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Abstract A graph Γ is said to be G-arc-regular if a subgroup G ≤ Aut(Γ ) acts
regularly on the arcs of Γ . In this paper connected G-arc-regular graphs are classified
in the case when G contains a regular dihedral subgroup D2n of order 2n whose cyclic
subgroup Cn ≤ D2n of index 2 is core-free in G. As an application, all regular Cayley
maps over dihedral groups D2n, n odd, are classified.

Keywords G-arc-regular graph · Cayley graph · Cayley map · Dihedral group

1 Introduction

In this paper all groups and graphs are finite. It is also assumed that the graphs are
simple and undirected. For a graph Γ let V (Γ ), A(Γ ) and Aut(Γ ) denote the vertex
set, the arc set (or dart set) and the automorphism group of Γ , respectively. A k-arc of
Γ is a sequence of k+1 vertices v1, v2, . . . , vk+1 in V (Γ ), not necessarily all distinct,
such that any two consecutive terms are adjacent and any three consecutive terms are
distinct. We say that Γ is G-k-arc-transitive and G-k-arc-regular, respectively, if
G ≤ Aut(Γ ) acts transitively and regularly on the set of k-arcs of Γ . In particular,
Aut(Γ )-k-arc-transitive and Aut(Γ )-k-arc-regular are usually referred to as k-arc-
transitive and k-regular, respectively. Also, we will sometimes omit the prefix k in
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the special case k = 1 and talk about G-arc-transitive and G-arc-regular graphs. Let
K be a group with identity element 1, and let S be a subset of K such that 1 /∈ S and
S = S−1. The Cayley graph Cay(K,S) over K relative to S is the graph with vertex
set K , and the ordered pair (x, y) ∈ K × K is an arc if and only if xy−1 ∈ S.

The question as to which Cayley graphs Cay(K,S) are s-arc-transitive for some
s > 0 has been studied extensively. For instance, 2-arc-transitive Cayley graphs
over Abelian groups have been classified in [15], and those over dihedral groups in
[3, 16, 17]. As for arc-transitivity, a complete classification is known only for Cayley
graphs over cyclic groups, see [8, 14] (it can also be found implicitly in [18]).

In this paper we consider the class of connected G-arc-regular Cayley graphs over
dihedral groups, dihedrants in short. In particular, 1-regular dihedrants have been
studied in a number of papers: 1-regular dihedrants of valency 4 or 6 in [10, 25, 26],
whereas those of prime valency in [7], and moreover a construction of a 1-regular
dihedrant of valency 2k ≥ 4 is given in [13].

The paper is organized as follows. In Sect. 2 we study those connected G-arc-
regular dihedrants, for which G contains a regular dihedral subgroup D2n of order 2n,
and for which the cyclic subgroup Cn ≤ D2n of order n is core-free in G (in other
words, Cn contains no non-trivial normal subgroup of G). Throughout this paper we
will denote the class of these dihedrants by F . The study of the class F was initiated
by the authors in [9], where the following result was proved (see [9, Theorem 1.1]):
if Γ is in class F , then Γ is isomorphic to a lexicographical product (Kn1 ⊗ · · · ⊗
Kn�

)[Kc
m], where the numbers ni are pairwise coprime. It turns out, however, that

not all of the above products are actually contained in F . As the first main result of
this paper we give a complete classification of arc-regular dihedrants in class F (see
Theorem 2.8).

In Sect. 3 we apply our classification theorem to Cayley maps over dihedral groups
(dihedral maps for short). By a map with an underlying graph Γ we mean a triple
M = (Γ ;R,T ), where R is a permutation of the arc set A(Γ ) whose orbits coincide
with the sets of arcs initiating in the same vertex, and T is an involution of A(Γ )

whose orbits coincide with sets of arcs with the same underlying edge. The permuta-
tions R and T are called, respectively, rotation and dart-reversing involution of M. It
is well-known that the group Aut(M) of all automorphisms of M acts semi-regularly
on A(Γ ). We say that M is regular if Aut(M) acts transitively, and hence regularly,
on A(Γ ). (In this paper we consider only orientable embeddings, that is, embed-
dings of graphs into orientable surfaces, and we consider only orientation preserving
automorphisms of the studied maps.) Let S be an inverse closed generating set of
a group K satisfying 1 /∈ S and S = S−1, and let p be a cyclic permutation of S.
Then the Cayley map CM(K,S,p) is defined as the map M = (Γ ;R,T ), where
the underlying graph Γ coincides with Cay(K,S), and the rotation R is defined as
(x, sx)R = (x,p(s)x) for any x ∈ K and s ∈ S. (For more information on regular
maps and Cayley maps we refer the reader to the survey papers [20] and [22], re-
spectively.) The class of cyclic groups is the only class of finite groups for which all
regular Cayley maps have been classified [1]. (The solution for the special case of
cyclic groups of prime order is of an earlier date, see [6].) Apart from cyclic groups
only partial classifications are known including the classification of regular balanced
Cayley maps over dihedral and generalized quaternion groups, see [24], and the clas-
sification of regular t-balanced Cayley maps over dihedral, dicyclic and semi-dihedral
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groups, see [11, 12, 21]. The second main result in this paper is a complete classifi-
cation of all regular Cayley maps over dihedral groups D2n of order 2n where n is
odd (see Theorem 3.2).

2 G-arc-regular dihedrants with trivial cyclic core

We start by fixing relevant notation and terminology. Let G be a group acting on a
set Ω . For a subset Δ ⊆ Ω , denote by GΔ the elementwise stabilizer of Δ in G,
and by G{Δ} the setwise stabilizer of Δ in G. If Δ is a G-invariant subset, then gΔ

denotes the permutation of Δ induced by g ∈ G, and we let GΔ = {gΔ | g ∈ G}.
Suppose that G acts transitively on Ω , and let B be an imprimitivity system of G.
Then GB = {g ∈ G | ∀B ∈ B : Bg = B} is the kernel of G acting on B. We say that B
is normal if GB acts transitively on each block B ∈ B. A block B of G is minimal if
it does not contain any non-trivial, proper block of G, and an imprimitivity system B
is minimal if it is generated by a minimal block B , that is, B = {Bg | g ∈ G}.

Suppose next that, in addition, G contains a regular dihedral subgroup D of order
|D| = 2n with n > 2, and let C ≤ D denote the cyclic subgroup of index 2 in D. If B

is a block of G, then clearly D{B} is a subgroup of D of order |B|. We shall say that
B is of cyclic type, dihedral type, respectively, if D{B} ≤ C, and D{B} � C.

Let Γ be a graph and let G ≤ Aut(Γ ) be a subgroup acting transitively on V (Γ ).
For an imprimitivity system B of G, the quotient graph Γ/B of Γ with respect to
B is the graph with vertex set B, and (B1,B2) ∈ B × B is an arc if and only if Γ

contains an arc (x1, x2) with xi ∈ Bi . We denote by GB the permutation group of B
induced by G acting on B.

For two graphs Γ1 and Γ2, their lexicographical product Γ1[Γ2] of Γ1 with Γ2 is
the graph with vertex set V (Γ1) × V (Γ2), and (u1, u2) is adjacent to (v1, v2) if and
only if u1 is adjacent to v1 in Γ1, or u1 = v1 and u2 is adjacent to v2 in Γ2. The
complement of a graph Γ is denoted by Γ c, and the complete graph with n vertices
is denoted by Kn.

For the rest of the paper, D2n denotes the dihedral group of order 2n with the
presentation

D2n = 〈
r, s

∣∣ r2 = s2 = (rs)n = 1
〉
, and we set Cn = 〈rs〉.

Note that, if n 
= 2, then Cn is the unique cyclic subgroup of D2n of order n. For
d ∈ D2n we denote by d∗ the right translation of D2n acting according to the rule

xd∗ = xd

for any x ∈ D2n and we write H∗ = {x∗ | x ∈ H } for any subgroup H of D2n. Our
goal in this section is to determine the class F of connected G-arc-regular Cayley
graphs Γ over D2n such that G satisfies the following two properties:

(D2n)∗ ≤ G, and coreG

(
(Cn)∗

) = 1. (1)

Recall that for a group A and its subgroup B ≤ A, the core of B in A is the largest
normal subgroup of A contained in B , and denoted by coreA(B). Notice that in the
case n = 2 the second part of (1) should be satisfied by any cyclic subgroup of order 2.
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In Example 2.1 below an outline of a construction of a graph in F with 2n ver-
tices for any n of the form n = 2m, m is odd, and m ≥ 3, is given (for details see
[9, Sect. 3]).

Example 2.1 Let n = 2m, where m ≥ 3 is an odd number, and let D2m be the dihedral
group given by the above presentation. Let Cm ≤ D2m be the unique cyclic subgroup
of order m. Define the group Dn = (D2m × D2m) � 〈σ 〉, where σ is an automor-
phism of D2m × D2m interchanging the coordinates, that is, (x, y)σ = (y, x) for all
(x, y) ∈ D2m × D2m. Notice that Dn is isomorphic to the wreath product D2m � Z2.
The elements of Dn are written as triples (a, b, σ i), a, b ∈ D2m and i ∈ Z2, and the
product of two triples is defined as follows:

(
a, b,σ i

)(
c, d, σ j

) =
{

(ac, bd,σ i+j ) if i = 0,

(ad, bc, σ i+j ) if i = 1.

The subset D = {(a, b,1) | a ∈ D2m,b ∈ 〈r〉} is a subgroup of Dn, and in fact,
D ∼= D2m × Z2 ∼= D2n. It transpires that the unique cyclic subgroup of D of or-
der n is given as C = {(a, b,1) | a ∈ Cm,b ∈ 〈r〉}. It follows from C ∩ Cσ = 1
that coreDn

(C) = 1. Let x ∈ Z∗
m, x2 ≡ 1 (mod m). The subset A = {(cx, c, σ i) |

c ∈ Cm, i ∈ anZ2} is a subgroup of Dn of order n. Clearly, A∩D = 1, and therefore,
Dn is factorized as Dn = AD. A direct check shows that coreDn

(A) = 1.
Consider the action of Dn on the set Dn/A of right A-cosets. Since coreDn

(A) = 1,
this results in a faithful permutation representation of Dn. The subgroup D induces a
regular dihedral subgroup of order 2n, hence it is possible to identify Dn/A with D,
by the bijection Ax ↔ x, x ∈ D. Thus we have the coset graph Cos(Dn,A,AgA) is
isomorphic to Cay(D,S), where AgA = AS. Observe that Cay(D,S) is then Dn-arc-
transitive with Dn satisfying (1).

Let us choose the double coset A(1, r,1)A. Then A(1, r,1)A = AE(1, r,1), where
E ≤ D is the subgroup E = {(ric, ri ,1) | c ∈ Cm, i ∈ Z2} ∼= Dn. This means that

Cos
(
Dn,A,A(1, r,1)A

) ∼= Cay
(
D,E(1, r,1)

) ∼= Kn,n,

and we conclude that Cay(D,E(1, r,1)) is also Dn-arc-regular, and therefore it be-
longs to F .

Herzog and Kaplan proved that the core coreG(C) of a cyclic subgroup C in a
group G is non-trivial if [G : C] ≤ |C| (see [4, Theorem A]). The following similar
result about dihedral subgroups was obtained by the authors (see [9, Theorem 4.3]).

Proposition 2.2 Let G be a finite group, D ≤ G a dihedral subgroup of order 2n with
n > 4, and C the cyclic subgroup of D order n. If [G : D] ≤ n and coreG(C) = 1,
then [G : D] = n, and G ∼= Dn.

Remark Notice that the formulation of Theorem 4.3 given in [9] contains a mistake.
The result given above is formulated in a correct form. The complete list of correc-
tions related to [9] is contained in the last section of the paper.
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We start by enumerating all graphs of small order contained in F .

Proposition 2.3 Let Γ = Cay(D2n, S) be a G-arc-regular graph from class F with
n ≤ 4. Then

(i) n = 1, Γ ∼= K2,G ∼= S2,
(ii) n = 2, Γ ∼= K4,G ∼= A4,

(iii) n = 3, Γ ∼= K2,2,2,G ∼= S4,
(iv) n = 4, Γ ∼= Q3,G ∼= S4.1

Proof If n ≤ 2 then one can easily find that one of the cases (i)–(iii) holds. If n = 3,4
then (Cn)∗ is a characteristic subgroup of (D2n)∗ implying that (D2n)∗ is not normal
in G. Thus |S| = [G : (D2n)∗] ≥ 3.

CASE n = 3. In this case 3 ≤ |S| ≤ 5. If |S| = 5, then G should be a Frobenius
group of order 30 which does not exist. If |S| = 3, then a Sylow 3-subgroup P of G

is Abelian and normal in G. This yields (C3)∗ � G contrary to (1). If |S| = 4, then
|G| = 24 and since a Sylow 3-subgroup of G is not normal, we conclude that G ∼= S4
and Γ ∼= K2,2,2 (case (iii)).

CASE n = 4. If |S| = 7 then G is a Frobenius group of order 56 with elementary
Abelian kernel of order 8 contrary to the inclusion (D8)∗ ≤ G. Also the case of
|S| = 5 is impossible because in this case a point stabilizer is a Sylow 5-subgroup of
order 5 which is normal in G. Thus |S| = 3,4,6. If |S| = 3, then |G| = 24 and the
point stabilizer of G is a Sylow 3-subgroup of order 3 which is not normal. Then there
are four Sylow 3-subgroups. The action of G on the set of its Sylow 3-subgroups
yields a homomorphism into S4 the image of which is either A4 or S4. In the first
case the kernel of the homomorphism has order 2, and, therefore, is contained in
(C4)∗ contrary to (1). In the second case G ∼= S4 and Γ ∼= Q3 (case (iv)).

If |S| = 4, then |G| has order 32 and acts transitively on four right cosets of
the subgroup (D8)∗. This yields a homomorphism of G into a Sylow 2-subgroup
of S4. Comparing orders we conclude that the kernel of the above homomorphism
has order at least 4. Since the kernel is nothing but the core of (D8)∗ in G,
we obtain | coreG((D8)∗)| ≥ 4. Since G is a 2-group, the subgroup coreG((D8)∗)
intersects the center of G non-trivially. Together with coreG((D8)∗) ∩ Z(G) ≤
Z((D8)∗) and |Z((D8)∗)| = 2 we obtain coreG((D8)∗)∩Z(G) = Z((D8)∗) implying
Z((D8)∗) � G. But now the inclusion Z((D8)∗) ≤ (C4)∗ contradicts (1).

If |S| = 6, then (D8)∗ is normal in a Sylow 2-subgroup P which contains (D8)∗.
Also |Pe| = 2 and Pe normalizes (D8)∗. Let g be the unique involution contained
in Pe (recall that it normalizes (D8)∗). Since Ge acts regularly on S, the involu-
tion g has no fixed point inside S, and, therefore, it fixes two points of D8. That
means g centralizes two elements of (D8)∗ implying that C(D8)∗(g) = {1, z∗} where
z ∈ (C4)∗ is the unique non-trivial element of the center of D8. Thus Ge has orbits
{1}, {z},D8 \ {1, z}. Hence the cosets of the subgroup {1, z} form a G-invariant im-
primitivity system A. The kernel K of G-action on the blocks of the A contains z∗.
Moreover, z∗ is a unique fixed-point-free element of K . Therefore z∗ is in the center
of G implying z∗ ∈ coreG((C4)∗) contrary to (1). �

1Here Q3 is a three dimensional cube.
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Let Γ = Cay(D2n, S) be a G-arc-regular graph from class F of valency at most n.
If n ≤ 4 then Proposition 2.3 gives a complete list of graphs. If n > 4 then by Propo-
sition 2.2 |S| = n and G ∼= Dn. In the second case Γ ∼= Cos(Dn,A,AgA), where
A ≤ Dn is a core-free subgroup satisfying A ∩ D = 1 and Dn = AD. It was shown
that under such conditions the coset graph Cos(Dn,A,AgA) is isomorphic to Kn,n

(see [9, Proposition 3.3]), and thus our final goal of finding Γ is accomplished in the
case when the valency of Γ is less than or equal to n.

In the rest of the section we assume that the valency of Γ is greater than n. We shall
first prove two preparatory lemmas. The first one contains some useful properties that
hold for arbitrary connected G-arc-regular graphs. The proof is straightforward and
we omit it.

Lemma 2.4 Let Γ be an undirected, connected and G-arc-regular graph. Then the
following statements hold.

(i) For each arc (x, y) of Γ , there exists a unique involution txy ∈ G which inverts
(x, y) (that is, xtxy = y and ytxy = x).

(ii) The set of all involutions T = {txy | (x, y) ∈ A(Γ )} form a single conjugacy
class of G.

(iii) For each t ∈ T , the centralizer CG(t) acts regularly on the set of all arcs inverted
by t .

(iv) For each arc (x, y) of Γ , G = 〈Gx, txy〉.

Following [2] we shall call the involutions txy as in the above lemma the arc-
inverting involutions of Γ in G.

Lemma 2.5 Let Γ = Cay(D2n, S) be a connected G-arc-regular graph, and T be
the set of arc-inverting involutions of Γ in G. Then the following hold.

(i) For each s ∈ S \ Cn, the permutation s∗ is in T , and
∣∣CG(s∗)

∣∣ = ∣∣CD2n
(s)

∣∣ · ∣∣S ∩ sD2n
∣∣,

where sD2n is the conjugacy class of s in D2n.
(ii) If |S ∩ Cn| = |S|/2 and |S| > n, then |T | = 2n.

Proof To simplify the notation we set D = D2n and C = Cn.
We start by proving (i). Since s ∈ S and s2 = 1, the pair (1, s) is an arc of Γ and

(1, s)s∗ = (s,1). Thus s∗ is an arc-inverting involution. Let us count the number of
arcs inverted by s∗. An arc of Cay(D,S) is of the form (x,u−1x) with x ∈ D,u ∈ S.
Thus the number of arcs inverted by s∗ is equal to

∣∣{(x,u) ∈ D × S | (x,u−1x
) = (

u−1xs, xs
)}∣∣ = ∣∣{x ∈ D | xsx−1 ∈ S

}∣∣

= ∣∣CD(s)
∣∣ · ∣∣S ∩ sD

∣∣.

The statement then follows by Lemma 2.4(iii).
To prove (ii), note that the assumption |S| > n implies that |S ∩C| = |S|/2 > n/2.

If n is odd, then sD = D\C for each s ∈ D\C. In this case S∩sD = S \C, |CD(s)| =
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2 and we find that CG(s∗) has order 2 · |S \ C| = |S|. Since G acts regularly on the
set of arcs of Γ , we have |G| = |S| · |D|, and therefore |T | = |(s∗)G| = |D| = 2n.

If n is even, then D \ C is a union of two D-conjugacy classes of cardinality n/2,
say R1 and R2. Since |S \ C| > n/2, the set S \ C intersects both classes R1 and
R2 non-trivially. By part (i), for each s ∈ S ∩ Ri we have |CG(s∗)| = 4 · |S ∩ Ri |.
But the elements from (S \ C)∗ are arc-inverting involutions. Therefore, they are
conjugate in G, implying that |CG(s∗)| is constant for each s ∈ S \ C. Therefore
4 · |S ∩R1| = 4 · |S ∩R2|, and, consequently, |S ∩R1| = |S|/4. Hence |CG(s∗)| = |S|,
implying |T | = |(s∗)G| = 2n. �

Note that it follows from the above proof of Lemma 2.5 that if n is even and
|S| > n then the two (D2n)∗-conjugacy classes (R1)∗ and (R2)∗ are fused into one,
and we also have the inclusion (D2n)∗ \ (Cn)∗ ⊂ T .

Our approach is to analyze the minimal imprimitivity systems of the groups in
question. We make use of the following description which can be deduced from the
proof of [9, Theorem 1.1].

Proposition 2.6 Let Γ = Cay(D2n, S) be a connected G-arc-regular graph such that
G satisfies (1) and n < |S| < 2n − 1.2 Then one of the following holds.

(i) G has a block system B with block size q , q is an odd prime, Γ ∼= Γ [Kc
q ], and

GB ∼= Z2
q .

(ii) G has a unique minimal block system B of dihedral type, B has block size 2,
Γ ∼= Γ [Kc

2 ], and GB ∼= Z�
2, � ≤ 2.

(iii) G has a unique minimal block system B of dihedral type, B has block size 4,
Γ ∼= Γ [Kc

4 ], and GB ∼= Z2
2.

As the next step we settle the case (ii) of Proposition 2.6.

Theorem 2.7 With notation as in Proposition 2.6, suppose that case (ii) holds. Then
Γ ∼= K2,2,2, and G ∼= S4.

Proof We set first some notation. Again, we write D for D2n and C for Cn. We set
S0 = S ∩ C and N = GB for the kernel of G acting on B. It can be assumed without
loss of generality that B consists of the cosets {1, r}g, g ∈ D. By Proposition 2.6 (ii),
N ∼= Z�

2, � ≤ 2 and Γ ∼= (Γ/B)[Kc
2 ]. The latter isomorphism implies S = {1, r}S0. In

particular, |S0| = |S|/2. Finally, let T be the set of all arc-inverting involutions of Γ

in G. Notice that by Lemma 2.5(ii), |T | = 2n.
The rest of the proof is divided into several steps.

(a) n is odd.

Since B is a block system of G, each involution t ∈ T fixes the same number of
blocks in B. Recall that we have the inclusion D∗ \ C∗ ⊆ T . Let c be a generating
element of C. Now the permutations r∗, (rc)∗ ∈ D∗ \C∗ are conjugate in G, and thus

2Notice that n > 1 in this case.
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fix the same number of blocks in B. If n is even, then r∗ fixes two blocks {1, r} and
{1, r}cn/2, while (rc)∗ fixes none, a contradiction.

Notice that since n is odd, each s∗ ∈ D∗ \ C∗ fixes a unique block of B.

(b) If r∗ ∈ H ≤ G, then CH (r∗) = CH1(r∗)〈r∗〉, and consequently, |CH (r∗)| =
2|CH1(r∗)|.

Since {1, r} is a unique block of B fixed setwise by r∗, each g ∈ CH (r∗) fixes
{1, r} too. Therefore CH (r∗) ≤ H{{1,r}} = H1〈r∗〉. Now the claim follows from 〈r∗〉 ≤
CH (r∗).

Notice that for H = G we have |CG1(r∗)| = |G1|/2 because |CG(r∗)| = |S| =
|G1| (see Lemma 2.5 (i)).

(c) If D∗ ≤ H ≤ G, then either rH∗ = r
D∗∗ or rH∗ = T .

Clearly, r
D∗∗ ⊆ rH∗ ⊆ rG∗ = T . Since CG1(r∗) has index 2 in G1, the index of the

subgroup H1 ∩ CG1(r∗) = CH1(r∗) in H1 is at most 2. Now we can write

∣∣rH∗
∣∣ = |H |

2|CH1(r∗)|
= |H1||D|

|H1|
|H1|

2|CH1(r∗)|
∈ {2n,n}.

(d) 〈T 〉 = G.

If core〈T 〉(C) is trivial, then by Proposition 2.2 either n ≤ 4 or [〈T 〉 : D∗] ≥ n.
Using Proposition 2.3 and oddness of n we conclude that [〈T 〉 : D∗] ≥ n in any case.
This implies [G : 〈T 〉] = [G : D∗]/[〈T 〉 : D∗] ≤ (2n − 1)/n, hence [G : 〈T 〉] = 1.

If core〈T 〉(C) is non-trivial, then the orbits of core〈T 〉(C) form a normal imprimi-
tivity system of 〈T 〉, say L, with odd block size. Since 〈T 〉 is normal in G, Lg, g ∈ G

is also an imprimitivity system of 〈T 〉 with the same block size. But D∗ ≤ 〈T 〉, hence
〈T 〉 admits a unique imprimitivity system with odd block size of a given order. There-
fore Lg = L, implying that L is an imprimitivity system for G too. But this contra-
dicts the assumption that B is a unique minimal imprimitivity system.

(e) For each g ∈ G the subsets D∗ \ C∗ and (D∗ \ C∗)g either coincide or intersect
in at most one element.

Assume toward a contradiction that the subsets D∗ \ C∗, (D∗ \ C∗)g are distinct
and contain two common elements, say u∗, v∗. Then the subgroup 〈u∗v∗〉 is normal
in D∗ and D

g∗ and, therefore, is normal in K = 〈D∗ ∪ (Dg)∗〉. The subsets (D∗ \ C∗)
and (D∗ \ C∗)g are conjugacy classes in the groups D∗ and D

g∗ respectively. Since
they have non-trivial intersection, they are contained in a unique conjugacy class of
K , namely rK∗ . It follows from (D∗ \C∗) 
= (D∗ \C∗)g that |rK∗ | > n. By (c) rK∗ = T .
Together with (d) we obtain K = G. Thus 〈u∗v∗〉 is normal in G, which contradicts
coreG(C∗) = 1.

(f) n = 3, Γ ∼= K2,2,2, and G ∼= S4.

Consider the subsets (D∗ \ C∗)g ⊆ T ,g ∈ G. Since G acts transitively on T , the
union of these sets is the whole T . There are two possibilities: the number of distinct
sets of the form (D∗ \C∗)g, g ∈ G is two or at least three. If there are only two subsets
conjugate to D∗ \C∗, then these are blocks of the action of G on T (by conjugation).
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In this case the setwise stabilizer H of D∗ \ C∗ has index 2 in G, and hence it is
normal in G. Since D∗ \ C∗ is a conjugacy class of H , the subgroup 〈D∗ \ C∗〉 =
D∗ is normal in H . This implies that C∗ � H . Pick an arbitrary g ∈ G \ H . Then
C

g∗ is normal in H too. The intersection C∗ ∩ C
g∗ is normal in G, and hence it is

trivial. This implies that C
g∗ ∩ D∗ = 1 and, therefore, |H | ≥ 2n2 implying |G| ≥ 4n2,

a contradiction.
Thus we may assume that there are at least three subsets conjugate to D∗ \ C∗. By

(e) each two of these subsets intersect in at most one element. Therefore their union
contains at least 3n− 3 elements. Since the union is contained in T and |T | = 2n, we
conclude that n ≤ 3. Thus n = 3, and (f) easily follows. �

We accomplish our goal by showing that the list of desired G-arc-regular graphs
in F is completely exhausted by the graphs obtained till now.

Theorem 2.8 Let Γ = Cay(D2n, S) be a connected G-arc-regular graph such that
(D2n)∗ ≤ G, and (Cn)∗ is core-free in G. Then one of the following holds.

(i) n = 1, Γ ∼= K2, and G ∼= S2,
(ii) n = 2, Γ ∼= K4, and G ∼= A4,

(iii) n = 3, Γ ∼= K2,2,2, and G ∼= S4,
(iv) n = 4, Γ ∼= Q3, and G ∼= S4,
(v) n = 2m, m is an odd number, Γ ∼= Kn,n, and G ∼= Dn.

Proof If n ≤ 4, then Proposition 2.3 yields the result. Thus in what follows we as-
sume that n > 4. If the valency of Γ is less than or equal to n, then (v) follows by
Proposition 2.2 and the paragraph after Proposition 2.3.

We complete the proof by showing that no graph Γ under the assumption has
valency greater than n for n > 4. Towards a contradiction let us choose Γ as a counter
example which is also minimal relative to its order 2n. If the group G is primitive,
then Wielandt’s Theorem [27, Satz 2] gives the result that it is 2-transitive. Thus G is
a 2-transitive Frobenius group, and G contains a regular, normal, elementary Abelian
Sylow p-subgroup. This implies n = 2, a contradiction. Thus G is imprimitive, and
Proposition 2.6 is applicable. Fix an arbitrary non-trivial imprimitivity system B of G.
Till the end of the proof we write N for GB , D for D2n and C for C2n.

If case (ii) of Proposition 2.6 occurs, then Theorem 2.7 yields the result. Thus it
remains to resolve cases (i) and (iii) of Proposition 2.6.

Assume for the moment that case (iii) of Proposition 2.6 holds. Then n is even,
and we let n = 2m and c = rs. Recall that N = GB ∼= Z2

2. We may assume that B
consists of the cosets {1, r, cm, rcm}ci, ci ∈ C. Clearly, (cm)∗ is in N . Let T be the
set of arc-inverting involutions of Γ in G.

We show that [t∗,N] = 1 for some t ∈ D \ C. As cm ∈ Z(D), the group D∗ acts
on N as a group of order at most 2. Thus if [t∗,N] 
= 1 for all t ∈ D \ C, then
CD∗(N) = C∗. Pick an element t ∈ (D \ C) ∩ S, that is, t = rci for some ci ∈ C.
Let x be an element in N such that xB = (1, r)(cm, rcm) where B is the block
{1, r, cm, rcm}. Since (ci)∗ commutes with x, we have (ci)x = 1(ci )∗x = 1x(ci )∗ = rci ,
and (rci)x = ci Similarly, x switches cm+i and rcm+i , and so we get xBci =
(ci, rci)(cm+i , rcm+i ). From these 1t∗x = (rci)x = ci and (ci)t∗x = rx = 1. Thus



446 J Algebr Comb (2013) 38:437–455

t∗x inverts the arc (1, ci). The element t = rci was chosen from S, hence (1, rci) is
an arc of Γ . Since Γ ∼= Γ [Kc

4 ], 1 is adjacent with any element in {1, r, cm, rcm}ci , in
particular, the arc (1, ci) is in A(Γ ), hence t∗x is in T , and thus (t∗x)2 = 1. We con-
clude [t∗,N ] = [t∗, 〈(cm)∗, x〉] = 1, as required. Observe that T = tG∗ together with
N � G implies [T ,N] = 1.

We show next that T = (D∗ \ C∗)N . Pick an s ∈ S and denote the block in B
containing s by B ′. Since Γ ∼= Γ [Kc

4 ], there exists t ∈ B ′ ∩ (D \ C) ∩ S. Also, there
exists y ∈ N such that ty = s and sy = t . As [t∗, y] = 1, we find 1t∗y = s, and st∗y =
syt∗ = 1. Thus t∗y is in T inverting the arc (1, s). We conclude that (D∗ \ C∗)N
contains t1,s for all s ∈ S. Let (z, sz) be any arc of Γ , z ∈ D,s ∈ S. Then tz,zs = t

z∗
1,s ,

and by the previous observation, tz,zs ∈ (D∗ \ C∗)N , implying that T = (D∗ \ C∗)N .
Thus we get D∗ ≤ 〈T 〉 ≤ D∗N . It is clear that 〈T 〉 � G. Since [D∗N : D∗] = 2

and T � D∗, we find 〈T 〉 = D∗N . In particular, D∗N � G. Using [T ,N] = 1 we
obtain [D∗,N ] = 1. Hence (D∗N)2 = (D∗)2N2 = (C∗)2 is normal in G. But the
group (C∗)2 has order m > 1, contradicting coreG(C∗) = 1.

We are left with case (i) of Proposition 2.6. In this case N ∼= Z2
q , where q is an

odd prime. Let G = G/N , i.e., G is the permutation group induced by the action
of G on B, and let Γ be the corresponding quotient graph Γ/B. We determine Γ

and G.
Since Γ = Γ [Kc

q ], the graph Γ is G-arc-regular. Clearly, the valency of Γ is

greater than n/q = |D|/2, and D∗ ≤ G. Then N = 〈Q G∗ 〉, where Q ≤ C, |Q| = q .
Using this fact it is proved (see [9, Proposition 4.1]) that

∣∣coreG(C∗)
∣∣ = ∣∣coreG/N(C∗N/N)

∣∣ ≤ ∣∣coreG(C∗)
∣∣ = 1.

We conclude that G satisfies (1), and thus Γ is in F . By minimality of Γ it follows
that Γ must be one of the graphs in (ii)–(iii), and G is isomorphic to either A4 or S4.

Consider the action of G on N ∼= Z2
q . Since C∗ ∩ N = Q∗ and any r ∈ D∗ \ C∗

inverts the elements of Q∗, the group D∗ acts on N non-trivially. If the kernel of the
G-action on N is non-trivial, then it should contain the Klein 4-group K ∼= Z2

2 (it is a
unique minimal normal subgroup of G). In this case G ∼= S4, D∗ ∼= S3 and G = KD∗
implying G = CG(N)D∗, hence Q∗ � G, contrary to coreG(C∗) = 1. Thus we may
assume that G acts on N faithfully, that is, it is embedded into GL(Z2

q). A faithful

action of K on N contains a non-identical element in Z(GL(Z2
q)) represented by the

matrix −I . In particular, Z(G) 
= 1. But G ∼= A4, or G ∼= S4, leading to a contradic-
tion. This completes the proof of the theorem. �

3 Regular dihedral maps of order 2n, n is odd

We start with notation and terminology. Given two maps M1 = (Γ1;R1, T1) and
M2 = (Γ2;R2, T2), an isomorphism ϕ from M1 to M2 is a bijection ϕ : A(Γ1) →
A(Γ2) such that R1ϕ = ϕR2 and T1ϕ = ϕT2. Thus ϕ maps the orbits of R1 onto
the orbits of R2, and thus induces naturally a bijection from V (Γ1) to V (Γ2). This
bijection is clearly a graph isomorphism from Γ1 to Γ2, and will also be denoted by
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ϕ. In case M1 = M2 = M the bijection ϕ is called an automorphism of M. Two
Cayley maps CM(K1, S1,p1) and CM(K2, S2,p2) are said to be equivalent if there
exists a group isomorphism ϕ : G1 → G2 which maps S1 to S2 such that p1ϕ = ϕp2.
Equivalent Cayley maps are isomorphic as maps, however, the converse is not true,
isomorphic Cayley maps may not be equivalent as Cayley maps.

A Cayley map M = CM(K,S,p) is called t-balanced if p(s)−1 = pt(s−1) for all
s ∈ S. In particular, if t = 1, then we say that M is balanced. It is known (see [23])
that a regular Cayley map M is balanced if and only if there exists a group auto-
morphism σ of K whose restriction to S is equal to p. In this case the group K∗ of
right translations of K is normal in Aut(M) and Aut(M) ∼= K∗ � 〈σ 〉. More gener-
ally, a Cayley map M = CM(K,S,p) is regular if and only if there exists a skew-
morphism ψ of K whose restriction to S is equal to p (see [6, Theorem 1]). By a
skew-morphism of K we mean a permutation ψ of K such that there exists a func-
tion π : K → {0,1, . . . ,m − 1}, where m is the order of ψ , such that

• 1ψ = 1, and
• (xy)ψ = xψπ(y)

yψ for all x, y ∈ K .

The function π is called the power function of ψ . We remark that our definition of
a skew-morphism differs from the one given in [6], which is due to the fact that in
our presentation we adopt the convention to write permutations acting on the right.
Nevertheless, the theory of skew-morphisms developed in [6] can be repeated, in
particular, we have the property that a permutation ψ of K such that 1ψ = 1 is a
skew-morphism of K if and only if the product K∗〈ψ〉 is a subgroup in Sym(K).

Our main goal in this section is to classify all Cayley maps over dihedral groups
D2n such that n is odd. As in the previous section the group D2n is given by the
presentation D2n = 〈r, s | r2 = s2 = (rs)n = 1〉, and Cn = 〈c〉, where c = rs. The au-
tomorphism group of D2n is given as

Aut(D2n) = {
σi,j | σi,j (c) = ci, σi,j (r) = rcj , i, j ∈ {0,1, . . . , n− 1},gcd(i, n) = 1

}
.

Let � ∈ {0,1, . . . , n−1}, gcd(�, n) = 1, and let k be the smallest positive integer such
that 1 + �+ · · ·+ �k−1 ≡ 0 (mod n). (The number k is in fact equal to the size of the
orbit containing 0 for the permutation x �→ �x + 1 of Zn.) Let

S = {
r, rc, rc1+�, . . . , rc1+�+···+�k−2}

, and

p = (
r, rc, rc1+�, . . . , rc1+�+···+�k−2)

.

Consider the automorphism σ�,1 ∈ Aut(D2n). The restriction of σ�,1 to S is p, hence
CM(D2n, S,p) is a balanced regular Cayley map. It was proved in [24] that any regu-
lar balanced Cayley map over D2n can be described as a Cayley map CM(D2n, S,p)

for some � with gcd(�, n) = 1. Moreover, two such dihedral maps arising from some
�1 and �2 such that gcd(�1, n) = 1 and gcd(�2, n) = 1 are isomorphic if and only if
�1 = �2, therefore, the number of non-isomorphic regular balanced Cayley maps over
D2n is equal to ϕ(n), where ϕ is Euler’s totient function.

In the rest of the section we turn to regular non-balanced dihedral maps.

Example 3.1 (Non-balanced, regular Cayley maps CM(n, �) over D2n) Let T be the
set of all pairs (n, �) of positive integers satisfying the following conditions:
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• n is an odd number, n ≡ 0 (mod 3), and
• � is an element in Z∗

n of odd order m.

For each pair (n, �) in T we define a Cayley map CM(D2n, S,p), which we also
denote by CM(n, �), as follows:

S = {
c�i

, c−�i

, rc�i

, rc−�i ∣∣ i ∈ {0, . . . ,m − 1}}, and

p = (
c, rc−�, rc�2

, c−�3
, . . . , c�4m−4

, rc−�4m−3
, rc�4m−2

, c−�4m−1)
.

We claim that CM(n, �) is regular and non-balanced. Let σ = σ�,0 in Aut(D2n). Then
Sσ = S, thus we find that σ ∈ Aut(Cay(D2n, S)). For i ∈ {0,1,2} define the permuta-
tion μi ∈ Sym(D2n) as

(
rxcy

)μi =
{

rxcy if y ≡ i (mod 3),

rx+1cy otherwise.
(2)

Then N = {id,μ0,μ1,μ2} is a subgroup of Sym(D2n), N ∼= Z2
2. It is easily seen that

μi ∈ Aut(Cay(D2n, S)) for all i ∈ {1,2,3}. The group N is normalized by all d∗ ∈ D∗,
and it is centralized by σ . Moreover, N ∩ (D∗ � 〈σ 〉) = 1, and we can form the
semidirect product G = N � (D∗ � 〈σ 〉). This is a subgroup G ≤ Aut(Cay(D2n, S)),
and acts transitively on the set of arcs of Cay(D2n, S). The stabilizer

G1 = 〈μ1r∗, σ 〉 ∼= Z4 × Zm
∼= Z4m,

hence the element ψ = μ1r∗σ is a generator of G1. Then G = (D2n)∗〈ψ〉, and so ψ

is a skew-morphism of D2n. The restriction of ψ on S is equal to p, hence CM(n, �) is
regular. It is non-balanced too. Otherwise C∗ � G, implying that S ∩ 〈c〉 = ∅, which
is not the case.

The main result of this section is the following theorem.

Theorem 3.2 Let M be a regular, non-balanced Cayley map over a dihedral group
D2n such that n is odd. Then

(i) M is isomorphic to a map CM(n, �) for some (n, �) ∈ T .
(ii) For any two pairs (n, �1), (n, �2) ∈ T , the maps CM(n, �1) and CM(n, �2) are

isomorphic if and only if �1 = �2.

The following corollary is immediate. For a positive integer x denote x2 the largest
2-power that divides x, that is, x2 = 2e such that 2e | x and 2e+1 
 | x.

Corollary 3.3 The number of non-isomorphic regular Cayley maps over the dihedral
group D2n with odd n, is equal to

{
ϕ(n) if n 
≡ 0 (mod 3),

ϕ(n)(1 + 1
ϕ(n)2

) if n ≡ 0 (mod 3),

where ϕ denotes Euler’s totient function.
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Proof By the above discussion the number of non-isomorphic balanced regular Cay-
ley maps over D2n is equal to ϕ(n). If there also exist non-balanced ones, then n must
be divisible by 3, and in this case the number of non-isomorphic non-balanced reg-
ular Cayley maps over D2n is the same as the number of elements � in Z∗

n that have
odd order. Let n have prime decomposition n = p

e1
1 · · ·pek

k . Since n is odd, the group
Z∗

n is Abelian and it can be written as Z∗
n = C

p
e1−1
1 (p1−1)

· · ·C
p

ek−1
k (pk−1)

for pairwise

trivially intersecting cyclic subgroups C
p

ei−1
i (pi−1)

≤ Z∗
n. Therefore, any � ∈ Z∗

n is

written uniquely in the form � = �1 · · ·�k , and �i ∈ C
p

ei−1
i (pi−1)

for all i ∈ {1, . . . , k}.
The order of � is odd if and only if the order of �i is odd for all i ∈ {1, . . . , k}. The
number of elements of the cyclic subgroup C

p
ei−1
i (pi−1)

of odd order is

∑

d|pei−1
i (pi−1)/(p

ei−1
i (pi−1))2

ϕ(d) = p
ei−1
i (pi − 1)

(p
ei−1
i (pi − 1))2

.

Thus the required number is

ϕ(n) +
k∏

i=1

p
ei−1
i (pi − 1)

(p
ei−1
i (pi − 1))2

= ϕ(n) + ϕ(n)/ϕ(n)2.
�

Theorem 3.2 is proved after a series of preparatory steps. We start with a property
that holds for arbitrary G-arc-regular graphs whose stabilizer subgroups are Hamil-
tonian. Recall that an imprimitivity system B of G is normal if the kernel GB acts
transitively on every block in B.

Proposition 3.4 Let Γ be a G-arc-regular undirected graph, and B be a normal
non-trivial imprimitivity system of G. If the stabilizer Gv is a Hamiltonian group for
v ∈ V (Γ ), then the quotient graph Γ/B is GB -arc-regular.

Proof Let (v1, v2) ∈ A(Γ ) be an arbitrary arc of Γ and let t be the unique involution
inverting this arc. By Lemma 2.4(iv), 〈Gvi

, t〉 = G. The orbits Vi = v
GB
i , i = 1,2,

are blocks of B which are connected by at least one arc in Γ . Therefore, (V1,V2) is
an arc of the quotient graph Γ/B. Its stabilizer in GB coincides with G{V1,V2}/GB ,
where GB is the kernel of G acting on B, and G{V1,V2} = G{V1} ∩ G{V2}, G{Vi } is the
setwise stabilizer of Vi in G (i = 1,2).

Since GB acts transitively on Vi , we obtain G{Vi } = Gvi
GB . Since vt

i = v3−i ,
i = 1,2, we obtain G{Vi } = Gt

{V3−i } implying Gt
{V1,V2} = G{V1,V2}. Since GB ≤

G{V1,V2} ≤ Gvi
GB , we can write G{V1,V2} = (G{V1,V2} ∩ Gvi

)GB . Since Gvi
is

Hamiltonian, the intersection (G{V1,V2} ∩ Gvi
) is normalized by Gvi

, Therefore the
group (G{V1,V2} ∩ Gvi

)GB is also normalized by Gvi
. Thus the subgroup G{V1,V2} =

(G{V1,V2} ∩Gvi
)GB is normalized by Gvi

and t . Since 〈Gvi
, t〉 = G, we conclude that

G{V1,V2} is normal in G. Therefore G{V1,V2} ≤ GB implying G{V1,V2} = GB . Hence
the arc stabilizer in the quotient graph is trivial. �

Let M = (Γ ;R,T ) be a regular map with underlying graph Γ . Suppose that B
is a non-trivial normal imprimitivity system of Aut(Γ ). Observe that Aut(Γ )v is a
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cyclic group, hence Proposition 3.4 is applicable. Let ∼ be the relation on the arc
set A(Γ ) defined by (u1, u2) ∼ (v1, v2) if and only if ui, vi are in the same block
of B for both i = 1,2. In other words, the classes of ∼ correspond to the arcs of the
quotient graph Γ/B. Let (u1, u2) ∼ (v1, v2), and let ui, vi be in the blocks Bi ∈ B
(i = 1,2). Since M is regular, (u1, v1)

g = (u2, v2) for some g ∈ Aut(M). Then g ∈
Aut(M){B1,B2}, and Proposition 3.4 gives the result that g ∈ Aut(M)B . By definition
Rg = gR, and we find (u2, v2)

R = (u1, v1)
gR = (u1, v1)

Rg = ((u1, v1)
R)g , so that

(u1, v1)
R ∼ (u2, v2)

R . The relation ∼ is R-invariant. Denote RB the permutation of
the arc set A(Γ/B) induced by the action of R. The quotient map M/B is defined as

M/B = (
Γ/B;RB, T B)

,

where T B is the dart-reversing involution of M/B switching the arcs of Γ/B. The
following statement is a consequence of Proposition 3.4.

Corollary 3.5 Let M = (Γ ;R,T ) be a regular map, and B be a non-trivial, nor-
mal imprimitivity system of Aut(M). Then the quotient map M/B is regular, and
Aut(M/B) = Aut(M)B .

In the next two lemmas we make some observations about the subset S such that
CM(D2n, S,p) is a regular map and n is odd.

Lemma 3.6 Let M = CM(D2n, S,p) be a regular Cayley map such that n is odd.
Then M is balanced if and only if S ∩ Cn = ∅.

Proof We set D = D2n, C = C2n, and G = Aut(M). If D∗ is normal in G (that is,
M is balanced), then S is an orbit of some subgroup of Aut(D), and, therefore, all
elements of S have the same order. Since S \ C 
= ∅, we conclude S ⊆ D \ C.

Assume now that S ⊆ D \ C. By the proof of Lemma 2.5 |CG(s∗)| = 2|S| for any
s ∈ S. Therefore |(s∗)G| = n. But |(s∗)D∗ | = n. Therefore (s∗)G = (s∗)D∗ implying
that D∗ = 〈(s∗)D∗〉 � G. �

Lemma 3.7 Let M = CM(D2n, S,p) be a regular, non-balanced Cayley map such
that n is odd. Then |S ∩ Cn| = |S|/2.

Proof We set D = D2n, C = Cn, G = Aut(M), and further that S0 = S∩C. We prove
the lemma by induction on n. If n = 3, then it follows directly that S = D \ {1, r} for
some r ∈ D \ C. Let n > 3. Let B be the (unique) maximal imprimitivity system
of G of cyclic type. Let B ∈ B be a block containing 1 (that is, B ≤ C). Then the
blocks of B are orbits of B∗ implying that B is normal. Assume that B is trivial.
Then coreG(C) = 1 and n = 3 by Theorem 2.8, which is a contradiction. Thus B is
non-trivial.

Apply the induction hypothesis to the quotient map M/B. This is a regular Cayley
map over the dihedral group D/B . This results in |(SB/B)0|/|(SB/B)| = 1/2. Since
(SB/B) ∩ C/B = (SB ∩ C)/B , we can write |(SB/B)0| = |(SB)0|/|B|. But SB ∩
C = (S ∩ C)B = S0B . Since |sB ∩ S| does not depend on a choice of s ∈ S, we
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obtain |S0B| = |S0||B|/|sB ∩ S| implying |(SB/B)0| = |S0|/|sB ∩ S|. Analogously,
|SB/B| = |S|/|sB ∩ S|. Taking the ratio we obtain |S0|/|S| = |(SB/B)0|/|SB/B| =
1/2. �

A crucial observation in our proof of Theorem 3.2 is that if M is a regular, non-
balanced dihedral map over D2n such that n is odd, then Aut(M) always admits an
imprimitivity system with block size 2. This fact we prove in Lemma 3.9, but before
that discuss some of its consequences. Recall that if x ∈ Aut(M) (acting on D2n),
then we write Fix(x) = {d ∈ D2n | dx = d}.
Lemma 3.8 Let M = CM(D2n, S,p) be a regular, non-balanced Cayley map such
that n is odd, and suppose that B is an imprimitivity system of Aut(M) with block
size 2. Then

(i) The kernel Aut(M)B is isomorphic to Z2
2.

(ii) |Fix(x)| = 2n/3 for all x ∈ Aut(M)B with x 
= 1. In particular, n ≡ 0 (mod 3).
(iii) The non-trivial elements in Aut(M)B form a conjugacy class of G.

Proof We set D = D2n, C = Cn, G = Aut(M), and N = GB . The graph Cay(D,S)

is G-arc-regular, thus N ∼= Z�
2, � ≤ 2. We may assume that B consists of the right

cosets {1, r}d , d ∈ D.
(i) Consider the action of G on the blocks of B. We may choose B so that B =

{1, r} is a block in B. Let y denote a generating element of the stabilizer G1. Then
G{B} = G1〈r∗〉 = 〈y〉〈r∗〉 and 〈y〉 is normal in G{B} as it is an index 2 subgroup. Since
r∗ fixes setwise a unique block of B, namely B , each element commuting with r∗ fixes
B too. Therefore CG(r∗) ≤ G{B}. It follows from |CG(r∗)| = |S|, |G{B}| = 2|S| and
G{B} = 〈y〉〈r∗〉 that C〈y〉(r∗) = 〈y2〉. In particular, G{B} is non-Abelian.

Let G+ be the intersection of G with the alternating group Alt(D) in Sym(D).
Since G contains odd permutations (those belonging to D∗ \ C∗), we conclude
[G : G+] = 2. Since C∗ ≤ Alt(D), the group G+ either has two orbits on D (the two
orbits of C∗) or acts transitively. In the first case the orbits of C∗ form an imprimi-
tivity system of G contrary to S ∩ C 
= ∅. Hence G+ acts transitively on D which,
in turn, implies that [G1 : G+

1 ] = 2, or, equivalently, |G+| = |S|n. It follows from
[G1 : G+

1 ] = 2 that y is an odd permutation. Since y2 and r∗y are even permutations,
〈y2, r∗y〉 ≤ G+

{B}. By the fact that r∗y /∈ 〈y〉, we get that |〈y2, r∗y〉| ≥ |S| = |G+
{B}|,

and thus G+
{B} = 〈y2, r∗y〉. The element r∗ centralizes y2, hence the group 〈y2, r∗〉 =

G+
{B} is Abelian, and G+ is a product of two Abelian groups: G+

{B} and C∗. Thus by
Ito’s Theorem [G+,G+] is Abelian.

Assume first that [G+,G+] has odd order. Then its orbits on D form an imprim-
itivity system, say C , with blocks of odd cardinality. The quotient G+/[G+,G+] is
an Abelian group acting transitively on C . Hence (G+)C is a regular Abelian group
of order 2k for some odd k. The subgroup K of (G+)C of order k has two orbits
on C of size k. K is characteristic in (G+)C , and hence it is normal in GC . Hence its
preimage is normal in G and has two orbits on D of cardinality n. But this contradicts
S ∩ C 
= ∅.

Thus we may assume that a Sylow 2-subgroup P of [G+,G+] is non-trivial. Since
[G+,G+] is characteristic in G+, it is normal in G. This implies that P is normal in
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G, and so P ≤ N . We conclude that N 
= 1, implying that N is transitive on B , and
thus G{B} = G1N . If N ∼= Z2, then N is in the center of G. But then G{B} is Abelian,
a contradiction. Thus N ∼= Z2

2, and (i) is proved.
(ii) Since N � G, the subset Fix(N1) = ⋂

x∈N1
Fix(x) is a block of G (see [9,

Proposition 5.2]). Obviously, B ⊆ Fix(N1). Hence |Fix(N1)| is even, implying that
the number of the blocks in the imprimitivity system Fix(N1)

G is odd. Since there are
three subgroups of N of index 2, the number of blocks in Fix(N1)

G is at most 3. But
Fix(N1)

G contains more than one block, because N is not semi-regular on D, and (ii)
follows.

(iii) This follows directly from (ii). �

Lemma 3.9 Let M = CM(D2n, S,p) be a regular, non-balanced Cayley map such
that n is odd. Then there exists an imprimitivity system of Aut(M) with block size 2.

Proof Towards a contradiction let us choose M as a counter example which is
minimal relative to the order 2n of the corresponding dihedral group D2n. We set
D = D2n, C = Cn, and G = Aut(M). Then O2(G) = 1.

Let K be a minimal normal subgroup of G. By Huppert–Ito Theorem (see [5]) the
group G = D∗G1 is solvable. We obtain K ∼= Z�

q for some odd prime q . The orbits
of K form an imprimitivity system K, the block size of which is a power of q . Since
the block size of K is odd, K consists of the right cosets of a q-subgroup Q ≤ C. By
[19, Proposition 3.2] we conclude that |Q| = q . Clearly, Q∗ ≤ K . By the regularity
of G on the set of arcs we obtain either K = Q∗, or K ∼= Z2

q . Factoring out by the
imprimitivity system K we obtain the dihedral map M/K over the group D/Q. The
group Aut(M/K) ∼= G/L, where L = GK . By the minimality of M the permutation
group Aut(M/K) has an imprimitivity system with block size two. By Lemma 3.8,
the group G/L contains an elementary Abelian normal subgroup of order 4, say
M/L ∼= Z2

2. Moreover, since the involutions of M/L form a single conjugacy class
of G/L, the subgroup M/L is a minimal normal subgroup of G/L.

Since Q∗ ≤ L and Q∗ acts transitively on each block of K, we obtain L = L1Q∗.
By the regularity of G on the set of arcs we conclude that |L1| ≤ q .

Consider first the case that |L1| = q . In this case L ∼= Z2
q , and, therefore, K = L.

Since M/L ∼= Z2
2, we may write M = L � N , where N ∼= Z2

2. It follows from
O2(G) = 1 that O2(M) = 1. Therefore the kernel of the action of N on L is trivial,
or equivalently N acts faithfully on L. In any faithful action of Z2

2 on Z2
q two invo-

lutions of Z2
2 centralize q elements while the third one centralizes only the identity.

Let us denote the first two by a, b, and the third one by c. Thus N = {1, a, b, c}, and
|CL(a)| = |CL(b)| = q , |CL(c)| = 1. Then |CM(a)| = |CM(b)| = 4q , |CM(c)| = 4,
and, consequently |aM | = q , |bM | = q , |cM | = q2. By Sylow’s Theorems each in-
volution of M is M-conjugate to one of a, b, c. Therefore aM,bM, cM are the only
conjugacy classes of involutions contained in M . Since M is normal in G, G per-
mutes these conjugacy classes. But cM is the only one among the three which
has cardinality q2. Therefore (cM)G = cM , or equivalently, cG = cM . Therefore
〈cG〉 = 〈cM 〉 = L〈c〉 � G. But in this case 〈c〉L/L is a normal subgroup of G/L

contrary to minimality of M/L in G/L.
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Consider now the remaining case |L1| < q . In this case K = Q∗ implying that
Q∗ � G. It follows from |M| = 4|L| = 4q|L1| that Q∗ is a unique Sylow q-subgroup
in M . Since Q∗ and M are normal in G, the subgroup CM(Q∗) is normal in G

as well. Since CL(Q∗) is a q-group, we conclude that CL(Q∗) = Q∗. This im-
plies that CM(Q∗) ∩ L = Q∗, and therefore, the quotient group CM(Q∗)/Q∗ =
CM(Q∗)/(CM(Q∗) ∩ L) ∼= CM(Q∗)L/L is embedded into M/L ∼= Z2

2. Thus
CM(Q∗) ∼= Zq × Ze

2 with e ≤ 2. It follows from CM(Q∗) � G that the subgroup
O2(CM(Q∗)) ∼= Ze

2 is contained in O2(G) = 1. Therefore e = 0 and CM(Q∗) = Q∗.
In this case the quotient group M/Q∗ is embedded into Aut(Zq), and hence it is
cyclic. But (M/Q∗)/(L/Q∗) ∼= M/L ∼= Z2

2, a contradiction. �

Proof of Theorem 3.2 Let M = CM(D2n, S,p) be a regular, non-balanced Cayley
map over the dihedral group D2n such that n is odd. We set D = D2n, C = C2n

and G = Aut(M). Let y be a generating element of the stabilizer G1. Lemma 3.7
gives |S ∩ C| = |S|/2. Also, |S ∩ C| is even because of (S ∩ C)−1 = S ∩ C, hence 4
divides |S|. Let |S| = 4m.

By Lemma 3.9, G has an imprimitivity system B of block size 2. Up to equivalence
of M, we may assume that B consists of the cosets {1, r}d , d ∈ D. Let N = GB . By
Lemma 3.8(i), N ∼= Z2

2. Observe that Lemma 3.8(ii) implies that N = {μ0,μ1,μ2,1},
where the permutations μi are defined in (2).

The group D∗ acts on N \ {1} either trivially or as S2 or S3. In the first two cases
there exists a non-trivial element of N , μi say, centralized by D∗. Since D∗ is tran-
sitive on D, μi is fixed-point-free. But this contradicts Lemma 3.8(ii). Hence D∗
acts on N \ {1} as S3. Since the elements of D∗ are fixed-point-free, the intersection
N ∩ D∗ = 1. Therefore, ND∗ ∼= Z2

2 � D, and |ND∗| = 8n.
Since D∗ acts on N \ {1} as S3, each element of D∗ \ C∗ centralizes one invo-

lution in N . Therefore the centralizer of each element s∗ ∈ D∗ \ C∗ in ND∗ has
order 4, implying |(s∗)ND∗ | = 2n. Therefore T = (s∗)G = (s∗)ND∗ , and the subgroup
〈(s∗)ND∗〉 = ND∗ is normal in G. Since both N and ND∗ are normal in G, the
subgroup CND∗(N) is normal in G too. The group D∗ acts on N as AutN ∼= S3.
Hence CND∗(N) = NC3∗ (here C3∗ is the unique subgroup of C∗ of index 3). Thus
NC3∗ � G. Since NC3∗ is Abelian, the subgroup (NC3∗)2 = C3∗ is characteristic in
NC3∗ and, therefore, C3∗ � G.

Consider now the factor group G = G/C3∗ . Then N ∼= N ∼= Z2
2, D∗ ∼= D6 ∼= S3,

and 〈y〉 ∼= 〈y〉. Since D∗ ∼= S3 acts on N faithfully, we obtain ND∗ ∼= S4. Since
Aut(S4) = Inn(S4), the group G is isomorphic to a direct sum S4 × K , where
K = CG(ND∗). It follows from G = 〈y〉D∗ that G = 〈y,D∗〉 with 〈y〉 ∩ D∗ = 1.
Thus |〈y〉 ∩ ND∗| = 4 and K ∼= G/ND∗ ∼= Zm. Thus G ∼= S4 × Zm. The group
S4 ×Zm contains an element of order 4m if and only if m is odd. Hence m is odd and
G = ND∗ × 〈y4〉.

The subgroup C∗ has order 3 and is contained in ND∗ ∼= S4. Therefore its nor-
malizer in G is D∗ × 〈y4〉. Since C3∗ is the kernel of the homomorphism G → G

and C3∗ < D∗, we conclude that NG(C∗) = D∗〈y4〉 (together with NND∗(D∗) = D∗
we obtain G = N � NG(C∗)). It is proved that NSym(D)(C∗) = NSym(D)(D∗) (see
[9, Proposition 6.2]). Hence y4 is an automorphism of D2n of order m such that
y4 centralizes r∗. Therefore we get y4 = σ�,0 such that (n, �) ∈ T. It follows that
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y = μ1r∗σ�,0, and G is as described in Example 3.1. Now S is an orbit of 〈y〉 such
that S generates D2n. Then S ∩ C contains a generator of C, implying that S has a
conjugate

Sσ�′,0 = {
c�i

, c−�i

, rc�i

, rc−�i ∣∣ i ∈ {0, . . . ,m − 1}},
where σ�′,0 is in Aut(D2n). Therefore M is equivalent to the Cayley map CM(n, �),
and (i) follows.

For two pairs (n, �1), (n, �1) ∈ T suppose that the two Cayley maps CM(n, �1) =
CM(D2n, S,p) and CM(n, �2) = CM(D2n, T , q) are isomorphic. Let us write p =
(s1, . . . , s4m) and q = (t1, . . . , t4m) so that s1 = t1 = c. The two maps M1 and M2

have the same rotation type, that is, satisfy the property that s−1
i = s

pj

i if and only if

t−1
i = t

qj

i for all i, j ∈ {1,2, . . . ,4m}. It is proved that in this case M1 and M2 are
not only isomorphic but also equivalent (see [12, Lemma 2.4]). Therefore, there is a
group automorphism σi,j ∈ Aut(D2n) which maps S to T and pσi,j = σi,j q . There
exists an automorphism σ ∈ 〈σ�2,0〉 such that σi,j σ maps c to c±1. The restriction of
σ on T commutes with q , hence p(σi,j σ ) = (σij q)σ = (σi,j σ )q . Put σ ′ = σi,j σ . As-
sume that σ ′ maps c to c−1. Then (rc−�1)σ

′ = cpσ ′ = cσ ′q = (c−1)q = c�2 , a contra-
diction. Let σ ′ map c to c. Then (rc)σ

′ = cp2mσ ′ = cσ ′q2m = rc, and we find that σ ′ is
the identity. Therefore rc−�1 = (rc−�1)σ

′ = cpσ ′ = cσ ′q = rc−�2 , implying �1 = �2,
and this proves (ii). �

4 Corrigendum to [9, Sect. 4]

As we have already mentioned in Sect. 2 of this paper, Theorem 4.3 of [9] contains a
mistake. The purpose of this section is to correct this statement and the related ones
in Sect. 4 of the aforementioned paper. The list of corrections is given below.

Lemma 4.2: the condition coreG(C) = 1 should be replaced by coreG(D) = 1,
and line 9, p. 417 “cn/2 ∈ coreG(C)” should be replaced by “cn/2 ∈ coreG(D)”. The
rest of the proof is correct.

Theorem 4.3: the condition n > 2 should be replaced by n > 4. Add the following
argument after the first sentence of the proof of Theorem 4.3 (line −2, p. 417). “Let
us show first that coreG(D) is trivial. The commutator (coreG(D))′ is a normal sub-
group of G contained in C, and, therefore, it is trivial. Hence coreG(D) is Abelian
and normal in D. But any Abelian normal subgroup of D is contained in C unless
|D| = 4,8. Now the assumption n > 4 yields that coreG(D) is contained in C, and,
therefore, is trivial.” After that the proof goes in the same way till line 16 on p. 418.
In this line the text “Since n is divisible by at least three primes, n/q > 2,” should be
replaced by “Since n is divisible by at least three distinct primes, n/q > 4,”.

Corollary 4.4 remains correct, but the proof should be replaced by the following
one. “If m ≤ 4, then the claim follows from [G : coreG(D)] ≤ m! ≤ 2m2. Thus we
may assume m > 4. Consider the quotient group G/N where N = coreG(D). Then
coreG/N(D/N) is trivial. If |D/N | ≤ 2m, then we are done. If |D/N | > 2m, then by
Theorem 4.3 coreG/N(C/N) is non-trivial, which contradicts coreG/N(D/N) = 1.”
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