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Abstract

In this paper, we prove that, to any Hilbert cuspidal eigenform, one

may attach a compatible system of Galois representations. This result

extends the analogous results of Deligne and Deligne–Serre for elliptic

modular forms. The principal work on this conjecture was carried out

by Carayol and Taylor, but their results left one case remaining, which

we complete in this paper. We also investigate the compatibility of

our results with the local Langlands correspondence, and prove that

whenever the local component of the automorphic representation is

not special, then the results coincide.

Introduction

The Langlands philosophy suggests that, to every Hilbert cuspidal eigenform
over a totally real field F, one should be able to attach a compatible system
of 2-dimensional representations of Gal(F/F). When F = Q, this result is
well-known, and is due to Deligne [3] and to Deligne–Serre [6]; Deligne’s
paper proved the result whenever the weight of the modular form is at least
2, and the paper of Deligne and Serre proved the result when the form has
weight 1.

For Hilbert modular forms, the analogue of the study of Deligne was
carried out by Carayol [2] whenever the weights (for now there is a vector
of weights) are all at least 2, and [F : Q] is odd (and also for many forms
when F has even degree), and by Taylor [13] and Blasius–Rogawski [1] when
all of the weights are at least 2 and F is a number field of even degree. In
this paper, we attach compatible systems of Galois representations to forms
for which some of the weights are 1. The method is to give congruences
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between the given Hilbert modular forms and those of higher weight, in a
similar spirit to [15]. (The case where all of the weights are 1 is well-known,
and due to Rogawski–Tunnell [11] and to Ohta [10].)

I should like to take this opportunity to thank Richard Taylor for sug-
gesting this problem, and for his help during the time that the work on this
paper was carried out.

1 The adelic viewpoint

We now introduce our notation, which largely follows that of Hida [7].
Let F denote a totally real number field of degree d over Q and let I

denote the set {τ1, . . . , τd} of embeddings τ : F ↪→ R. We will be interested
in Hilbert modular forms of weight k (a d-tuple), and level n (an ideal of
OF). Let ∂ denote the different of F over Q.

Let G denote the linear algebraic group ResF/Q(GL2). Write A∞ for the
finite adeles of Q.

We make the convention that, for a set A (possessing a suitable notion of
positivity), A+ will denote the totally positive elements of A except that we
will use GL+

2 to denote the elements of GL2 with positive determinant.
We introduce some notation concerning the weight of a Hilbert modular

form.
Let t = (1, 1, . . . , 1) ∈ ZI . We say that m ∈ ZI is parallel if m ∈ Z.t.

Likewise, we say m ∈ ZI is parallel to n ∈ ZI if m − n is parallel.
Fix k ∈ ZI

≥1 such that

kτ1 ≡ k2 ≡ · · · ≡ kτd
(mod 2).

Define v ∈ ZI
≥0 such that some vτ = 0, and k + 2v is parallel. To fix the

transformation law, we choose w parallel to v + k. (We will usually make
the choice v + k − t for w, but choose to work in more generality during this
section.) Also write ŵ for k − w.

If f : G(A) −→ C, and u = u∞u∞ ∈ G(A∞) × G(A∞)+, then, for k and
w as above, we may define the transform f |k,wu : G(A) −→ C. Then, as in
[7], we have the notion of a space of modular (resp. cusp) forms, Mk,w(U)
(resp. Sk,w(U)) for an open compact subgroup U of G(A∞).

The compact open subgroups U in which we will be most interested are
the adelic analogues of the classical group Γ1(N).

Define U0 =
∏

q GL2(OF,q), where q runs over the finite primes of F. Let
n be an ideal of OF, and define:

U1(n) =

{(
a b
c d

)
∈ U0

∣∣∣∣ c ∈ n, a − 1 ∈ n

}
,
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V1(n) =

{(
a b
c d

)
∈ U0

∣∣∣∣ c ∈ n, d − 1 ∈ n

}
.

Definition 1.1 Denote by Sk,w(n) the space Sk,w(U1(n)), and by S∗
k,w(n) the

space Sk,ŵ(V1(n)). If f lies in one of these spaces, we may say that f has
level n.

We define an algebra of Hecke operators as in [7]. If U and U ′ are open
compact subgroups in G(A∞), and if x ∈ G(A∞), then we define the Hecke

operator

[UxU ′] : Mk,w(U) −→ Mk,w(U ′)

by f 7→
∑

f |k,wxi, where UxU ′ =
∐

Uxi.

Definition 1.2 When U = U1(n), we define the following Hecke operators:

• If q is a prime of F,

Tq =

[
U

(
1 0
0 πq

)
U

]
,

where πq is an element of A∞
F which is 1 everywhere except at q, where

it is a uniformiser.

• If a is a fractional ideal of F which satisfies (a, n) = 1, set

Sa =

[
U

(
α 0
0 α

)
U

]
,

where α =
∏

q π
vq(a)
q .

Define the Hecke algebra Tk,w(n) to be the Z-algebra in End(Sk,w(n)) gener-
ated by the Hecke operators Tq for q a prime of F and the operators Sa for a

an integral ideal of F prime to n.

Lemma 1.3 ([7], Proposition 2.3) There is a natural isomorphism

Sk,w(U) ∼= Sk,ŵ(U ι)

f(x) 7→ f ∗(x) = f(x−ι)

where ι denotes the main involution on GL2. Furthermore, this isomorphism
satisfies the following relation:

(f |[UxU ])∗ = f ∗|[U ιx−ιU ι]

for all x ∈ U .
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In particular, we define the Hecke operators on S∗
k,w(n) to be compatible

with this formula, and define the Hecke algebra T∗
k,w(n) to be the Z-algebra

in End(S∗
k,w(n)) generated by the operators Tq and Sa, where q and a run

through the same indexing set as in the definition of Tk,w(n).
Finally, we define the operator < a > on M∗

k,w(n) as a scalar multiple of
Sa. To do this, we give the following identity (see [7],(3.9)) of operators on
M∗

k,w(n):

Sa = NF/Q(a)[2w−k] < a >

where, if r ∈ Z.t, we write r = [r].t.

2 The classical viewpoint

Although the adelic viewpoint seems the most convenient in which to intro-
duce the notion of Hecke operator, we will also need to discuss congruences.
For this, a classical approach seems easier.

We say that a subgroup Γ of GL2(F) ∩ G(A∞)G(A∞)+ is a congruence

subgroup if it contains

Γn = {γ ∈ SL2(OF)|γ − I2 ∈ n.M2(OF)}

for some integral ideal n, and Γ/(Γ∩F) is commensurable with SL2(OF)/{±1}.
If f : hI −→ C, and γ ∈ GL+

2 (F), we have a transform f‖k,wα : hI −→
C leading to definitions (see [7]) of modular (resp. cusp) forms, Mk,w(Γ)
(resp. Sk,w(Γ)) for congruence subgroups Γ. A modular form has a Fourier
expansion

f(z) =
∑

ξ

a(ξ, f)eF(ξz)

where a(ξ, f) ∈ C and eF(ξz) = exp(2πi
∑d

i=1 ξτizi). ξ runs over 0 (if f is
not a cusp form) and all totally positive elements of a lattice in F.

We indicate the relationship between the two definitions of Hilbert mod-
ular forms given thus far; in particular, we now begin to discuss the adelic
q-expansion, integrality and congruences.

Let h be the number of ideal classes of F mod P∞, the product of all of
the archimedean primes.

Take h elements t1, . . . , th of A∗
F such that t∞i ∈ ÔF (= OF ⊗Z Ẑ), and

t1OF, . . . , thOF form a complete set of representatives for such ideal classes;
note that, by the Strong Approximation Theorem, we can choose ti such that
(ti)S = 1 for any finite set of places. We will always insist that all infinite



2 THE CLASSICAL VIEWPOINT 5

places lie in S; in addition, we will always include all of the primes dividing
the level. Write

xi =

(
ti 0
0 1

)
, x−ι

i =

(
1 0
0 t−1

i

)
.

Let E denote the set of totally positive units in OF. Define

Γi(n) = x−ι
i E.U1(n)G(A∞)+xι

i ∩ G(Q) = xiE.V1(n)G(A∞)+x−1
i ∩ G(Q).

We have canonical isomorphisms ([7]):

Sk,w(n) −→
h⊕

i=1

Sk,w(Γi(n))

S∗
k,w(n) −→

h⊕

i=1

Sk,ŵ(Γi(n))

Conversely, given an h-tuple (f1, . . . , fh) ∈
⊕h

i=1 Mk,ŵ(Γi(n)), the associ-
ated function f : G(A) −→ C in M∗

k,w(n) is given by:

f(αxiγ) = (fi‖k,wγ∞)(z0) for all α ∈ G(Q), γ ∈ U1(n)G(A∞)+.

Then, in particular,

f(xiy) = (fi‖k,wy)(z0) for all y ∈ G(A∞)+.

A routine verification, using this last formula, shows that (fg)i = figi.
It is this correspondence which allows us to form the adelic q-expasion;

see [12] and [7], §4. We will identify the q-expansion of a modular form f ∈
M∗

k,w(n) with the h Fourier expansions of the corresponding fi ∈ Mk,ŵ(Γi(n)).
This means that f will have h constant terms in its Fourier expansion, and
one term corresponding to all other totally positive ideals. It is easy to
see that the Fourier expansions of f and g, two adelic modular forms, will
multiply together to give the Fourier expansion of fg (as this is true for each
of the component modular forms on Γi(n)).

As Γi(n) contains elements of the form

(
1 b
0 1

)
for all b ∈ (tiOF), fi

has a Fourier expansion of the form

fi(z) =
∑

ξ∈(t−1

i ∂−1)+∪{0}

ai(ξ)eF(ξz).
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Remark 2.1 For elliptic modular forms, the Fourier coefficients of an eigen-
form generate a number field. For Hilbert modular forms, this is only nec-
essarily true ([12], 2.8, 2.9) when kτ1, . . . , kτd

all have the same parity, as we
insisted earlier.

We begin now to discuss questions of integrality and congruence.

Definition 2.2 Denote by Φ(v) the subfield of Q generated by

xv =
∏

τ

τ(x)vτ

for all x ∈ F. Denote its ring of integers by O(v).

The character
(−)v : F× −→ Φ(v)×

extends by continuity to a character on A×
F , which we denote in the same

way.

Definition 2.3 Let A be an O(v)-algebra contained inside C. If, for all
x ∈ A∞

F , the ideal (xvO(v))A is generated by a single element in A, we say A
satisfies the Hida condition (after [7],(3.1)). A number field containing Φ(v)
will be said to satisfy the Hida condition if its ring of integers satisfies the
Hida condition.

When dealing with questions of A-integrality, we will always insist that A
satisfies the Hida condition. If k is parallel, so that v = 0, this imposes
no restrictions on the rings A that we may consider; but, in any case, for
every number field K, there is a finite extension K0 of K satisfying the Hida
condition.

Definition 2.4 For q a prime ideal of OF, we fix, once and for all, a choice
{qv} of generator in A of the ideal xvA, where q = xOF. If a is any ideal,
define {av} by

∏
q{qv}vq(a).

As in [7], 4.1 (but with w = k + v − ε.t for any ε ∈ Z), a form f ∈ S∗
k,w(n)

has a Fourier expansion:

f

((
y x
0 1

))
= |y∞|εAyk−w

∞

∑

ξ∈F×

+

a(ξy∂, f){(ξy∂)v}ξ−veF(
√
−1ξy∞)eF(ξx),

where a(ξy∂, f) = 0 unless ξy∂ is an integral ideal. There are no non-cuspidal
modular forms if k is not parallel, but even in this case, one has an adelic
q-expansion ([12]) which takes account of the constant terms.
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Definition 2.5 The space of A-integral (adelic) cusp forms will be defined
as:

S∗
k,w(n; A) = {f ∈ S∗

k,w(n)|a(a, f) ∈ A for each integral ideal a}.

As in [7], 4.3, we then have:

fi(z) = cv,i

∑

ξ∈(t−1

i ∂−1)+

a(ξti∂, f){ξv}ξ−veF(ξz),

where cv,i = NF/Q(ti)
−ε{(ti∂)v}.

Hida [7], 4.12, proves that if A is an integrally closed domain containing
O(v) satisfying the Hida condition, and such that if A is finite flat over O(v)
or Z` for some prime `, then S∗

k,w(n; A) is stable under the action of < a >
for every integral ideal a prime to n, at least in the case w = k + v − t, the
only case in which we shall use this result.

Definition 2.6 The space of A-integral cusp forms Sk,ŵ(Γi(n); A) on Γi(n)
consists of the forms in Sk,ŵ(Γi(n)) whose Fourier expansion coefficients lie
in A.

Notice that now

S∗
k,w(n; A) =

h⊕

i=1

cv,iSk,ŵ(Γi(n); A),

as {ξv}ξ−v is a unit in A.
We define K-rationality similarly for number fields K/Φ(v) satisfying the

Hida condition. We remark that S∗
k,w(n; K) is stable under the action of the

Hecke operators Tq ∈ T∗
k,w(n), at least when w = k + v − t (this is [7], 4.8).

We finally conclude this section with a brief discussion of congruence.
Take a number field K ⊃ Φ(v) satisfying the Hida condition. Write OK

for its ring of integers. For each integral ideal α of K, we say that Hilbert
modular forms f and g in M∗

k,w(n; K) are congruent modulo α if, for all
integral ideals a of F, a(a, f) − a(a, g) ∈ α, that is to say, if the Fourier
expansions are congruent modulo α. Likewise, we say that f is a modulo

α eigenfunction of the Hecke operator T if there exists a ∈ OK such that
f |k,wT ≡ a.f (mod α).

3 The main conjecture

The following conjecture is well-known.
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Conjecture 3.1 Let f be a Hilbert cuspidal eigenform in S∗
k,w(n; K) where

K is a field containing Φ(v), and let λ be a prime of OK lying above a prime
` of Z. Then there is a continuous representation:

ρλ : Gal(F/F) −→ GL2(OK,λ),

which is unramified outside n`, and such that if q is a prime of OF not
dividing n`, then

tr ρλ(Frobq) = θf(Tq)

det ρλ(Frobq) = θf(Sq)NF/Q(q),

where θf (T ) denotes the eigenvalue of the Hecke operator T on f . Further-
more, for all primes q/|`, the restriction of ρλ to the local Weil group at q

should coincide with the λ-adic representation σλ(πq) attached by the local
Langlands correspondence to the q-component of the automorphic represen-
tation corresponding to f .

We recall that this was proven by Carayol [2], when d is odd and k ≥ 2t
(and also for many forms when d is even). The method is essentially geomet-
ric, involving a deep analysis of the cohomology groups attached to certain
Shimura curves. Taylor ([13]) completed the proof for all forms with k ≥ 2t
and d even, using a congruence method.

Earlier, several authors had obtained partial results, notably Ohta and
Blasius-Rogawski (whose method complements that of Taylor, by construct-
ing the representations geometrically). Both describe the representations
at good primes. Hida [8] has attached systems of Galois representations to
homomorphisms from his universal nearly ordinary Hecke algebras. These
algebras are universal for k ≥ 2t, and thus his results specialise to the results
of Ohta and Blasius-Rogawski. He is also able to analyse the behaviour of
the representations at bad primes if the forms are ordinary.

When k = t, the conjecture is also known, and is due to Ohta [10] and
Rogawski-Tunnell [11], but the case where some, but not all, of the compo-
nents of k are 1 seems unresolved. In the remainder of the paper, we develop
a method to solve this case, and to prove the conjecture above for these
forms, except at primes where πq is special. The method involves congru-
ences, as no motivic description of the representations seems to be known at
the current time.

Finally, we remark that Ribet, in a letter to Carayol (unpublished), has
proven that if the representations exist, then they are irreducible.
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4 Construction of a certain modular form

In order to prove the first part of Conjecture 3.1 for all Hilbert cuspidal
eigenforms, we will try to exploit congruence methods, as in Taylor [13].
However, we will construct the congruences between forms of partial weight
one, and forms of a higher weight. We will do this by finding a suitable
modular form congruent to 1 modulo λ, and multiplying by suitable powers
of this form.

Several authors have constructed forms with some of the properties that
we need, and to prove everything that we require, we will adapt a form
constructed by Hida, in [16], 1.4.2. Indeed, we will copy the proof almost
exactly, but will make a slight adaptation towards the end.

Definition 4.1 Fix, as indicated in §2, elements t1, . . . , th ∈ A×
F such that

• t∞i ∈ ÔF,

• t1OF, . . . , thOF form a complete set of representatives for the ideal
classes of F mod P∞,

• (ti)NF/Q(n)`∂∞ = 1.

Then define t∗i by the relation

t−1
i ∂−1 = t∗iOF.

Note that (t∗i )∞ = 1.

Definition 4.2 Let a be a fractional ideal and b be an integral ideal of OF.
Then define the subgroup

Γ(a, b) =

{(
a b
c d

)
∈ GL+

2 (F)

∣∣∣∣ a, d ∈ OF, b ∈ a−1, c ∈ ab, ad − bc ∈ O×
F

}
.

Remark 4.3 It is easy to see that Γ(t−1
i OF, c) = Γi(c) for any integral ideal c.

Theorem 4.4 There exists a modular form

E ∈ M∗
κ,κ(c; Z`)

satisfying the following conditions:

1. κ = 2s(` − 1).t ∈ ZI for some s ≥ 1.
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2. c may be chosen to be any one of infinitely many prime ideals of OF

coprime to ∂.

3. E ≡ 1 (mod `).

4. E| < a >= E for all integral ideals a prime to c.

Proof. For this, we follow Hida’s proof of [16], 1.4.2, very closely, but with
a couple of minor alterations.

If ` is odd, we let K = F(ζ`)
+, and M = F(ζ`), and if ` = 2, we let K = F,

and M = F(
√
−1). Then, if b denotes an integral ideal of OM, and ξ ∈ K+,

we form the following theta series:

g′(z) =
∑

α∈b−1

eπitr(ξααz).

Let U denote the set {u ∈ (O×
F )+}/{uu|u ∈ O×

M}, of order 2s−1, say.
Form

g(z) =
∏

u∈U

g′(uz).

Then Shimura has proven ([16]) that g2 ∈ MK
2s,0(Γ(c, D)) is a modular form

(over K) associated to the group Γ(c, D), where D = Disc(M/K), and where

c = (ξ)NM/K(b−1)∂K.

To obtain a form over F of the desired weight, restrict g2, and raise to a
suitable power t. Note that such a form must be congruent to 1 modulo `
exactly as in [16].

For i = 1, . . . , h, we will construct a form Ei over F of the desired weight
using this recipe.

For infinitely many prime ideals q of OK, we can find suitable bi and ξi

so that
ci = t∗i ∂q.

Let Ei = g
2t(i)
i be the form on F of the desired weight. Ei is, by Shimura’s

result, a form in

Mκ,0(Γ(t∗i ∂, q0)) = Mκ,0(Γ(t−1
i OF, q0)) = Mκ,0(Γi(q0)),

where q0 = q ∩ OF. Fix c to be such a q0.
We choose bi and ξi in an arbitrary manner (so as to get a form of level c),

as i runs through a set of representatives for C/C2, where C is the group of
strict ideal classes. If

tiOF = (tjOF)(tkOF)−2,
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then we choose bj = bit
−1
k and ξj = ξiδ

−1, where, as in [16], 1.4.2, δ is a
totally positive generator of the ideal (t−1

i tjt
2
k). Now take the corresponding

Ej , and let E denote the adelic modular form corresponding to the h-tuple
{E1, . . . , Eh}.

To prove that E|κ,0 < a >= E for all integral ideals a prime to c, one
calculates exactly as in [7], §4.

One computes E|Sa(x) as

(
E

∣∣∣∣∣κ,0

(
a 0
0 a

)−1
)

(x), where a denotes the

finite idele corresponding to a. Writing

(
a 0
0 a

)
=

(
a2 0
0 1

)(
a−1 0
0 a

)

as in [7], one first computes the effect of the matrix

(
a 0
0 a−1

)
on each Ei

(using the results of [7], 4.9, and [5], §7, to compute the effect of this matrix

on theta series), and then the effect of the matrix

(
a−2 0
0 1

)
exactly as in

the proof of [7], 4.11. We omit the details of this calculation.

5 Towards the conjecture

Our method, which will resemble that of [13] and [15] in certain aspects, is
based on a congruence argument. We will use the form constructed above to
provide congruences between the given form of partial weight one, and forms
of higher weight.

To prove Conjecture 3.1, let f ∈ S∗
k,w(n; K), as above, and let λ be a

prime of K.
At this stage, we will fix w = k +v− t; for more general w, one may twist

(see [2], §3) to reduce the problem to this situation.
We first exploit the remark of Hida that every number field K/Φ(v) pos-

sesses an extension of finite degree which satisfies the Hida condition. We
may thus, enlarging K if necessary, assume that K satisfies the Hida condi-
tion. This allows us to speak of integral forms.

In fact, one can show that the integral forms span the rational forms, that
is,

S∗
k,w(n;OK) ⊗OK

K = S∗
k,w(n; K).

Equivalently, the denominators in the Fourier expansion of a rational form
are bounded.
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To see this, note that one can also define a slightly larger space of Hilbert
modular forms as functions on the moduli space of Hilbert-Blumenthal abelian
varieties with given polarisation and level structure. We omit the details, but
refer the reader to [7] or [9]. One obtains the q-expansion of such Hilbert
modular forms by evaluation at a “generalised Tate curve”, a scheme defined
over an integral ring Z (defined in [9]). It follows that K-rational Hilbert
modular forms in this definition have their q-expansion lying in Z ⊗ K, and
thus have bounded denominators. As there is a q-expansion preserving em-
bedding from Sk,ŵ(Γi(n); K) to some space of these geometrically defined
Hilbert modular forms ([7], (4.14)), it follows that the q-expansions of forms
in Sk,ŵ(Γi(n); K) have bounded denominators, and thus the same result holds
for S∗

k,w(n; K).
Thus we may work with f ∈ S∗

k,w(n;OK).
Then, with the form E as above, we have:

f ∈ S∗
k,w(n;OK) ↪→ S∗

k,w(n;OK,λ),

E ∈ M∗
κ,κ(c; Z`) ↪→ M∗

κ,κ(c;OK,λ).

Recall that we may choose c to be one of infinitely prime ideals of OF–we
shall always insist that (c, n∂) = 1.

Let A = OK,λ, and let m be the maximal ideal of A.

Definition 5.1 Write fn = f.E`n ∈ S∗
kn,wn

(m), where kn = k + κ`n, wn =
w + κ`n and m = nc.

Lemma 5.2 fn ≡ f (mod m
n+1).

Proof. It is clear that
E`n ≡ 1 (mod m

n+1).

Then
ai(ξ, fn) =

∑

ζ+θ=ξ

ai(ζ, f)ai(θ, E
`n

),

and we conclude that

cv,ia(ξti∂, fn){ξv}ξ−v =
∑

ζ+θ=ξ,θ 6=0

cv,ia(ζti∂, f){ζv}ζ−vai(θ, E
`n

)

+cv,ia(ξti∂, f){ξv}ξ−vai(0, E
`n

).

But

ai(0, E
`n

) ≡ 1 (mod m
n+1)

ai(θ, E
`n

) ≡ 0 (mod m
n+1) for θ 6= 0.
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Also, {ζv}ζ−v is a unit in A for all ζ . Combining all of these facts (first
dividing by cv,i), we obtain

a(ξti∂, fn) ≡ a(ξti∂, f) (mod m
n+1),

and so
fn ≡ f (mod m

n+1),

as required.
The crucial proposition is the following:

Proposition 5.3 For every operator T of the form Sq with q/|m`, or Tq with
either q/|m` or q|n and q/|`, we have

f |T ≡ fn|T (mod m
n+1).

Proof. Obviously

f | < a >≡ f | < a > (mod m
n+1),

where a is an integral ideal prime to m`. We noted earlier that f | < a >
remained integral. By the same method as the proof of Lemma 5.2, we obtain

f | < a > .E`n ≡ f | < a > (mod m
n+1).

Then, using Theorem 4.4,

f | < a > .(E| < a >)`n ≡ f | < a > (mod m
n+1).

As the map f 7→ f | < a > is a homomorphism, we conclude that

fn| < a >≡ f | < a > (mod m
n+1).

Next, we see that ` − 1|[κ], and so

NF/Q(a)[`nκ] ≡ 1 (mod m
n+1).

Then

NF/Q(a)[k+2v−t+`nκ]fn| < a >≡ NF/Q(a)[k+2v−t]f | < a > (mod m
n+1).

But NF/Q(a)Sa = NF/Q(a)[2w−k+t] < a > as operators on S∗
k,w. Hence

NF/Q(a)fn|Sa ≡ NF/Q(a)f |Sa (mod m
n+1),
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which gives the first assertion of the proposition (as NF/Q(q) is a unit when
q/|`).

It remains to demonstrate the result for the Hecke operators Tq, with q/|`
and q|n or q/|m. But we have (using a result of Hida [7], 4.2):

a(b, f |Tq){qv} =
∑

b+q⊂a
a+n=OF

NF/Q(a)a(bqa−2, f |Sa){a2v}

=
∑

b+q⊂a

a+m=OF

NF/Q(a)a(bqa−2, f |Sa){a2v}

≡
∑

b+q⊂a

a+m=OF

NF/Q(a)a(bqa−2, fn|Sa){a2v} (mod m
n+1)

≡ a(b, fn|Tq){qv} (mod m
n+1),

the second equality holding precisely because q|n or q/|m. Thus we conclude
that

f |Tq ≡ fn|Tq (mod m
n+1),

(as {qv} ∈ A×) as required.
We now begin to prove Conjecture 3.1 in the case where f is a Hilbert

modular form of partial weight 1.

6 The main theorem

The form of the following theorem is taken from Taylor [14].

Theorem 6.1 Let f ∈ S∗
k,w(n;OK) be a Hilbert cuspidal eigenform of partial

weight one. Then, if λ is a prime of OK , there exists a continuous represen-
tation

ρλ : Gal(F/F) −→ GL2(OK,λ),

which is unramified outside n`, and satisfying

1. det ρλ = χ, where χ is the continuous character unramified outside n`,
which is defined by

χ(Frobq) = θf (Sq)NF/Q(q)

for each prime q of F not dividing n`, and where θf (T ) denotes the
eigenvalue of T on the eigenform f .

2. if q/|n` is a prime of F, then

tr ρλ(Frobq) = θf (Tq).
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3. if q is a prime of F such that q/|` but q|n, then either

(a) θf (Tq) = 0, or

(b) for every σq in the decomposition group at q lying above Frobq, we
have:

tr ρλ(σq) = θf (Tq) + χ(σq)θf (Tq)
−1.

Proof. Recall that a pseudorepresentation in the sense of Wiles [16] is es-
sentially the trace of a 2-dimensional representation. A nice summary of the
main definitions and results of the theory of pseudorepresentations is given
in [13], §2.

The results of Carayol and Taylor referred to above imply (see [13], Propo-
sition 1) that there is a continuous pseudorepresentation

rn : Gal(FΣ/F) −→ Tkn,wn(m) ⊗ Z`,

where Σ denotes the set of primes of F dividing m`, such that

tr rn(Frobq) = Tq for q/|m`

T sq

q (T 2
q − Tqtr rn(σq) − χ(σq))

2 = 0 for q|n but q/|`

where sq is equal to the highest power of q dividing mλ. In particular, sq is
independent of n.

But, as above, there is a natural isomorphism between Tkn,wn(m) and
T∗

kn,wn
(m). We also define the map:

αn : T∗
kn,wn

(m) −→ OK,λ/λ
n+1,

defined by T 7→ θf (T ) (mod m
n+1); that this makes sense is essentially the

content of Proposition 5.3.
Consider the composition of these maps:

Rn = αn ◦ rn.

Then this is a continuous pseudorepresentation

Rn : Gal(FΣ/F) −→ OK,λ/λ
n+1,

which satisfies

trRn(Frobq) ≡ θf (Tq) (mod λn+1) for q/|m`,

and

θf (Tq)
sq(θf (T

2
q ) − θf (Tq)trRn(σq) − χ(σq))

2 ≡ 0 (mod λn+1) for q|n, q/|`.
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Clearly this set of pseudorepresentations, as n varies, are compatible in that:

Rn ≡ Rn+1 (mod λn+1),

(as they agree on Frobq for q/|m, a dense set), and so, using one of the
fundamental properties of pseudorepresentations ([16]), the limit

R : Gal(FΣ/F) −→ OK,λ

is also a pseudorepresentation, and clearly satisfies

tr R(Frobq) = θf (Tq) for q/|m`,

θf (Tq)(θf (T
2
q ) − θf (Tq)tr R(σq) − χ(σq)) = 0 for q|n but q/|`.

As R is a pseudorepresentation, it lifts to a genuine representation

ρλ : Gal(FΣ/F) −→ GL2(Kλ),

with the same trace as R.
Thus the theorem is proven for all primes q|n or q/|m (i.e., q/|c). It suffices

now to pick two different prime ideals c1 and c2 for the level of E; the traces of
the two representations thus obtained agree at all primes q/|`c1c2, and so the
representations are thus isomorphic. But together, the two representations
define the trace at all primes q/|`, and coincide with the statement of the
theorem.

That ρλ may be valued in GL2(OK,λ) follows as ρλ stabilises a lattice in
the usual way (as Gal(FΣ/F) is compact).

Finally we remark that although we earlier replaced K by an extension
satisfying the Hida condition, the representation that we have just con-
structed has a model defined over the field generated by its traces. This
is exactly the original field of definition of f , and thus the representations
are then genuinely valued in the completions of the field of definition for f
as required.

This concludes the proof.
Having constructed the desired representations, we now investigate the

compatibility of these representations with those obtained from the local
Langlands correspondence, as in the second half of Conjecture 3.1.

7 The local Langlands correspondence

There is a natural bijective correspondence (the local Langlands correspon-

dence) between isomorphism classes of admissible irreducible representations
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(over C) of GL2(Fp) and isomorphism classes of 2-dimensional F -semisimple
representations of the local Weil-Deligne group at p.

Write ωp for the (quasi-)character | |p of F×
p , and, consequently of the

local Weil group WFp
, where we will normalise the isomorphism of class field

theory so that the arithmetic Frobenius elements correspond to uniformisers.
As before, Frobp will continue to denote the arithmetic Frobenius element.

As πp will be used to denote the local component of an automorphic
representation, we will use p to denote the uniformiser of the ideal p. This
abuse of notation should cause no confusion.

As in [4], there are several natural ways in which to write the local Lang-
lands correspondence, and we shall follow Deligne in using the Hecke corre-

spondence (see [4], 3.2.6). For each representation πp of GL2(Fp) as above,
we will write σ(πp) for the associated F -semisimple representation of the
Weil-Deligne group.

Throughout the remainder of the paper, π will denote the automorphic
representation associated to a Hilbert cuspidal eigenform f ∈ S∗

k,w(n; K) as
in the previous section.

The representations πp are then realised over K, and for each finite place
λ of K of residue characteristic prime to that of p, there corresponds a
continuous λ-adic representation σλ(πp) of WFp

. Then one should have a
global correspondence:

Conjecture 7.1 The compatible system {ρλ} of continuous 2-dimensional
λ-adic representations constructed in Theorem 6.1 is such that for every fi-
nite place p of F, and for every finite place λ of K with different residue
characteristic to that of p, one has

(ρλ|WFp
)F−ss is equivalent to σλ(πp).

Presumably one expects that the representations ρλ|WFp
will be F -semisimple.

However, throughout the remainder of this paper, we will ignore questions of
F -semisimplicity—thus when we say that two representations are equivalent
(“ρ1 ∼ ρ2”), we shall mean that their F -semisimplifications are equivalent.

The main result is the following, which we shall prove case-by-case:

Theorem 7.2 Conjecture 7.1 holds whenever πp is not special.

Remark 7.3 When πp is special, one has

σλ(πp) ∼
(

χ1 ∗
0 χ2

)
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where χ1 and χ2 are characters determined by πp, and where ∗ is predicted
to be non-trivial. Our methods can prove that

ρλ|WFp
∼
(

χ1 ∗
0 χ2

)

but we cannot show that ∗ should be non-trivial.

We consider seven possibilities for πp in Theorem 7.2:

• principal series

(P1) both defining characters are unramified

(P2) exactly one of the defining characters is unramified

(P3) both defining characters are ramified

• special representation

(S1) the defining character is unramified

(S2) the defining character is ramified

• supercuspidal representation

(C1) monomial

(C2) extraordinary

Taylor ([13] and [14]) shows that Theorem 6.1 suffices to determine exactly
the restriction of the representation ρλ|WFp

in the cases (P1)–(P3), and that

this restriction is then equivalent to σλ(πp).

The case (S1) is similar to case (P2), in that we know that for every σp

lying above Frobp in the decomposition group, one has

tr ρλ(σp) = θf (Tp) + χ(σp)θf (Tp)
−1,

as in Theorem 6.1 (3b).
One also knows that in the case of a special representation with defining

character µ, θf (Tp) = µλ(σp)ωp(σp)
−1/2. Knowing that χ(σp) = µλ(σp)

2ω−1
p

(from the definition of χ and the fact that the eigenvalue of Sp is equal to
the central character of πp), one deduces that

tr ρλ(σp) = µλ(σp)ωp(σp)
−1/2 + µλ(σp)ωp(σp)

1/2.
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One can then use the classification of 2-dimensional representations to deduce
that

ρλ ∼
(

µλω
−1/2
p ∗
0 µλω

1/2
p

)

as claimed, although it is not clear that ∗ should be non-trivial.

The case (S2) reduces to the case (S1) after a twist, exactly as Taylor
([14]) reduces case (P3) to either case (P1) or (P2). We omit the details.

Next, we deal with the monomial supercuspidal case (C1). Then there is
a quadratic extension K/Fp, and a character µ : K× −→ C× such that πp is
associated to µ. Let Gal(K/Fp) = {1, σ}.

It is a standard argument (using Krasner’s lemma) that there exists L/F
totally real and quadratic with p inert such that Lp = K.

Let πL denote the base change of π to L; it is known that (πL)p = I(µ, µ◦
σ), where µ 6= µ◦σ. Let ρL,λ be the 2-dimensional representation of Gal(L/L)
associated to πL.

One knows that for principal series representations, base change corre-
sponds to restriction of the corresponding representations of the local Weil
groups. But, by cases (P1)–(P3), if q is a prime such that πq is principal
series, then the corresponding representation σλ(πq) of the local Weil group
actually coincides with ρλ|WFq

. Similarly, if q′ is a prime of L above q, the

representation σλ(πL,q′) coincides with ρL,λ|WL
q′

. Then

ρλ|WL
q′

= ρL,λ|WL
q′
,

and so globally one has ρL,λ = ρλ|Gal(L/L)
, as these representations agree

almost everywhere. Then (by (P1)–(P3))

ρL,λ|WLp
∼
(

µλ 0
0 (µ ◦ σ)λ

)
.

Thus

ρλ|WLp
∼
(

µλ 0
0 (µ ◦ σ)λ

)
,

and so

ρλ|WFp
∼ Ind

WFp

WLp
µλ

= σλ(πp)

as required.
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Finally there remains the case (C2) where πp is extraordinary cuspidal,
but the argument of Carayol ([2], 12.3) goes through unchanged, and reduces
the problem, after a cubic base-change, to the monomial supercuspidal case,
which was solved in the above paragraph.
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