideal R of S.

LEMMA 3.10 (see [3, Lemma 4.2]). For a semigroup S, the following conditions are equivalent:

- (1) S is intra-regular.
- (2) $f \cap g \subset g \circ f$ holds for every fuzzy right ideal f and fuzzy left ideal g of S.

THEOREM 3.11. For a semigroup S, the following conditions are equivalent:

- (1) *S* is intra-regular.
- (2) $f \cap g \subset g \circ f$ for every fuzzy right ideal f and every fuzzy left ideal g of S.

PROOF. Let f be a fuzzy right ideal and g a left ideal of S. Since \underline{S} is intra-regular, f is a right ideal, and g is a left ideal of \underline{S} , $f \cap g \subset g \circ f$ by Lemma 3.9.

Conversely, let f be a fuzzy right ideal and g a fuzzy left ideal of S. Let $x \in S$. If f(x) = 0 or g(x) = 0, then

$$0 = f(x) \land g(x) \subseteq (g \circ f)(x). \tag{3.9}$$

If $f(x) \neq 0$ and $g(x) \neq 0$, then $x_{f(x) \land g(x)} \in f$ and $x_{f(x) \land g(x)} \in g$. Hence

$$x_{f(x) \land g(x)} \in f \cap g \subset g \circ f \subseteq g \circ f.$$
 (3.10)

It follows that $f(x) \land g(x) \subseteq (g \circ f)(x)$. Hence $(f \cap g)(x) = f(x) \land g(x) \subseteq (g \circ f)(x)$ for all $x \in S$ and $f \cap g \subset g \circ f$. By Lemma 3.10, S is intra-regular. \Box

LEMMA 3.12 (see [4, Lemma 4.3]). For a semigroup S the following conditions are equivalent:

- (1) *S* is both regular and intra-regular.
- (2) $B^2 = B$ for every bi-ideal B of S.
- (3) $A \cap B \subset AB \cap BA$ for all bi-ideals A and B of S.
- (4) $B \cap L \subset BL \cap LB$ for every bi-ideal B and every left ideal L of S.
- (5) $B \cap R \subset BR \cap RB$ for every bi-ideal B and every right ideal R of S.
- (6) $L \cap R \subset LR \cap RL$ for every right ideal R and every left ideal L of S.

A fuzzy subsemigroup f of S is called a *fuzzy bi-ideal* of S if $f(xyz) \ge f(x) \land f(z)$ for all x, y and $z \in S$.

COROLLARY 3.13. *For a semigroup S the following conditions are equivalent:*

- (1) S is both regular and intra-regular.
- (2) $f \circ f = f$ for every fuzzy bi-ideal f of S.
- (3) $f \cap g \subset f \circ g \cap g \circ f$ for all fuzzy bi-ideals f and g of S.
- (4) $f \cap g \subset f \circ g \cap g \circ f$ for every fuzzy bi-ideal f and every fuzzy left ideal g of S.
- (5) $f \cap g \subset f \circ g \cap g \circ f$ for every fuzzy bi-ideal f and every fuzzy right ideal g of S.
- (6) $f \cap g \subset f \circ g \cap g \circ f$ for every fuzzy right ideal f and every fuzzy left ideal g of S.

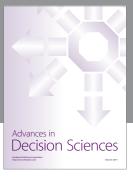
REFERENCES

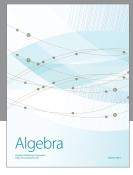
- [1] N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems 5 (1981), no. 2, 203–215. MR 82e:20076. Zbl 452.20060.
- [2] ______, Fuzzy semiprime ideals in semigroups, Fuzzy Sets and Systems 8 (1982), no. 1, 71–79. MR 83h:20073. Zbl 488.20049.
- [3] _____, On fuzzy semigroups, Inform. Sci. 53 (1991), no. 3, 203-236. MR 91j:20144. Zbl 714.20052.
- [4] S. Lajos, *Theorems on* (1,1)-ideals in Semigroups. II, Department of Mathematics, Karl Marx University for Economics, Budapest, 1974. MR 51#3333. Zbl 291.20074.
- [5] P. M. Pu and Y. M. Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), no. 2, 571–599. MR 82e:54009a. Zbl 447.54006.
- [6] X. P. Wang, Z. W. Mo, and W. J. Liu, Fuzzy ideals generated by fuzzy point in semigroups, Sichuan Shifan Daxue Xuebao Ziran Kexue Ban 15 (1992), no. 4, 17–24. MR 94b:20067.
- [7] Y. H. Yon, *The semigroups of fuzzy points*, submitted in Comm. Algebra.

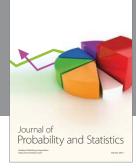
[8] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353. MR 36#2509. Zbl 139.24606.

Kyung Ho Kim: Department of Mathematics, Chungju National University, Chungju 380-702, Korea

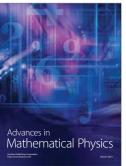
E-mail address: ghkim@gukwon.chungju.ac.kr







Submit your manuscripts at http://www.hindawi.com



Journal of Discrete Mathematics

