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ON GALOIS GROUPS OF CLASS TWO EXTENSIONS

OVER THE RATIONAL NUMBER FIELD

SUSUMU SHIRAI

Introduction

Let Q be the rational number field, K/Q be a maximal1} Abelian ex-
tension whose degree is some power of a prime £, and let f(K) be the
conductor of KjQ if £ = 2, let K be complex, and if in addition f(K) = 0 (mod 2),
let f(K) = 0 (mod 16). Denote by g(i£) the Geschlechtermodul of K over
Q and by K the maximal central ^-extension of K/Q contained in the ray
class field mod ^(K) of K. A. Frδhlich [1, Theorem 4] completely deter-
mined the Galois group of K over Q in purely rational terms. The proof
is based on [1, Theorem 3], though he did not write the proof in the case
f(K) = 0 (mod 16). Moreover he gave a classification theory of all class
two extensions over Q whose degree is a power of £. Hence we know
the set of fields of nilpotency class two over Q, because a finite nilpotent
group is a direct product of all its Sylow subgroups. But the theory
becomes cumbersome, and it is desirable to reconstruct a more elementary
one.

In the present paper we take the m-th cyclotomic field Km as if and
the central class field KmPoo

2) mod mp^ of KJQ as Ky where p^ stands
for the real prime divisor of Q. Then we determine the Galois group of
KmPoo over Q by refining the methods used in [1] when (ra, 16)^8 (Theorem
6). The proof is based on [5, Theorem 32] which is a generalization of
[1, Theorem 3] to a cyclotomic field over Q. We have already shown in
[5] that if L/Q is a normal extension whose Galois group is of nilpotency

A.

class two, then there exists a positive integer m such that LdKmPoo»
Thus as regards Galois groups, we possess the set of all nilpotency class

Received July 19, 1978.
1) This is of sense of Frδhlich [1], which implies that the union of all Abelian

^-extensions defined mod f(K) over Q is K itself, in other words, the ^-genus field of
K/Q contained in the ray class field mod %(K) of K coincides with K,

2) See [5, §3].
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two extensions over Q as well as the set of cyclotomic fields over Q. It
seems that in this approach to the theory of fields of class two over Q
the structural relation between the fields becomes more transparent in
comparison with the case of Frόhlich [1].

Notation

Throughout this paper the following notation will be used.
Z the ring of rational integers on which a finite group acts trivially.
Q the field of rational numbers as in Introduction.
U(]p the i'th unit group of K with i I> 0 when K is a local field.
G(K/k) the Galois group of K over k.
Nκ/k the Norm of K to k.
(α, 6) the commutator aba^b'1 of a and b when a, b are elements in

a group.
{A, B) the subgroup generated by the commutators (α, b) of all αeA,

be B when A, B are subsets in a group.
<A> the subgroup generated by A when A is a subset in a group.
ψ(n) the Euler's function, that is, the number of positive integers <^ n

which are relatively prime to n.
Moreover we will use the results and notation of the preceding paper [5].

§ 1. The Schur multiplicator of a finite group

In this section we describe a well-known result of I. Schur for later
use.

Let G be a finite group, and let

l->R->F->G-+l

be a free presentation of G in which F is free. Denote by Fr the derived
group of F. Then the sequence in which all groups are Abelian

0 -> R Π F7(JR, F) -> RI(R9 F) -+ R/R Π F' -> 0

is exact. Since R/R Π F / is isomorphic to a subgroup RF'jF' of the free
Abelian group F/F7, the above sequence splits, and hence there exists a
complement S/(R, F) to R Π F7(i2, F) in #/(#, F). Of course this S is
not uniquely determined.

LEMMA 13). Notation being as above, we have

3) See for instance B. Huppert [2, §23]. This follows also from MacLane's theo-
rem [4, §§50, 52].
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H-\G9 Z) ~ R/S .

We note that if {zλ mod F'}λeΛ(R 13 {zλ}λeA) is a basis for the free Abelian

group RF'fF', then we can take

( 1 ) S=<{zλ}λeΛ,(R,F)> .

§ 2. Relations of local Galois groups

Let p be a rational prime, Qp be the p-adic number field, T/Qp be a

finite unramified extension, ζ be a primitive pv-th root of unity, and let

K = T(ζ). We denote by K a central extension of K/Qp such that the

p-exponent μ{KjQp) of the Galois conductor4) of KjQp does not exceed v.

We first assume p Φ 2. Let g be a primitive root mod pv, and let

<2) σ = (p,KIQp)-1

9 τ = (g,K/Qp),

where ( , KjQp) denotes the local norm residue symbol for K/Qp. Then σ

is the Frobenius automorphism of KjQp{ζ) and τ a generator of the inertia

group G(K/T) of K/Qp. It is obvious that {<?, τ} is a system of generators

of G{KIQP\

LEMMA 2. If p Φ 2, £Λeτι £/ιere exists a system of generators {σ, τ) of

G(KIQP) such that

where σ, τ are extensions of σ and τ defined by (2) to K, respectively.

Proof There exists a e UP such that NT/Qpa = g, because TjQp is

unramified. Then τ = (a, KjT). Since K/T is cyclic, K/T is Abelian. We

take

τ = (a, K/T) .

As is generally known, the unit group U(τ} is a direct product of the

group of (pf — l)st roots of unity and U(τ\ here / = [T: Qp]9 the extension

degree. Thus we may write,

and hence

ϊ*"1 = (ξpv~\ K)T) .

4) See [5, §1].
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Because it follows from μ(KjT) = μ(KjQp) ^ v that

where If* is the multiplicative group of all non-zero elements of K. Then

for any extension σ of σ to K, we have

( 7^" 1 ^- 1 = ((ξσ)pv'\ K/T) = (f^, if/77) = τ^ . Q.E.D.

Next we assume p = 2. In this case lf/T is not cyclic when v ΐ> 3.

Therefore the situation becomes more complicated in comparison with the

case of p Φ 2, because KjT is not necessarily Abelian. The relation be-

tween fields to be considered below can be described by the following

diagram, in which we put R — T(θ), θ = ζ + ζ"1. Note that extensions

K/R, KIT(V=Ϊ), K/Q2(ζ) are Abelian, because K/R, K/T(v^l), K/Q2(ζ)
are cyclic and G(KjK) is contained in the center of G(K/Q2).

Q2(0

Now set

( 3 ) a = (2, KjQ2Y\ τ* = (-l,2f/Q2), τ = (5, K/Q2) .

Then σ is the Frobenius automorphism of KjQ2(ζ). By direct computation

of norm residue symbols, we have

ζ = ζ , ζ — ζ .

Thus T*, τ are generators of G{KjR) and GiK/TiΛ/^Λ)), respectively. We

first investigate a relation to be satisfied by a suitable extension τ of τ

5) Furthermore we have Ufi = UψpV~x when p Φ 2.
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to K. Since T(V — 1)/Q2(V— 1) is unramified, there exists ae U{τu—λ) such

t h a t NTiV zϊ)/QΛw zϊ)(x = 1 + 2V — 1 . Then

r = (1

because of JVQ2(V:π)/(?2(l + 2</—Ί) = 5. We take

( 4 ) τ = (a, K/T(V=Ϊ)) .

LEMMA 3. f21"2 = 1 .

Proof. The Hasse's function for Q2{ζ)IQ2 is given by

P«.co/«.(ί - 1) = 2υ-χ; - P + 1) - 1 for i ^ v .

It follows from [5, Lemma 4] that

μ(K/Q2(ζ)) ^ φQ

and hence

Thus we have

= (α,

because of 1 + 2Λ/Ί ΓΪ e U^\ Q.E.D.

We next study a relation to be satisfied by suitable extensions σ, r*,

f of a, r*, r to K, here τ is the extension defined by (4) to K. There

exists β e Uf such that NR/Q2(θ)β = θ2 + θ — 1. It can be easily checked

that

NQ^/QSΘ2 + θ - 1) = - 1 for y ^ 2 .

Hence

* /Λ2 I β -| JζίCί (βX\ (ft TflT?\

We take

?* = (β, K/R) .

Then

r*2 = (β\ K/R) = (NKIBβ, KIR) = (β, KIK)

= (Nκ/QM)β, KIQlζ)) = φ + θ-l, KIQ2(ζ)).
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We take
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KIQ4Q)-1 •
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- c/i - r,
= ( - c,

and hence

(ζ, KjQ2{Of = (f , σ)2 = (r*2, σ) = 1 ,

because G(K/Q2) is a finite nilpotent group of class two and τ*2 e G(ίtlK)

c Z(G(K/Q2)), the center of G(KIQ2). Since 1 + ζ + ζ2 + ζ3 + ζ4 = ζ2(02

+ 0 — 1), we have

(?, σ)"1 = (r, <Γ') = td-'t-ϊ

= (l - c/i - C, ̂ /Q2(0) = (i - C/i - C, £

= f * 2

Thus we have proved the following

LEMMA 4. // p = 2, ί/ιeτz Jftere eΛ isίs α system of generators {σ, ϊ*, τ)

of G(K/Q2) such that

where σ, τ*, τ are extensions of σ, τ*9 and τ defined by (3) £o J?.

§ 3. Galois groups of class two extensions over Q

Let m be a positive integer, ifTO be the m-th cyclotomic field over Q,

and let KmPoo be the central class field mod mp^ of ϋΓm/Q in the sense of

[5, § 3], Poo being the real prime divisor of Q. Then KmPoo is a nilpotency

class two extension over Q. We have proved the following theorem6) in

[5].

6) Denote by m > 0 the finite part of the Galois conductor f(L/Q) of L/Q in the
sense of [5, §2], Then it follows from the same procedure as the proof of [5, Lemma
37] that L c £mpoo.
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THEOREM A. If LjQ is a normal extension whose Galois group is of

nίlpotency class two, then there exists a positive integer m such that L C KmPoo.

Hence it is enough to determine the Galois group G(KmpJQ) in order

to classify all nilpotency class two extensions over Q. The discussion of

our theory is based on the following

THEOREM B ([5, Theorem 32]). Notation being as above, we have

G(KmvJK) ~H-\G{KJQ), Z) when (m, 16) Φ 8 .

Now put m — 2vp{x pv

r% pu , pr distinct odd primes. For use of

Theorem B we distinguish three cases:

(a) v = 0 , (b) y = 2 , (c) v ^ 4 .

In this paper we will prove our main theorem for (c) and state the cor-

responding results for (a) and (b), because they follow from the result in

the case (c) by only notational changes.

Assume v JΞ> 4. Let gt be a primitive root mod pl\ and let

where ί-^-j denotes the norm residue symbol for K/Q, and we write

briefly

K = Km , K = KmPoo .

Then τ4 is a generator of the inertia group of a prime factor of pt in K,

and, τ*, r are generators of the inertia group of a prime factor of 2 in K.

Since G(KjQ) is isomorphic to the group of prime residue classes mod m,

{τ*, τ9τu , τr) is a system of generators of G(KjQ). Let F be the free

group with r + 2 generators x*, x, xl9 , # r, and let

be the free presentation of G(K/Q) under the correspondence x* -> τ*,

Λ: -> r, xέ -> Ti, i = 1, , r. Then we have, from the structure of G(KjQ),

R(K) = < x*\ x2V-% xfW, , *•<*">, F'
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We identify each decomposition group with the corresponding local Galois

group, and choose extensions {du f j and {σQ, f*, f} of {σiy τ j and {α0, τ*, τ}

to K to satisfy the relations contained in Lemmas 2 and 4, respectively.

Then {τ*, τ, τί9 , τr) is a system of generators of G(2f/Q), because G(K/Q)

is a finite nilpotent group of class two. Let

1 ->R(K) ->F-> G(K/Q) -> 1

be the free presentation of G(ίtlQ) under the correspondence x* -> τ*,

Λ: ~> τ, *<->£<, ί = 1, , r. Then we have

and

[R(K): R(K)] = [£: Z] = [H-\G{KIQ\ Z): 1] ,

because of Theorem B.

LEMMA 5. Notation being as above, if σt can be written in the form

<*i = / ί ( Γ * > ^ τu --,Tr) , i = 0 , 1 , , r ,

= < x*\x, yo)9 x»-\ xtW\xp~\ yj, ,

where yό = ft(x*, x, xu , αcr), i = 0,1, , r.

Proof. Since the restriction of /«(τ*, f, ίΊ, , τr) on i ί is σi9 we may

write

-, τr) = σiPί , Pi 6

and hence for any γ e G{KfQ) we have

because G(K/K) is contained in the center of G(KIQ). Thus i?(K) contains

the right hand side under the homomorphism x* —> £*, # -» τ, #< ~> fc>
i = 1, , r, because of Lemmas 2 and 4. On the other hand,

{x*2(x, yd mod F' = x*2 mod F ; , x2^2 mod ί17, ,

i-\ yί) m o d Ff = Λ*W> mod F\ i = 1, , r}
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is a basis for the free Abelian group R{K)F'IF\ Hence by virtue of

Lemma 1 and (1) we have

[R(K): the right hand side] = [H'3(G(KIQ), Z) : 1] ,

which implies that R(K) coincides with the right hand side. Q.E.D.

According to A. Frδhlich [1], to write explicitly ft is realized by use

of the product formula in class field theory as follows. We define the

symbols [j, i], [0, ί]*, [0, i] by putting

(mod py) , i = 0,1, ., r , j = 1, . , r , iφj,

( 5 ) | Λ = ( - 1 ) * * 5 * « (mod 20, i = l, . - , r ,

where p 0 = 2. In other words [j, ί] is the index of pt for the modulus pγ

relative to the primitive root gs and [0, i]*, [0, i] are the indices of pt for

the modulus 2W relative to the basis {— 1,5}. These symbols are called

the cross coefficients for K in [1, pp. 237-238] when KjQ is a maximal

Abelian extension of prime power degree. It is obvious that

u K \ _ τίj,il i — n 1 ? — 1 . . . r

ί l K _ \ = Γ * c o , o . r D M ] ? i = i, . . . , Γ .

Therefore we have

σ < = r*P.flV^ f l Π *Sy'43 for i = 1, , r

because of Π f P i > g ) = 1, and
all V \ P I

( 2 K \
— ) = 1. Hence each yt in Lemma 5 is given by

P '

Λ = Π ^ 03,
r

y t = a*o>Λ xιw J J ^,»3 > » = 1, , r .
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It is well-known that if α, b, c are elements in a group of class two, then

(ab, c) = (α, c)(b, c) , (α, be) = (α, b)(a, c) .

Thus we have proved the following main

THEOREM 6. Let m = 2ypϊ1 pv; be a natural number, Km be the

m-th cyclotomic field over the rational number field Q, and let KmPoo be the

central class field mod mp^ of KJQ, p r o being the real prime divisor of Q.

Then:

(a) v = 0. The Galois group G(ίtmpJQ) of ίtmPoo over Q is generated

by r elements xί9 , xr, and completely determined by the relations

(xu Xj)xk = xk(xu Xj) , all i, j , k ,

*+<*> = (jl (xu x3)-^ψ~X, i = 1, , r .l

(b) v = 2. G(KmpJQ) is generated by r + 1 elements x0, xu

completely determined by the relations

(xt9 Xj)xk = xk(Xi, Xj) , all i, , /? ,

, i = i, , #•.

(c) i; = 4. G(KmpJQ) is generated by r + 2 elements x_u xθ9 xu — , xr,

and completely determined by the relations

(xtf Xj)xk = xk(xu Xj) , all ί, j , k ,

π
. 7 = 1

[/, i], [0, i]*, [0, i] are ί/ie indices defined by (5).
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