
ON G-REGULAR LOCAL RINGS

RYO TAKAHASHI

Abstract. In this paper, we define a G-regular local ring as a commutative, noetherian, local ring
over which all totally reflexive modules are free. We study G-regular local rings, and observe that

they behave similarly to regular local rings. We extend Eisenbud’s matrix factorization theorem and
Knörrer’s periodicity theorem to G-regular local rings.

Introduction

In the 1960s, Auslander [1] introduced a homological invariant for finitely generated modules over a
noetherian ring which is called Gorenstein dimension, or G-dimension for short. After that, he developed
the theory of G-dimension with Bridger [2]. G-dimension has been studied deeply from various points of
view; details can be found in [2] and [8].

Modules of G-dimension zero are called totally reflexive modules. Any finitely generated projective
module is totally reflexive. Over a Gorenstein local ring, the totally reflexive modules are precisely the
maximal Cohen-Macaulay modules. Therefore, every singular Gorenstein local ring has a nonfree totally
reflexive module.

In the present paper, we will call a commutative noetherian local ring G-regular if every totally reflexive
module over the ring is free. Regular local rings are trivial examples of G-regular local rings. Avramov
and Martsinkovsky [5, Examples 3.5] proved that any Golod local ring that is not a hypersurface (e.g.
a Cohen-Macaulay non-Gorenstein local ring with minimal multiplicity [3, Example 5.2.8]) is G-regular.
Yoshino [22, Theorem 3.1] gives some sufficient conditions for an artinian local ring of Loewy length three
to be G-regular. Takahashi and Watanabe [19, Theorem 1.1] showed that there exist two-dimensional,
non-G-regular, non-Gorenstein normal domains. A recent result due to Christensen, Piepmeyer, Striuli
and Takahashi [9, Theorem B] says that every non-Gorenstein local ring over which there exist only
finitely many isomorphism classes of indecomposable totally reflexive modules is a G-regular ring. The
same result in special cases and similar results were earlier shown in [13]–[18].

In this paper we find that G-regular local rings behave similarly to regular local rings. We give two
theorems, stated below, as the main results of this paper. The first is a generalization of Eisenbud’s
matrix factorization theorem [10, Section 6] (cf. [21, Theorem (7.4)]), and the second is a generalization
of Knörrer’s periodicity theorem [11, Theorem 3.1].

Let S be a G-regular local ring, f ∈ S an S-regular element, and R = S/(f) the residue ring. We
denote by MS(f) the quotient category of the category of matrix factorizations of f over S by the matrix
factorization (1, f), by MS(f) the quotient category of M0

S(f) by (f, 1), by G(R) the category of totally
reflexive R-modules, and by G(R) the stable category of G(R).

Theorem A (matrix factorization). There are equivalences of categories:

MS(f) ≃ G(R),

MS(f) ≃ G(R).

Theorem B (Knörrer’s periodicity). Let B = S[[x, y]]/(f + xy).

(1) There is a fully faithful functor ∆ : G(R) → G(B).
(2) Suppose that 1

2 ,
√
−1 ∈ S and that R is henselian. Then the functor ∆ is an equivalence.
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1. Basic definitions

In this paper we use commutative noetherian rings and their categories of finitely generated modules.
In this section let R be a local ring with maximal ideal m and residue field k, and let mod R denote the
category of finitely generated R-modules. A subcategory always means a full subcategory closed under
isomorphism.

Definition 1.1. (1) Let (−)∗ denote the R-dual functor HomR(−, R). An R-module M is called totally
reflexive if

(i) the natural homomorphism M → M∗∗ is an isomorphism, and
(ii) Exti

R(M,R) = Exti
R(M∗, R) = 0 for any i > 0.

(2) Let M be a nonzero R-module. If there exists an exact sequence

0 → Xn → Xn−1 → · · · → X1 → X0 → M → 0

of R-modules such that each Xi is totally reflexive, then we say that M has G-dimension at most
n. If such an integer n does not exist, then we say that M has infinite G-dimension, and write
GdimR M = ∞. If M has G-dimension at most n but does not have G-dimension at most n − 1,
then we say that M has G-dimension n, and write GdimR M = n. We set GdimR 0 = −∞.

Remark 1.2. An R-module M is totally reflexive if and only if GdimR M ≤ 0.

Definition 1.3. A subcategory X of mod R is called resolving if it satisfies the following four conditions.
(1) X contains R.
(2) X is closed under direct summands: if M is an R-module in X and N ⊕P ∼= M , then N is also in X .
(3) X is closed under extensions: for an exact sequence 0 → L → M → N → 0 of R-modules, if L and

N are in X , then M is also in X .
(4) X is closed under kernels of epimorphisms: for an exact sequence 0 → L → M → N → 0 of

R-modules, if M and N are in X , then L is also in X .

A resolving subcategory is a subcategory such that any two “minimal” resolutions of a module by
modules in it have the same length; see [2, (3.12)].

Here we introduce three subcategories of mod R.

Notation 1.4. We denote by F(R) the subcategory of mod R consisting of all free R-modules, by G(R)
the subcategory of mod R consisting of all totally reflexive R-modules, and by C(R) the subcategory of
mod R consisting of all R-modules M satisfying the inequality depthR M ≥ depthR.

Let M be an R-module. Take a minimal free resolution

F• = (· · · d3→ F2
d2→ F1

d1→ F0 → 0)

of M . For a nonnegative integer n, we set Ωn
RM = Im dn and call it the nth syzygy of M . Note that the

nth syzygy of a given R-module is uniquely determined up to isomorphism.
We will often use the following lemma. The assertion (1) is proved in [8, Theorem (1.4.9)], (2) in [7,

Theorem 1.3.3] and [8, Theorem (1.4.8)], (3) in [8, Corollary (1.4.6) and Theorem (2.2.8)], and (4) in [8,
Corollary (1.2.9)].

Lemma 1.5. (1) The following are equivalent:
(i) R is Gorenstein;
(ii) GdimR M < ∞ for all R-modules M ;
(iii) GdimR k < ∞.

(2) Let M be an R-module.
(i) If pdR M < ∞, then pdR M = depthR − depthR M .
(ii) If GdimR M < ∞, then GdimR M = depthR − depthR M .

(3) Let M be an R-module and x = x1, . . . , xn a sequence of elements of R.
(i) If x is an R- and M -sequence, then GdimR/(x) M/xM = GdimR M .
(ii) If x is an R-sequence in AnnR M , then GdimR/(x) M = GdimR M − n.

(4) For an R-module M and a nonnegative integer n, GdimR ΩnM = sup{GdimR M − n, 0 }.

Remark 1.6. The following are basic properties of the subcategories F(R), G(R) and C(R).
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(1) All of F(R), G(R) and C(R) are resolving subcategories of mod R.
(2) If R is Cohen-Macaulay, then C(R) consists of all maximal Cohen-Macaulay R-modules.
(3) C(R) contains G(R), and G(R) contains F(R).
(4) R is Gorenstein if and only if C(R) coincides with G(R).
(5) R is regular if and only if C(R) coincides with F(R).
The fact that G(R) is resolving is shown in [2, (3.11)] and [5, Lemma 2.3]. The first assertion in (3) follows
from Lemma 1.5(2). As to (4), if R is Gorenstein, then C(R) consists of all totally reflexive R-modules
by Lemma 1.5(1) and (2). Conversely, suppose that C(R) coincides with G(R). Putting t = depthR, we
have depthΩt

Rk = t. Hence Ωt
Rk is in C(R) = G(R). This implies that the R-module k has G-dimension

(at most) t, and thus R is Gorenstein by Lemma 1.5(1). The assertion (5) is shown similarly to (4).

Definition 1.7. We say that a local ring R is G-regular if G(R) coincides with F(R).

Proposition 1.8. (1) A local ring is regular if and only if it is G-regular and Gorenstein.
(2) A local ring R is G-regular if and only if GdimR M = pdR M for any R-module M .
(3) A normal local ring R is G-regular if and only if GdimR R/I = pdR R/I for any ideal I of R.

Proof. (1) The assertion immediately follows from Remark 1.6(4) and (5).
(2) This can easily be shown using the definition.
(3) Let M be a totally reflexive R-module. Then M is reflexive, so M is torsionfree. Hence there exists

an exact sequence 0 → Rn → M → I → 0 such that I is an ideal of R; see [6, Theorem 6 in Chapter VII
§4]. We obtain an exact sequence

0 → Rn → M → R → R/I → 0.

It follows by definition that the R-module R/I has G-dimension at most 2. If the equality GdimR R/I =
pdR R/I holds, then the R-module R/I has finite projective dimension, and so does M . Thus M is free
by Lemma 1.5(2). ¤

2. Matrix factorizations

In this section, we generalize Eisenbud’s matrix factorization theorem [10]. Throughout this section,
let S be a G-regular local ring with maximal ideal n, f ∈ n an S-regular element, and R = S/(f) the
residue ring. First of all, let us make the definition of a matrix factorization.

Definition 2.1. For a nonnegative integer n, we call a pair (ϕ, ψ) of n × n matrices over S a matrix
factorization of f (over S) if ϕψ = ψϕ = fIn, where In is the identity matrix. When n = 0, both ϕ and ψ
can be considered as the 0× 0 matrix over S which we denote by ζ, and we call the matrix factorization
(ζ, ζ) the zero matrix factorization of f .

Remark 2.2. If (ϕ, ψ) is a matrix factorization of f , then so are (ψ, ϕ), (tϕ, tψ) and (tψ, tϕ), where t(−)
denotes the transpose.

In what follows, we will often identify an m × n matrix over S with a homomorphism Sn → Sm of
free S-modules. Thus the matrix ζ gives the identity map of the free S-module S0 = 0 of rank zero.

A matrix factorization corresponds to an R-module which has projective dimension at most one as an
S-module, as we see next.

Proposition 2.3. (1) Let (ϕ, ψ) be a matrix factorization of f . Then M := Cokerϕ is an R-module and

there is an exact sequence 0 → Sn ϕ→ Sn → M → 0 in mod S.
(2) Let M be an R-module and suppose that there is an exact sequence 0 → Sn ϕ→ Sm → M → 0 in

mod S. Then one has m = n, and there is a matrix ψ such that (ϕ, ψ) is a matrix factorization of f .

Proof. (1) By using the equalities ϕψ = ψϕ = fIn, we easily see that fM = 0 and that the endomorphism
ϕ is injective over S.

(2) The equality fM = 0 implies Mf = 0. Hence we see that m = n. For each x ∈ Sn we have
fx ∈ fSn ⊆ Im ϕ, and the injectivity of ϕ shows that there uniquely exists y ∈ Sn such that fx = ϕ(y).
Defining an endomorphism ψ : Sn → Sn by ψ(x) = y, we have ϕψ = f · idSn . We get ϕ(ψϕ−f · idSn) = 0,
and ψϕ = f · idSn by the injectivity of ϕ again. It follows that (ϕ, ψ) is a matrix factorization of f . ¤

Each matrix factorization of f gives rise to a totally reflexive R-module.
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Proposition 2.4. Let (ϕ, ψ) be a matrix factorization of f , and let n be the (common) size of the matrices
ϕ and ψ. Then the sequence

(2.4.1) · · · ϕ→ Rn ψ→ Rn ϕ→ Rn ψ→ · · ·

is an exact sequence of R-modules whose R-dual is also exact. Hence Coker(Sn ϕ→ Sn) ∼= Coker(Rn ϕ→
Rn) is a totally reflexive R-module.

Proof. It is obvious that (2.4.1) is a complex of R-modules. We denote by x the residue class of an element
x ∈ Sn in Rn. Let x be an element of Rn with ϕ(x) = 0. Then ϕ(x) ∈ fSn, so ϕ(x) = fy for some y ∈ Sn,
and we have fx = ψϕ(x) = fψ(y). Since f is an S-regular element, we get x = ψ(y), and so x = ψ(y).

Therefore Ker(Rn ϕ→ Rn) = Im(Rn ψ→ Rn). Similarly we obtain Ker(Rn ψ→ Rn) = Im(Rn ϕ→ Rn). Thus
(2.4.1) is an exact sequence. The last statement follows from [8, Theorem (4.1.4)]. ¤

Matrix factorizations form a category:

Definition 2.5. We define the category M0
S(f) by setting

(1) the matrix factorizations of f as the objects of M0
S(f), and

(2) a pair (α, β) of matrices making the following diagram commute

(2.5.1)

Sn ψ−−−−→ Sn ϕ−−−−→ Sn

α

y β

y α

y
Sn′ ψ′

−−−−→ Sn′ ϕ′

−−−−→ Sn′

as a morphism from an object (ϕ, ψ) to an object (ϕ′, ψ′).

Remark 2.6. (1) The commutativity of the right square in a diagram of the form (2.5.1) implies the
commutativity of the left one. In fact, if αϕ = ϕ′β, then ϕ′(βψ − ψ′α) = α(fIn) − (fIn′)α = 0, and
βψ = ψ′α by the injectivity of ϕ′.

(2) The zero matrix factorization (ζ, ζ) is an object of M0
S(f), both terminal and initial, hence zero.

(3) The category M0
S(f) is an additive category. Indeed, for two matrix factorizations (ϕ, ψ) and (ϕ′, ψ′),

(ϕ, ψ) ⊕ (ϕ′, ψ′) =
(( ϕ 0

0 ψ

)
,
( ϕ′ 0

0 ψ′

))
.

Definition 2.7. (1) We say that two matrix factorizations (ϕ, ψ), (ϕ′, ψ′) are equivalent, and denote this
situation by (ϕ, ψ) ∼ (ϕ′, ψ′), if there is an isomorphism (ϕ, ψ) → (ϕ′, ψ′) in M0

S(f).
(2) We say that a matrix factorization (ϕ, ψ) is reduced if all entries of the matrices ϕ, ψ are in n.

Remark 2.8. (1) Every matrix factorization equivalent to a reduced one is reduced.
(2) The pairs (1, f), (f, 1) of elements of S are always non-reduced matrix factorizations of f .

Let A be an additive category and B a set of objects of A. Then the category A/B has Ob(A/B) =
Ob(A) and HomA/B(A1, A2) = HomA(A1, A2)/B(A1, A2) for A1, A2 ∈ Ob(A/B), where B(A1, A2) is the
subgroup consisting of all morphisms from A1 to A2 that factor through finite direct sums of objects in
B. Note that A/B is also an additive category.

Definition 2.9. We define the following additive categories:

MS(f) = M0
S(f)/{(1, f)},

MS(f) = MS(f)/{(f, 1)} = M0
S(f)/{(1, f), (f, 1)},

G(R) = G(R)/{R}.

Note that G(R) is the stable category of G(R).
The following theorem is the main result of this section, which is a generalization of Eisenbud’s matrix

factorization theorem [10, Section 6] (see also [21, Theorem (7.4)]).

Theorem 2.10. There are equivalences of categories:

MS(f) ≃ G(R),

MS(f) ≃ G(R).
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Proof. For a matrix factorization (ϕ, ψ) of f , the module F ((ϕ, ψ)) := Coker ϕ is in G(R) by Proposition
2.4. For a morphism (α, β) : (ϕ, ψ) → (ϕ′, ψ′) of matrix factorizations of f , let F ((α, β)) be the induced
homomorphism F ((ϕ, ψ)) → F ((ϕ′, ψ′)). We obtain an additive functor F : MS(f) → G(R). Compare
this with [21, Proposition (7.2) and Theorem (7.4)].

Let M be a totally reflexive R-module. Then we have

0 ≥ GdimR M = GdimS/(f) M = GdimS M − 1 = pdS M − 1.

Here, the second equality follows from the fact that f is an S-regular element in AnnS M and Lemma
1.5(3), and the third follows by Proposition 1.8(2). Hence the S-module M has projective dimension

at most one, and there exists an exact sequence 0 → Sn ϕ→ Sm → M → 0. By Proposition 2.3(2),
we have n = m and there is a matrix ψ such that (ϕ, ψ) is a matrix factorization of f . By analogous
arguments to the proof of [21, Theorem (7.4)], we obtain an additive functor G : G(R) → MS(f) with
G(M) = (ϕ, ψ), and see that FG = 1G(R) and GF ∼= 1MS(f). Thus F forms an equivalence between the
additive categories MS(f) and G(R). Since F ((f, 1)) = R, the functor F induces an additive functor
MS(f) → G(R) of additive categories which is an equivalence. ¤

The above theorem yields the following corollary; in the case where R is henselian, one can uniquely
decompose a given matrix factorization into a direct sum of the form in the corollary. One can prove
the corollary similarly to the arguments in [21, Remark (7.5)]. The henselian property of R is used in
showing the uniqueness of the direct sum decomposition of R-modules induced from (2.11.1) along the
first equivalence in Theorem 2.10.

Corollary 2.11. Suppose that R is henselian. Then every matrix factorization (ϕ, ψ) of f has a direct
sum decomposition unique up to similarity

(2.11.1) (ϕ, ψ) ∼ (ϕ0, ψ0) ⊕ (1, f)⊕p ⊕ (f, 1)⊕q,

where (ϕ0, ψ0) is a reduced matrix factorization and p, q are nonnegative integers.

To prove our next result, we establish a lemma.

Lemma 2.12. Let (ϕ, ψ) be a matrix factorization of f . Assume that ψ has an entry which is a unit of
S. Then (ϕ, ψ) has a direct summand equivalent to (f, 1).

Proof. By assumption, there is a commutative diagram

Sn ψ−−−−→ Sn ϕ−−−−→ Sn

α

y∼= β

y∼= α

y∼=

Sn ψ′

−−−−→ Sn ϕ′

−−−−→ Sn

such that ψ′ is a matrix of the form
(

1 0
0 ν

)
and that the vertical maps are isomorphisms. We can directly

check that (ϕ′, ψ′) is a matrix factorization of f , and (α, β) : (ϕ, ψ) → (ϕ′, ψ′) is an isomorphism in M0
S(f).

Writing ϕ′ =
(

a b
c µ

)
and using the equalities ϕ′ψ′ = ψ′ϕ′ = fIn, we see that a = f , b = 0 and c = 0, and

that (µ, ν) is a matrix factorization of f . We obtain (ϕ, ψ) ∼ (ϕ′, ψ′) =
((

f 0
0 µ

)
,
(

1 0
0 ν

))
= (f, 1) ⊕ (µ, ν),

which proves the lemma. ¤

Now we can prove the following proposition. (Note that we do not assume that the local ring R is
henselian.)

Proposition 2.13. (cf. [10, Corollary 6.3] and [21, Corollary (7.6)]) The assignment [(ϕ, ψ)] 7→ [Cokerϕ]
makes a bijection from the set of equivalence classes of reduced matrix factorizations of f to the set of
isomorphism classes of totally reflexive R-modules without free summand.

Proof. Let (ϕ, ψ) be a reduced matrix factorization of f . Then Proposition 2.4 and similar arguments
to the proof of [21, (7.5.1)] show that Coker ϕ is a totally reflexive R-module without free summand. If
(ϕ, ψ) is equivalent to another reduced matrix factorization (ϕ′, ψ′) of f , then the R-module Cokerϕ is
isomorphic to Cokerϕ′. Thus we obtain a well-defined map

χ : [(ϕ, ψ)] 7→ [Cokerϕ]
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from the set of equivalence classes of reduced matrix factorizations of f to the set of isomorphism classes
of totally reflexive R-modules without free summand.

Let (ϕ, ψ), (ϕ′, ψ′) be reduced matrix factorizations such that Coker ϕ is isomorphic to Coker ϕ′. Then
by Proposition 2.3(2) we have a commutative diagram

0 −−−−→ Sn ϕ−−−−→ Sn −−−−→ Cokerϕ −−−−→ 0yβ

yα

y∼=

0 −−−−→ Sn′ ϕ′

−−−−→ Sn′ −−−−→ Cokerϕ′ −−−−→ 0

of S-modules with exact rows. Since all entries of ϕ, ϕ′ are nonunits of S, the two rows are minimal free
resolutions of the S-modules Coker ϕ,Cokerϕ′. Hence the vertical maps α, β are isomorphisms (cf. [12,
§18, Lemma 8]). According to Remark 2.6(1), we have an isomorphism (α, β) : (ϕ, ψ) → (ϕ′, ψ′) in the
category M0

S(f). Thus the map χ is injective.
Let M be a totally reflexive R-module. Then it is seen from the proof of Theorem 2.10 that there

exists an exact sequence 0 → Sn ϕ→ Sn → M → 0 of S-modules. We can choose ϕ such that all the
entries of ϕ are in the maximal ideal n of S. Proposition 2.3(2) shows that there is a matrix ψ such that
(ϕ, ψ) is a matrix factorization of f . By Lemma 2.12 if M has no free R-summand, all the entries of
the matrix ψ must be in n. Therefore when M is without free R-summand, (ϕ, ψ) is a reduced matrix
factorization of f such that Cokerϕ = M . Thus, the map χ is surjective. This completes the proof of
the proposition. ¤

We end this section by mentioning extensions of totally reflexive modules:

Remark 2.14. (cf. [21, Remark (7.8)])
(1) Let h : M → M ′ be a homomorphism of totally reflexive R-modules. Then the following hold.

(i) There is a morphism (α, β) : (ϕ, ψ) → (ϕ′, ψ′) in M0
S(f) which induces h.

(ii) One has a matrix factorization
((

ψ′ β
0 ϕ

)
,
(

ϕ′ −α
0 ψ

))
of f .

(iii) For the exact sequence 0 → N → Rn′ → M ′ → 0 with N = Cokerψ′, the connecting homomor-
phism HomR(M,M ′) → Ext1R(M,N) sends h to an element corresponding to an exact sequence
0 → N → L → M → 0 with L = Coker

(
ψ′ β
0 ϕ

)
.

(2) Let M,N be totally reflexive R-modules. Every extension 0 → N → L → M → 0 of M by N is
obtained in the way shown in (1).

3. Knörrer’s periodicity

In this section, we extend the concept of Knörrer’s periodicity [11]. Throughout this section, as in the
previous section, let S be a G-regular local ring with maximal ideal n, f ∈ n an S-regular element, and
R = S/(f) the residue ring. Set

A = S[[x]]/(f + x2) and B = S[[x, y]]/(f + xy),

where x, y are indeterminates over S.
We can directly check that the following statements hold.

(1) One has A/(x) ∼= R.
(2) The element x is A-regular.
(3) The ring A is a free S-module with basis {1, x}.
(4) The element f + x2 is S[[x]]-regular.

For a totally reflexive A-module M , we set ΘM = M/xM .

Proposition 3.1. One has an additive functor Θ : G(A) → G(R).

Proof. It is seen from Lemma 1.5(3) that ΘM is a totally reflexive R-module for a totally reflexive
A-module M . The proposition follows from this. ¤

Proposition 3.2. An A-module is totally reflexive if and only if it is free as an S-module.



ON G-REGULAR LOCAL RINGS 7

Proof. Let M be a nonzero A-module. We have an equality

(3.2.1) GdimA M = GdimS[[x]] M − 1

by Lemma 1.5(3).
Suppose that M is free as an S-module. Let m ∈ M with xm = 0. Then fm = −x2m = 0.

Since f is S-regular and M is assumed to be S-free, f is M -regular. Therefore m = 0. Nakayama’s
lemma implies that xM ̸= M . Thus x is an M -regular element. It follows from Lemma 1.5(3) that
GdimS[[x]] M = GdimS M/xM . There is an exact sequence 0 → M

x→ M → M/xM → 0, and M is
totally reflexive over S since it is free over S. This yields an inequality GdimS M/xM ≤ 1, so we have
GdimA M ≤ 0 by (3.2.1). Hence M is totally reflexive over A.

On the other hand, suppose that M is a totally reflexive A-module. Then GdimA M ≤ 0, and
GdimS[[x]] M ≤ 1 by (3.2.1). Corollary 4.4 and Proposition 1.8(2) imply that GdimS[[x]] M = pdS[[x]] M .
Hence pdS[[x]] M ≤ 1, and there is an exact sequence

0 → F1 → F0 → M → 0

such that F0, F1 are free S[[x]]-modules. Note that F0, F1 are flat as S-modules, so we have
TorS

i (M,S/n) = 0 for any i ≥ 2. The ring A is finitely generated as an S-module, hence so is
M . It follows that pdS M ≤ 1 < ∞ (cf. [7, Corollary 1.3.2]). Applying Lemma 1.5(2), we ob-
tain pdS M = depthS − depthS M . It is obvious that the closed fiber A/nA of the flat local homo-
morphism S → A is artinian. Therefore we have equalities depthA M = depthS M and depthA =
depthS + depthA/nA = depthS. Thus pdS M = depthA − depthA M = GdimA M ≤ 0 by Lemma
1.5(2), and M is S-free. ¤

As a direct consequence of Proposition 3.2, we have the following result.

Corollary 3.3. The totally reflexive A-modules are precisely the free S-modules with A-module structure,
or equivalently, the free S-modules on which x acts.

Recall that two square matrices ϕ, ψ over S of the same size are similar if there exists an n × n
invertible matrix α over S such that ϕ = α−1ψα. For a totally reflexive A-module M , we denote by ϕM

a representation matrix of the linear map M
x→ M (the multiplication map by the variable x) of free

S-modules. Note that ϕM is not uniquely determined by M . Instead, we have the following.

Corollary 3.4. The assignment [M ] 7→ [ϕM ] makes a bijection from the set of isomorphism classes of
totally reflexive A-modules to the set of similarity classes of square matrices ϕ over S with ϕ2 = −fI,
where I is the identity matrix.

Proof. Let M be a totally reflexive A-module. Then Proposition 3.2 shows that there is a commutative
diagram

M
∼=−−−−→
ρ

Snyx

yϕM

M
∼=−−−−→
ρ

Sn

where ρ is an S-isomorphism. We have ϕM = ρxρ−1, and hence ϕ2
M = (ρxρ−1)(ρxρ−1) = ρx2ρ−1 =

ρ(−f)ρ−1 = −f(ρρ−1) = −fIn.
Let M and N be totally reflexive A-modules with [M ] = [N ]. Then there exists an A-isomorphism

λ : M → N , and we have xλ = λx. There are S-isomorphisms ρM : M → Sn and ρN : N → Sn such
that ϕMρM = ρMx and ϕNρN = ρNx. Setting α = ρNλρ−1

M , we easily see that α is an invertible matrix
over S satisfying α−1ϕNα = ϕM . Therefore [ϕM ] = [ϕN ]. Thus, we obtain a well-defined map

χ : [M ] 7→ [ϕM ]

from the set of isomorphism classes of totally reflexive A-modules to the set of similarity classes of square
matrices ϕ over S with ϕ2 = −fI.

Let M,N be totally reflexive A-modules with [ϕM ] = [ϕN ]. Then there exists an invertible matrix α
over S with ϕM = α−1ϕNα. As before, there exist S-isomorphisms ρM : M → Sn and ρN : N → Sn such
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that ϕMρM = ρMx and ϕNρN = ρNx. Putting λ = ρ−1
N αρM , we have λx = xλ, which means that λ is

an A-homomorphism, hence an A-isomorphism. Thus we have [M ] = [N ], and the map χ is injective.
Let ϕ be an n×n-matrix over S with ϕ2 = −fIn. Then, letting M be the free S-module Sn equipped

with the action of x by xz = ϕ(z) for z ∈ M , we have x2z = ϕ2(z) = −fz and we see that M is an
A-module. Proposition 3.2 says that M is a totally reflexive A-module. Since ϕ is a representation matrix
of the S-linear map M

x→ M , we have [ϕ] = [ϕM ]. Thus the map χ is surjective. ¤
Using Corollary 3.4, we can show the following result along the same lines as in the proof of [21,

Lemma (12.2)].

Lemma 3.5. Let M be a totally reflexive A-module. Then the following hold.
(1) One has a matrix factorization (xI −ϕM , xI + ϕM ) of f + x2 over S[[x]], and M ∼= Coker(xI −ϕM ).
(2) One has a matrix factorization (ϕM ,−ϕM ) of f over S, and ΘM ∼= CokerϕM .

We have a functor in the opposite direction to that of the functor Θ.

Proposition 3.6. Taking the first syzygy makes an additive functor ΩA : G(R) → G(A).

Proof. For a totally reflexive R-module M , we have 0 ≥ GdimA/(x) M = GdimA M −1 by Lemma 1.5(3),
and GdimA(ΩAM) ≤ 0 by Lemma 1.5(4). Therefore ΩAM is a totally reflexive A-module. ¤

The following lemma is an analogue of the second statement in Lemma 3.5. We can show it similarly
to the proof of [21, Lemma (12.3)] by using Proposition 2.13.

Lemma 3.7. (1) Let (ϕ, ψ) be a matrix factorization of f over S, and put M = Cokerϕ. Then(( ψ −xI
xI ϕ

)
,
( ϕ xI
−xI ψ

))
is a matrix factorization of f +x2 over S[[x]], and ΩAM ⊕F ∼= Coker

( ψ −xI
xI ϕ

)
for some free A-module F .

(2) In (1), assume in addition that (ϕ, ψ) is reduced. Then
(( ψ −xI

xI ϕ

)
,
( ϕ xI
−xI ψ

))
is also reduced, and

ΩAM ∼= Coker
( ψ −xI

xI ϕ

)
.

Remark 3.8. Let (ϕ, ψ) be a reduced matrix factorization of f over S and set M = Cokerϕ. Then one
has an equality (

0 I
−I 0

)( ψ −xI
xI ϕ

)(
0 −I
I 0

)
=

( ϕ −xI
xI ψ

)
,

which shows that Coker
( ψ −xI

xI ϕ

)
is isomorphic to Coker

( ϕ −xI
xI ψ

)
. Therefore it follows from Lemma

3.7(2) that the A-module ΩAΩRM is isomorphic to ΩAM .

Applying Lemmas 3.5 and 3.7 and Proposition 2.13, one can prove the following result along the same
lines as in the proof of [21, Proposition (12.4)].

Proposition 3.9. (1) For a totally reflexive R-module M without free summand, one has ΘΩAM ∼=
M ⊕ ΩRM .

(2) Assume that 1
2 ∈ S. Then for a totally reflexive A-module N , one has ΩAΘN ∼= N ⊕ΩAN up to free

summand.

Corollary 3.10. (cf. [21, Remark (12.7)]) Suppose that R is henselian. Then the following hold.
(1) (i) For any nonfree indecomposable totally reflexive R-module M , there exists a nonfree indecom-

posable totally reflexive A-module N such that M is isomorphic to a direct summand of ΘN .
(ii) Assume that 1

2 ∈ S. Then for any nonfree indecomposable totally reflexive A-module N , there
exists a nonfree indecomposable totally reflexive R-module M such that N is isomorphic to a
direct summand of ΩAM .

(2) For an indecomposable totally reflexive R-module M , the A-module ΩAM has at most two nonzero
direct summands.

Proof. The assertion (1) follows from Proposition 3.9 and analogous arguments to the proof of [21,
Theorem (12.5)]. As to the assertion (2), we may assume that the R-module M is nonfree, hence M
has no free summand. Suppose that there is a direct sum decomposition ΩAM ∼= X ⊕ Y ⊕ Z of A-
modules. Then we have ΘX ⊕ ΘY ⊕ ΘZ ∼= ΘΩAM ∼= M ⊕ ΩRM by Proposition 3.9(1). According to
[16, Proposition 7.1], ΩRM is also indecomposable. By virtue of the Krull-Schmidt theorem, one of the
R-modules ΘX, ΘY,ΘZ is zero; we may assume that ΘZ = 0. Then we have xZ = Z, and Z = 0 by
Nakayama’s lemma. This shows the assertion (2). ¤
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For a matrix factorization (ϕ, ψ) of f over S, set

∆0(ϕ, ψ) =
(( ϕ xI

yI −ψ

)
,
( ψ xI

yI −ϕ

))
.

Note that this is a matrix factorization of f + xy over S[[x, y]]. For a morphism (α, β) : (ϕ, ψ) → (ϕ′, ψ′)
in the category M0

S(f) of matrix factorizations of f over S, let

∆0(α, β) =
((

α 0
0 β

)
,
(

β 0
0 α

))
.

Note that this is a morphism in M0
S[[x,y]](f + xy). Thus we obtain an additive functor

∆0 : M0
S(f) → M0

S[[x,y]](f + xy).

Since there is a commutative diagram

S[[x, y]]2
(

1 x
y −f

)
−−−−−→ S[[x, y]]2

(
f x
y −1

)
−−−−−→ S[[x, y]]2

∼=
y(

1 x
0 1

)
∼=
y(

1 0
y −1

)
∼=
y(

1 x
0 1

)
S[[x, y]]2

(
1 0
0 f+xy

)
−−−−−−−→ S[[x, y]]2

(
f+xy 0

0 1

)
−−−−−−−→ S[[x, y]]2

with isomorphic vertical maps, both ∆0(f, 1) and ∆0(1, f) are isomorphic to (f + xy, 1) ⊕ (1, f + xy).
Hence ∆0 induces an additive functor

∆ : MS(f) → MS[[x,y]](f + xy).

By virtue of Theorem 2.10, we get an additive functor

G(R) → G(B).

We also denote it by ∆.
The same proof as that of [21, Lemma (12.9)] shows the following result.

Lemma 3.11. Let ((
a b
c d

)
,
(

a′ b′

c′ d′

))
:
(( ϕ x

y −ψ

)
,
( ψ x

y −ϕ

))
→

(( ϕ′ x
y −ψ′

)
,
( ψ′ x

y −ϕ′

))
be a morphism in M0

S[[x,y]](f +xy). Assume that all the entries of the matrix a′ are in the maximal ideal
(x, y)S[[x, y]] of the local ring S[[x, y]]. Then one has an equivalence((

ψ′ x a′ b′

y −ϕ′ c′ d′

0 0 ϕ x
0 0 y −ψ

)
,

(
ϕ′ x −a −b
y −ψ′ −c −d
0 0 ψ x
0 0 y −ϕ

))
∼

(( ψ′ x
y −ϕ′

)
,
( ϕ′ x

y −ψ′

))
⊕

(( ϕ x
y −ψ

)
,
( ψ x

y −ϕ

))
of matrix factorizations of f + xy over S[[x, y]].

The theorem below is the main result of this section, which is a generalized version of Knörrer’s
periodicity theorem [11, Theorem 3.1].

Theorem 3.12. (1) The functor ∆ : G(R) → G(B) is fully faithful.
(2) Suppose that 1

2 ,
√
−1 ∈ S and that R is henselian. Then the functor ∆ : G(R) → G(B) is an

equivalence.

Proof. Both of the assertions can be proved similarly to the proof of [21, Theorem (12.10)]. For the first
assertion, we use Remark 2.14 and Lemma 3.11. As to the second assertion, note from the assumption
that B = S[[x, y]]/(f + xy) = S[[u, v]]/(f + u2 + v2) where u = x+y

2 , v = x−y
2
√
−1

. Apply Proposition 3.9,
Corollary 3.10 and Lemma 3.7. ¤

By analogous arguments to the proof of [21, Corollary (12.11)] and Proposition 2.13, we obtain a
corollary of Theorem 3.12.

Corollary 3.13. Suppose that R is henselian.
(1) Let g : M → N be a homomorphism of totally reflexive R-modules such that M is nonfree and

indecomposable. Then g is a split monomorphism (respectively, split epimorphism) if and only if so
is ∆0g.

(2) Assume that 1
2 ,
√
−1 ∈ S. Let M be a nonfree indecomposable totally reflexive R-module. Then ∆0M

is a nonfree indecomposable totally reflexive B-module.
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4. The ascent and descent of G-regular property

We investigate ascent and descent of the G-regular property, modeling our study on the situations
where ascent and descent of the regular property is known to hold. First, the G-regular property descends
through flat local homomorphisms.

Proposition 4.1. Let R → S be a flat local ring homomorphism. If S is G-regular, then so is R.

Proof. Let M be a totally reflexive R-module. Then M ⊗R S is a totally reflexive S-module by [4,
Theorem 8.7(6)]. Since S is G-regular, M ⊗R S is a free S-module. Applying [4, Theorem 8.7(6)] again,
we see that M is a free R-module. Thus R is also G-regular. ¤

Proposition 4.2. Let R be a local ring and x = x1, . . . , xn an R-sequence. If R/(x) is G-regular, then
so is R.

Proof. We may assume that n = 1. Let M be a totally reflexive R-module. According to Lemma 1.5(3),
M/x1M is a totally reflexive R/(x1)-module, and so it is a free R/(x1)-module by assumption. The
R-module M is torsionfree since it is reflexive, so x1 is an M -regular element. By [7, Lemma 1.3.5], M
is a free R-module. It follows that R is a G-regular local ring. ¤

Remark 4.3. The converse of Proposition 4.2 does not necessarily hold. In fact, let k be a field and let
R = k[[t]] be a formal power series ring. Then R is regular, so R is G-regular by Proposition 1.8(1). The
element t2 of R is R-regular. However, since R/(t2) = k[[t]]/(t2) is a singular Gorenstein local ring, it is
not G-regular by Proposition 1.8(1) again.

Corollary 4.4. Let n be a positive integer. A local ring R is G-regular if and only if so is the formal
power series ring R[[X1, . . . , Xn]].

Proof. The “if” part follows from Proposition 4.1, and the “only if” part follows from Proposition 4.2. ¤

Corollary 4.5. Let R → S be a flat local ring homomorphism, and let m denote the unique maximal
ideal of R. If R is regular and S/mS is G-regular, then S is also G-regular.

Proof. Let x = x1, . . . , xd be a regular system of parameters of R. The residue ring S/xS = S/mS is a
G-regular local ring. Since S is flat over R, the sequence x is S-regular. It follows from Proposition 4.2
that S is G-regular. ¤

Proposition 4.6. Let (R, m) be a G-regular local ring and x ∈ m an R-regular element. Then R/(x) is
G-regular if and only if x /∈ m2.

Proof. The “if” part: Suppose that R/(x) is not G-regular. Then there exists a nonfree totally reflexive
R/(x)-module N . We can assume without loss of generality that N is indecomposable. Hence N has no
free R/(x)-summand. Proposition 2.13 implies that there is a reduced matrix factorization (ϕ, ψ) of x
over R such that Cokerϕ = N . Thus all the entries of the matrices ϕ, ψ are in the maximal ideal m of R.
The equality ϕψ = xI, where I is the identity matrix, shows that x is an element in m2.

The “only if” part: Suppose that x ∈ m2. Then one can write x =
∑r

i=1 yizi for some r ≥ 1 and
yi, zi ∈ m. Let e1, . . . , er be the canonical basis of the free R-module F := Rr. We define two R-linear
maps µ, ν from the exterior algebra

∧
F of F to itself by

µ(ei1 ∧ · · · ∧ eis) =
s∑

j=1

(−1)j−1yij (ei1 ∧ · · · ∧ eij−1 ∧ eij+1 ∧ · · · ∧ eis),

ν(w) =

 r∑
j=1

zjej

 ∧ w.

Note that
∧

F is a free R-module of rank 2r. Setting ϕ = µ+ν, we see that (ϕ, ϕ) is a matrix factorization
of x over R; see [21, Lemma (8.14)]. Since the images of µ, ν are contained in the maximal ideal m, the
image of the R-linear map ϕ are contained in m(

∧
F ), namely, the matrix factorization (ϕ, ϕ) is reduced.

It follows by Proposition 2.13 that Cokerϕ is a nonfree totally reflexive R/(x)-module. Hence R/(x) is
not a G-regular local ring. ¤
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Corollary 4.7. A local ring (R,m) is G-regular if and only if so is its m-adic completion R̂.

Proof. The “if” part follows from Proposition 4.1. Let us show the “only if” part; suppose that R is a
G-regular local ring. Let x1, . . . , xn be a system of generators of the maximal ideal m of R. Then there
is an isomorphism

R̂ ∼= R[[X1, . . . , Xn]]/(X1 − x1, . . . , Xn − xn),

where X1, . . . , Xn are indeterminates over R. Corollary 4.4 and Proposition 4.6 imply that the local ring
R̂ is G-regular. ¤

5. Sufficient conditions for G-regular property

In this section, we give some sufficient conditions for a given local ring to be G-regular. We also
construct several examples of G-regular local rings.

A sufficient condition is given by the following result, which was proved by Avramov and Martsinkovsky
[5, Examples 3.5]. See also [22, Corollary 2.5].

Lemma 5.1. Every Golod local ring which is not a hypersurface is G-regular. In particular, every
non-Gorenstein Cohen-Macaulay local ring with minimal multiplicity is G-regular.

Example 5.2. According to Lemma 5.1, for examples, the local algebras

k[[x, y]]/(x2, xy, y2), k[[x, y, z]]/(x2 − yz, y2 − xz, z2 − xy), k[[t3, t4, t5]](⊆ k[[t]])

over a field k, where x, y, z, t are indeterminates over k, are G-regular, since all of them are non-Gorenstein
Cohen-Macaulay local rings with minimal multiplicity.

In the above example, the first ring shows that a G-regular local ring is not necessarily a domain, while
every regular local ring is a domain.

The following result is due to Yoshino [22, Theorem 3.1]. Using its contrapositive we obtain some
sufficient conditions for a local ring to be G-regular.

Lemma 5.3. Let (R,m) be a non-Gorenstein local ring with m3 = 0 ̸= m2 with a coefficient field k.
Suppose that R is not G-regular. Then R is a standard graded Koszul k-algebra, and the Hilbert series
HR(t) of the ring R, the Poincaré series PR/m(t) of the R-module R/m, and the Bass series IR(t) of the
R-module R are as follows:

HR(t) = 1 + (r + 1)t + rt2, PR/m(t) =
1

1 − (r + 1)t + rt2
, IR(t) =

r − t

1 − rt
.

Here, r = dimk HomR(k,R) is the type of R.

Taking advantage of this lemma, we can construct G-regular local rings that do not have minimal
multiplicity.

Example 5.4. Let k be a field.

(1) The ring
R = k[[x, y]]/(x3, xy, y3)

is an artinian non-Gorenstein G-regular local ring which does not have minimal multiplicity by the
Hilbert series computation of Lemma 5.3.

(2) The ring
S = k[[x, y, z]]/(x3 − y2z, y3 − x2z, z2 − xy)

is a 1-dimensional Cohen-Macaulay non-Gorenstein G-regular local ring not having minimal multi-
plicity. Indeed, S/zS = R is a G-regular local ring by (1), and z is a nonzerodivisor of S. Hence
Proposition 4.2 shows that the local ring S is also G-regular.

The G-regular local rings constructed above are all Cohen-Macaulay. Now, let us construct an example
of a non-Cohen-Macaulay G-regular local ring.
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Example 5.5. Let us consider the local algebra

R = k[[x, y]]/(x2, xy)

over a field k. This is a non-Cohen-Macaulay G-regular local ring.
In fact, suppose that R is not G-regular. Then there exists a nonfree totally reflexive R-module M .

We can assume without loss of generality that M is indecomposable. The first syzygy N = ΩRM of
M is also a nonfree indecomposable totally reflexive R-module by [16, Proposition 7.1]. Note that there
is a free R-module F such that N is contained in mF . Hence we have xN ⊆ xmF = (x2, xy)F = 0.
Thus N is an R/(x)-module. Since R/(x) = k[[y]] is a principal ideal domain, the structure theorem (for
finitely generated modules over a principal ideal domain) and the indecomposability of N show that N
is isomorphic as an R/(x)-module to either R/(x) or R/(x, yn) for some n ≥ 1. But there is an exact
sequence

0 → k → R → R/(x) → 0,

which implies that the R-module R/(x) is of infinite G-dimension by Lemma 1.5(4) and (1). Also, we
have HomR(R/(x, yn), R) ∼= (0 :R (x, yn)) = (x) ∼= k, which implies that R/(x, yn) is not a reflexive
R-module for any n ≥ 2. When n = 1, we have R/(x, yn) = k, which has infinite G-dimension as an
R-module by Lemma 1.5(1). Since the R-module N is totally reflexive, we get a contradiction, and we
conclude that R is a G-regular local ring.

6. Some problems

Question 6.1. Let R → S be a flat local homomorphism of local rings. Suppose that both R and S/mS
are G-regular, where m is the maximal ideal of R. Then is S also G-regular?

Partial answers to the above question have been obtained in Corollaries 4.4, 4.5 and 4.7.
It is natural to ask if a localization of a G-regular local ring at a prime ideal is G-regular or not. This

does not have an affirmative answer in general, as we see in the following example.

Example 6.2. Let k be a field, and let

R = k[[x, y, z]]/(x2, xz, yz).

The element y − z is a nonzerodivisor of R, and we have m2 = (y − z)m. Hence R is a 1-dimensional
Cohen-Macaulay non-Gorenstein local ring with minimal multiplicity, so R is G-regular by Lemma 5.1.
Localizing R at the prime ideal p = (x, z), we have

Rp
∼= k[[x, y]](x)/(x2),

which is a singular Gorenstein local ring. Proposition 1.8(1) says that Rp is not G-regular.

Let R be a local ring. An R-module M is called bounded if the set of the Betti numbers of M admits
an upper bound. An R-module M is said to be periodic of period n, where n is a positive integer, if the
nth syzygy Ωn

RM is isomorphic to M . We just say that M is periodic if M is either free or periodic of
period n for some integer n ≥ 1. We say that M is eventually periodic if there exists an integer r ≥ 0
such that Ωr

RM is periodic.
A well-known theorem of Eisenbud [10] asserts that every bounded module over a complete intersection

local ring is eventually periodic of period 2. To be precise, let S be a regular local ring, x = x1, . . . , xn an
S-sequence, and R = S/(x) the residue ring. Then Eisenbud’s theorem says that any bounded R-module
in C(R) is eventually periodic of period 2. The following question asks whether the G-regular version of
this result holds.

Question 6.3. Let S be a G-regular local ring, x = x1, . . . , xn an S-sequence, and R = S/(x) the residue
ring. (Namely, let R be a “G-complete intersection.”) Then are all bounded totally reflexive R-modules
eventually periodic (of period 2)?

Let (S, n) be a regular local ring, I an ideal of S contained in n2, and R = S/I the residue ring. Then a
celebrated theorem of Tate [20] asserts that the ideal I is principal if the residue field of R is bounded as
an R-module. Combining this with Eisenbud’s matrix factorization theorem, we see that I is a principal
ideal if and only if every R-module in C(R) is bounded, if and only if every R-module in C(R) is periodic.
The question below asks if the G-regular version of this holds.



ON G-REGULAR LOCAL RINGS 13

Question 6.4. Let R be a local ring over which every totally reflexive module is periodic. Then (under
some adequate assumptions) does there exist a G-regular local ring S and an S-regular element f ∈ S
such that R ∼= S/(f)? (Namely, is R a “G-hypersurface”?)

A partial answer to this question can be found in [22, Theorem 4.2]. The converse statement holds
by Theorem 2.10 and Proposition 2.4. To be precise, let S be a G-regular local ring, f ∈ S an S-regular
element, and R = S/(f) the residue ring. Then every totally reflexive R-module is periodic.
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