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1. Introduction

In 1999, Molodtsov [1] introduced soft sets and established
the fundamental results of the new theory. It is a general
mathematical tool for dealing with objects which have been
defined using a very loose and hence very general set of
characteristics. A soft set is a collection of approximate
descriptions of an object. Each approximate description has
two parts: a predicate and an approximate value set. In
classical mathematics, we construct a mathematical model of
an object and define the notion of the exact solution of this
model. Usually the mathematical model is too complicated
and we cannot find the exact solution. So, in the second
step, we introduce the notion of approximate solution and
calculate that solution. In the Soft Set Theory (SST), we
have the opposite approach to this problem. The initial
description of the object has an approximate nature, and we
do not need to introduce the notion of exact solution. The
absence of any restrictions on the approximate description in
SST makes this theory very convenient and easily applicable
in practice. We can use any parametrization we prefer with
the help of words and sentences, real numbers, functions,
mappings, and so on. It means that the problem of setting
the membership function or any similar problem does not
arise in SST. In [1], besides demarcating the basic contours
of SST, Molodtsov also showed how SST is free from
parametrization inadequacy syndrom of Fuzzy Set Theory
(FST), Rough Set Theory (RST),Probability Theory, and

Game Theory. SST is a very general framework. Many of the
established paradigms appear as special cases of SST.

Applications of Soft Set Theory in other disciplines and
real life problems are now catching momentum. Molodtsov
[1] successfully applied the soft theory into several directions,
such as smoothness of functions, game theory, operations
research, Riemann integration, Perron integration, theory of
probability, theory of measurement, and so on. Maji et al. [2]
gave first practical application of soft sets in decision making
problems. It is based on the notion of knowledge reduction
in rough set theory. Maji et al. [3] defined and studied several
basic notions of soft set theory in 2003. In 2005, Pei and Miao
[4] and Chen et al. [5] improved the work of Maji et al. [2, 3].

Many researchers have contributed towards the fuzzifi-
cation of the notion of soft set, for example, [6–8]. In this
paper, we present some more properties of fuzzy soft union
and fuzzy soft intersection as defined by Maji et al. [6], and
support them by examples and counterexamples. We also
revise Maji’s definition of fuzzy soft intersection and improve
[6, Proposition 3.3]. Finally we define arbitrary fuzzy soft
union and intersection and prove DeMorgan Inclusions and
DeMorgan Laws in Fuzzy Soft Set Theory.

2. Basic Definitions Revisited

Throughout this paper, X refers to an initial universe, E is a

set of parameters, Σ,Ω ⊆ E, and P̃(X) is the set of all fuzzy
sets of X .
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Maji et al. defined a fuzzy soft set in the following
manner.

Definition 1 (see [6]). A pair (Λ,Σ) is called a fuzzy

soft set over X , where Λ : Σ → P̃(X) is a mapping

fromΣ into P̃(X).

Definition 2. Let X be a universe and E a set of attributes.

Then the pair (̃X ,E) denotes the collection of all fuzzy soft
sets on X with attributes from E and is called a fuzzy soft
class.

Definition 3 (see [6]). For two fuzzy soft sets (Λ,Σ) and

(∆,Ω) in a fuzzy soft class (̃X ,E), we say that (Λ,Σ) is a fuzzy
soft subset of (∆,Ω), if

(i) Σ ⊆ Ω,

(ii) For all ε ∈ Σ,Λ(ε) ≤ ∆(ε),

and is written as (Λ,Σ)⊆̃(∆,Ω).

Definition 4 (see [6]). The complement of a fuzzy soft set
(Λ,Σ) is denoted by (Λ,Σ)c and is defined by (Λ,Σ)c =

(Λc, ⌉Σ), where Λc :⌉Σ → P̃(X) is a mapping given by
Λc(σ) = (Λ(¬σ))c, for all σ⌉ ∈ Σ.

Union of two fuzzy soft sets is defined by Maji et al. [6]
as follows.

Definition 5 (see [6]). Union of two fuzzy soft sets (Λ,Σ) and
(∆,Ω) in a soft class (X ,E) is a fuzzy soft set (Θ,Ξ), where
Ξ = Σ∪Ω, and for all ε ∈ Ξ,

Θ(ε) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Λ(ε),

∆(ε),

Λ(ε)∨ ∆(ε),

if ε ∈ Σ−Ω,

if ε ∈ Ω− Σ,

if ε ∈ Σ∩Ω,

(1)

and is written as (Λ,Σ)
∨̃

(∆,Ω) = (Θ,Ξ).

For a few basic properties of fuzzy soft union, we
refer to [6, Proposition 3.2]. Moreover, we have some more
properties.

Proposition 1. Let (Λ,Σ), (∆,Ω), and (Θ,Ξ) be fuzzy soft sets

in (̃X ,E). Then one has the following:

(1) (Λ,Σ)
∨̃

(∆,Ω) = (∆,Ω)
∨̃

(Λ,Σ),

(2) (Λ,Σ)
∨̃

((∆,Ω)
∨̃

(Θ,Ξ)) = ((Λ,Σ)
∨̃

(∆,Ω))
∨̃

(Θ,Ξ),

(3) (Λ,Σ)⊆̃(Λ,Σ)
∨̃

(∆,Ω) and (∆,Ω)⊆̃(Λ,Σ)
∨̃

(∆,Ω),

(4) (Λ,Σ)⊆̃(∆,Ω) ⇒ (Λ,Σ)
∨̃

(∆,Ω) = (∆,Ω),

Maji et al. defined the intersection of two fuzzy soft sets
as follows.

Definition 6 (see [6]). Intersection of two fuzzy soft sets

(Λ,Σ) and (∆,Ω) in a fuzzy soft class (̃X ,E) is a fuzzy soft

set (Θ,Ξ), where Ξ = Σ ∩ Ω, and for all ε ∈ Ξ,Θ(ε) =
Λ(ε) or ∆(ε) (as both are same fuzzy set), and is written as

(Λ,Σ)
∧̃

(∆,Ω) = (Θ,Ξ).

We point out that generally Λ(ε) and ∆(ε) may not be
identical. Moreover, Σ ∩ Ω must be nonempty to avoid the
degenerate case. Thus we revise Definition 6 as follows.

Definition 7. Let (Λ,Σ) and (∆,Ω) be two fuzzy soft sets in

a fuzzy soft class (̃X ,E) with Σ∩Ω /=φ. Then intersection of
two fuzzy soft sets (Λ,Σ) and (∆,Ω) is a fuzzy soft set (Θ,Ξ),
where Ξ = Σ∩Ω, and for all ε ∈ Ξ,Θ(ε) = Λ(ε)∧ ∆(ε). We

write (Λ,Σ)
∧̃

(∆,Ω) = (Θ,Ξ).

The following example explains Definition 7.

Example 1. Suppose that

X =
{
h, i, j, k

}
,

E =
{

very costly, costly, beautiful,

in the green surroundings, cheap
}
.

(2)

Consider the soft set (Λ,Σ) which describes the “cost of
the houses” and the soft set (∆,Ω) which describes the
“attractiveness of the houses.” Thus we take Σ,∆ ⊆ E as

Σ =
{

very costly, costly, cheap
}

,

∆ =
{

beautiful, in the green surroundings, cheap
}
.

(3)

and suppose that

Λ
(
very costly

)
=
{
h0.3, i0.4, j0.1, k0.8

}
,

Λ
(
costly

)
=
{
h0.5, i0.2, j0.7, k1.0

}
,

Λ
(
cheap

)
=
{
h0.3, i0.1, j0.8, k0.9

}

∆(beautiful) =
{
h0.4, i0.7, j0.2, k0.1

}
,

∆
(
in the green surroundings

)
=
{
h0.9, i0.3, j0.4, k0.6

}
,

∆
(
cheap

)
=
{
h0.5, i0.6, j0.2, k0.5

}
.

(4)

Then (Λ,Σ)
∧̃

(∆,Ω) = (Θ,Ξ) where Ξ = Σ ∩Ω = {cheap}.
Now if we use the definition of Maji et al., we get two different
values for Θ(cheap), that is,

Θ
(
cheap

)
= Λ

(
cheap

)

=
{
h0.3, i0.1, j0.8, k0.9

}

/=
{
h0.5, i0.6, j0.2, k0.5

}

= ∆
(
cheap

)
.

(5)

Therefore, by using [6, Definition 7], Θ ceases to be a
function as Λ(cheap) and ∆(cheap) are not identical and
so this definition is not applicable. However by using
Definition 7, we have

Θ
(
cheap

)
= Λ

(
cheap

)
∧ ∆

(
cheap

)
=
{
h0.3, i0.1, j0.2, k0.5

}
.

(6)
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For some basic properties of fuzzy soft intersection, we
refer to [6, Proposition 3.2]. Moreover, we have some more
properties:

Proposition 2. Let (Λ,Σ), (∆,Ω), and (Θ,Ξ) be fuzzy soft sets

in a fuzzy soft class (̃X ,E). Then one has following:

(1) (Λ,Σ)
∧̃

(Λ,Σ) = (Λ,Σ),

(2) (Λ,Σ)
∧̃

(∆,Ω) = (∆,Ω)
∧̃

(Λ,Σ),

(3) (Λ,Σ)
∧̃

(∆,Ω)⊆̃(Λ,Σ) and (Λ,Σ)
∧̃

(∆,Ω)⊆̃(∆,Ω),

(4) (Λ,Σ)⊆̃(∆,Ω) ⇒ (Λ,Σ)
∧̃

(∆,Ω) = (Λ,Σ),

(5) ((Λ,Σ)
∧̃

(∆,Ω))
∧̃

(Θ,Ξ) = (Λ,Σ)
∧̃

((∆,Ω)
∧̃

(Θ,Ξ)).

In [6, Definition 3.6], it is shown that

Σ̃
c = Φ, Φ

c = Σ̃. (7)

The following example shows that these do not hold in
general.

Example 2. Let (̃X ,E) be a fuzzy soft class, where

X = {a, b, c}, E = {e1, e2, e3, e4}, (8)

choose Σ = {e1, e3}, and

Σ̃ = {e1 = {a1, b1, c1}, e3 = {a1, b1, c1}}

Φ = {e1 = {a0, b0, c0}, e3 = {a0, b0, c0}}.
(9)

Calculations give

Φ
c = {¬e1 = {a1, b1, c1},¬e3 = {a1, b1, c1}}

/={e1 = {a1, b1, c1}, e3 = {a1, b1, c1}} = Σ̃,

Σ̃
c = {¬e1 = {a0, b0, c0},¬e3 = {a0, b0, c0}}

/={e1 = {a0, b0, c0}, e3 = {a0, b0, c0}} = Φ.

(10)

3. DeMorgan Inclusions and Laws

Maji et al. proved the following Proposition.

Proposition 3 (see [6, Proposition 3.3]). It holds that

(1) [(Λ,Σ)
∨̃

(∆,Ω)]
c
= (Λ,Σ)c

∨̃
(∆,Ω)c,

(2) [(Λ,Σ)
∧̃

(∆,Ω)]
c
= (Λ,Σ)c

∧̃
(∆,Ω)c.

The following example shows that (14) and (16) of
Proposition 3 do not hold.

Example 3. Let X = {a, b, c} and E = {e1, e2, e3, e4} and

(Λ,Σ) and (∆,Ω) fuzzy soft sets in a fuzzy soft class (̃X ,E)
given as

(Λ,Σ) = {e3 = {a0.4, b0.6, c0.7}, e4 = {a0.4, b0.3, c1}},

(∆,Ω) = {e2 = {a0.2, b0.2, c0.7}, e4 = {a0.7, b0.8, c0.6}}.

(11)

Then calculations show that

[
(Λ,Σ)

∨̃
(∆,Ω)

]c
= {¬e2 = {a0.8, b0.8, c0.3} ,

¬e3 = {a0.6, b0.4, c0.3},

¬e4= {a0.3, b0.2, c0}}

/={¬e2 = {a0.8, b0.8, c0.3},

¬e3 = {a0.6, b0.4, c0.3},

¬e4= {a0.6, b0.7, c0.4}}

= (Λ,Σ)c
∨̃

(∆,Ω)c,

[
(Λ,Σ)

∧̃
(∆,Ω)

]c
= {¬e4 = {a0.6, b0.7, c0.4}}

/={¬e4 = {a0.3, b0.2, c0}}

= (Λ,Σ)c
∧̃

(∆,Ω)c.

(12)

However, we partially establish identities (14) and (16) of
[6, Proposition 3.3] as follows.

Theorem 1. For fuzzy soft sets (Λ,Σ) and (∆,Ω) in (̃X ,E), one
has the following:

(1) [(Λ,Σ)
∨̃

(∆,Ω)]
c
⊆̃(Λ,Σ)c

∨̃
(∆,Ω)c,

(2) (Λ,Σ)c
∧̃

(∆,Ω)c⊆̃[(Λ,Σ)
∧̃

(∆,Ω)]
c
.

Proof. (1) Suppose that (Λ,Σ)
∨̃

(∆,Ω) = (Θ,Σ ∪ Ω).
Therefore,

[
(Λ,Σ)

∨̃
(∆,Ω)

]c
= (Θ,Σ∪Ω)c

= (Θc, ⌉(Σ∪Ω)) = (Θc, ⌉Σ∪ ⌉Ω)

(13)

by [6, Proposition 2.1]. For ¬α ∈⌉Σ∪ ⌉Ω

Θ
c(¬α) = [Θ(α)]c

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[Λ(α)]c, if ¬α ∈⌉Σ−⌉Ω,

[∆(α)]c, if ¬α ∈⌉Ω−⌉Σ,

[Λ(α)∨ ∆(α)]c, if ¬α ∈⌉Σ∩⌉Ω,

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Λc(¬α), if ¬α ∈⌉Σ−⌉Ω,

∆c(¬α), if ¬α ∈⌉Ω−⌉Σ,

Λc(¬α)∧ ∆c(¬α), if ¬α ∈⌉Σ∩⌉Ω.

(14)

Now consider

(∆,Ω)c
∨̃

(∆,Ω)c = (Λc, ⌉Σ)
∨̃

(∆c, ⌉Ω)

= (Γ, ⌉Σ∩⌉Ω),
(
say
)
,

(15)
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where

Γ(¬α) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Λc(¬α),

∆c(¬α),

Λc(¬α)∨ ∆c(¬α),

if ¬α ∈⌉Σ−⌉Ω,

if ¬α ∈⌉Ω−⌉Σ,

if ¬α ∈ ¬α ∈⌉Σ∩⌉Σ.

(16)

From (14) and (16), we get (1).

(2) Consider (Λ,Σ)c
∧̃

(∆,Ω)c = (Λc, ⌉Σ)
∨̃

(∆c, ⌉Ω) =

(Θ, ⌉Σ∩⌉Ω) (say), where

Θ(¬α) = Λ
c(¬α)∧ ∆

c(¬α), ∀¬α ∈⌉Σ∩⌉Ω. (17)

On the other hand
[

(Λ,Σ)
∧̃

(∆,Ω)

]c
= (Γ,Σ∩Ω)c

(
say
)

= (Γc, ⌉Σ∩⌉Ω).

(18)

Now for ¬α ∈]Σ∩]Ω

Γ
c(¬α) = [Γ(α)]c

= [Λ(α)∧ ∆(α)]c

= Λ
c(¬α)∨ ∆

c(¬α).

(19)

Clearly,

Θ(¬α) = Λ
c(¬α)∧ ∆

c(¬α) ⊆ Λ
c(¬α)∨ ∆

c(¬α) = Γ
c(¬α).

(20)

hence is the result.

In general, these inclusions cannot be reversed, as is
evident from Example 3.

It is well known that DeMorgan Laws interrelate union
and intersection via complements. Here first, we prove the
following DeMorgan Inclusions.

Theorem 2. For soft sets (Λ,Σ) and (∆,Ω) of a soft class

(̃X ,E), one has the following.

(1) (Λ,Σ)c
∧̃

(∆,Ω)c⊆̃[(Λ,Σ)
∨̃

(∆,Ω)]
c
,

(2) [(Λ,Σ)
∧̃

(∆,Ω)]
c
⊆̃(Λ,Σ)c

∨̃
(∆,Ω)c.

Proof. (1)Consider

(Λ,Σ)c
∧̃

(∆,Ω)c = (Λc, ⌉Σ)
∧̃

(∆c, ⌉Ω)

= (Θ, ⌉Σ∩⌉Ω),
(
say
)
,

(21)

where

Θ(¬α) = Λ
c(¬α)∧ ∆

c(¬α), (22)

¬α ∈ Σ∩Ω.
Again suppose that (Λ,Σ)

∨̃
(∆,Ω) = (Γ,Σ ∪ Ω). There-

fore,
(

(Λ,Σ)
∨̃

(∆,Ω)

)c
= (Γ,Σ∪Ω)c

= (Γc, ⌉Σ∩⌉Ω) = (Γc,Σ∪Ω)

(23)

by [6, Proposition 2.1]. For ¬α ∈ Σ∪Ω, we have

Γ
c(¬α) = [Γ(α)]c =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[Λ(α)]c,

[∆(α)]c,

[Λ(α)∨ ∆(α)]c,

α ∈⌉Σ−⌉Ω,

α ∈⌉Ω−⌉Σ,

α ∈⌉Σ∩⌉Ω.

(24)

For ¬α ∈ ⌉Σ∩⌉Ω, we have

Γ
c(¬α) = [Λ(α)∨ ∆(α)]c = Λ

c(¬α)∧ ∆
c(¬α). (25)

From (22) and (24), we get (1).

(2) Suppose that (Λ,Σ)
∧̃

(∆,Ω) = (Θ,Σ∩Ω), where

Θ(α) = Λ(α)∧ ∆(α), for α ∈ Σ∩Ω. (26)

Therefore,

[
(Λ,Σ)

∧̃
(∆,Ω)

]c
= (Θ,Σ∩Ω)c

= (Θc, ⌉(Σ∩Ω)) = (Θc, ⌉Σ∩⌉Ω)

(27)

by [6, Proposition 2.1]. Now take ¬α ∈ ⌉Σ∩⌉Ω, then

Θ
c(¬α) = [Θ(α)]c = [Λ(α)∧ ∆(α)]c

= [Λ(α)]c ∨ [∆(α)]c.

Θ
c(¬α) = Λ

c(¬α)∨ ∆
c(¬α).

(28)

Now consider

(Λ,Σ)c
∨̃

(∆,Ω)c = (Λc, ⌉Σ)
∨̃

(∆c, ⌉Ω)

= (Γ, ⌉Σ∩⌉Ω)
(
say
)
.

(29)

For ¬α ∈ ⌉Σ∪ ⌉Ω, we have

Γ(¬α) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Λc(¬α),

∆c(¬α),

Λc(¬α)∨ ∆c(¬α),

¬α ∈⌉Σ−⌉Ω,

¬α ∈⌉Ω−⌉Σ,

¬α ∈⌉Σ∩⌉Ω.

(30)

From (28) and (30), we get (2).

The above DeMorgan Inclusions are, in general, irre-
versible, as is shown in the following.

Example 4. Let X = {a, b, c} and E = {e1, e2, e3, e4} and

(Λ,Σ) and (∆,Ω) fuzzy soft sets in a fuzzy soft class (̃X ,E)
given as

(Λ,Σ) = {e1 = {a0.2, b0, c0.1}, e2 = {a0.1, b1, c0.4} ,

e4 = {a0.4, b0.7, c1}},

(∆,Ω) = {e2 = {a0.9, b0.2, c0.6}, e4 = {a0.9, b0.4, c0.7}}.

(31)
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Then calculations show that
[

(Λ,Σ)
∨̃

(∆,Ω)

]c
= {¬e1 = {a0.8, b1, c0.9},

¬e2 = {a0.1, b0, c0.4},

¬e4= {a0.1, b0.3, c0}}

/⊆{¬e2 = {a0.1, b0, c0.4},

¬e4= {a0.1, b0.3, c0}}

= (Λ,Σ)c
∧̃

(∆,Ω)c,

(Λ,Σ)c
∨̃

(∆,Ω)c = {¬e1 = {a0.8, b1, c0.9},

¬e2 = {a0.9, b0.8, c0.6},

¬e4= {a0.6, b0.6, c0.3}}

/⊆{¬e2 = {a0.9, b0.8, c0.6},

¬e4= {a0.6, b0.6, c0.3}}

=

[
(Λ,Σ)

∧̃
(∆,Ω)

]c
.

(32)

It is natural to ask when the DeMorgan Inclusions in
Theorem 2 beome DeMorgan Laws. This is answered in the
following.

Theorem 3. For the fuzzy soft sets (Λ,Σ) and (∆,Σ) in a fuzzy

soft class (̃X ,E), one has the following:

(1) (Λ,Σ)c
∧̃

(∆,Σ)c = [(Λ,Σ)
∨̃

(∆,Σ)]
c
,

(2) [(Λ,Σ)
∧̃

(∆,Σ)]
c
= (Λ,Σ)c

∨̃
(∆,Σ)c.

Proof. (1) Consider

(Λ,Σ)c
∧̃

(∆,Σ)c = (Λc, ⌉Σ)
∧̃

(∆c, ⌉Σ)

= (Θ, ⌉Σ),
(
say
) (33)

where for all ¬α ∈⌉Σ

Θ(¬α) = Λ
c(¬α)∧ ∆

c(¬α). (34)

Again suppose that (Λ,Σ)
∨̃

(∆,Σ) = (Γ,Σ). Therefore,

(
(Λ,Σ)

∨̃
(∆,Σ)

)c
= (Γ,Σ)c

= (Γc, ⌉Σ),

(35)

where

Γ
c(¬α) = [Γ(α)]c = [Λ(α)∨ ∆(α)]c. (36)

For all ¬α ∈⌉Σ, we have

Γ
c(¬α) = [Λ(α)∨ ∆(α)]c = Λ

c(¬α)∧ ∆
c(¬α). (37)

From (34) and (37), we obtain (2).
(2) Similar to (1).

4. Generalized DeMorgan Inclusions and Laws

First, we define arbitrary union and arbitrary intersection of

a family of fuzzy soft sets in a fuzzy soft class (̃X ,E) as follows.

Definition 8. Let F = {(Λi,Σi)|i ∈ I} be a family of fuzzy soft

sets in a fuzzy soft class (̃X ,E). Then the union of fuzzy soft
sets in F is a fuzzy soft set (Θ,Ξ),Ξ =

⋃
i Σi and for all ε ∈ Ξ,

Θ(ε) =
∨

i

∆i(ε,Σi), (38)

where

∆i(ε,Σi) =

⎧⎨
⎩
Λi(ε),

Φ,

if ε ∈ Σi,

if ε /∈Σi.
(39)

The union of three fuzzy soft sets is illustrated as under
follows.

Example 5. Let (̃X ,E) be a fuzzy soft class and
(Λ1,Σ1), (Λ2,Σ2), and (Λ3,Σ3), fuzzy soft sets given
as

(Λ1,Σ1){e1 = {a0.9, b0.2, c0.2}, e3 = {a0.4, b0.1, c0.7},

e4 = {a0.3, b0.2, c0}}

(Λ2,Σ2) = {e1 = {a0.4, b0.6, c0.8}, e4 = {a0, b0.9, c0.1}},

(Λ3,Σ3) = {e1 = {a0.8, b0.4, c0.3}, e2 = {a0.6, b0.7, c0.9}}.

(40)

Calculations give

(Λ1,Σ1)
∨̃

(Λ2,Σ2)
∨̃

(Λ3,Σ3) ={e1 = {a0.9, b0.6, c0.8},

e2 = {a0.6, b0.7, c0.9},

e3 = {a0.4, b0.1, c0.7},

e4= {a0.3, b0.9, c0.1}}.

(41)

Now, we generalize Definition 7 as follows.

Definition 9. Let F = {(Λi,Σi)|i ∈ I} be a family of fuzzy

soft sets in a fuzzy soft class (̃X ,E), with
⋂

iΣi /=φ. Then the
intersection of fuzzy soft sets in F is a fuzzy soft set (Θ,Ξ),
where Ξ =

⋂
iΣi and for all ε ∈ Ξ,

Θ(ε) =
∧

i

Λi(ε). (42)

We may now generalize Theorem 2.

Theorem 4. Let S = {(Λi,Σi)|i ∈ I} be a family of fuzzy soft

sets in a fuzzy soft class (̃X ,E). Then one has the following:

(1)
∧̃

i(Λi,Σi)
c
⊆ (
∨̃

i(Λi,Σi))c,

(2) (
∧̃

i(Λi,Σi))c ⊆
∨̃

i(Λi,Σi)
c.

Finally, Theorem 3 may also be generalized.
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Theorem 5. Let F = {(Λi,Σ)|i ∈ I} be a family of fuzzy soft

sets in a fuzzy soft class (̃X ,E). Then one has the following:

(1)
∧̃

i(Λi,Σ)c = (
∨̃

i(Λi,Σ))c,

(2) (
∧̃

i(Λi,Σ))c =
∨̃

i(Λi,Σ)c.

5. Conclusion

The soft set theory proposed by Molodtsov offers a general
mathematical tool for dealing with uncertain and vague
objects. The researchers have contributed towards the fuzzifi-
cation of Soft Set Theory. This paper contributes some more
properties of fuzzy soft union and fuzzy soft intersection
as defined and studied in [6–8] and supports them with
examples and counterexamples. Arbitrary fuzzy soft union,
arbitrary fuzzy soft intersection have been defined. DeMor-
gan Inclusions and DeMorgan Laws have also been given for
an arbitrary collection of fuzzy soft sets. It is hoped that our
findings will help enhancing this study on fuzzy soft sets for
the researchers.
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