

December 2019 Vol.62 No.12: 2631–2632 https://doi.org/10.1007/s11425-018-1601-4

Erratum to: On Galvin's theorem for compact Hausdorff right-topological semigroups with dense topological centers

Xiongping Dai^{1,*} & Hailan Liang²

¹Department of Mathematics, Nanjing University, Nanjing 210093, China; ²Department of Mathematics, Fuzhou University, Fuzhou 350116, China

 $Email: \ xpdai@nju.edu.cn, \ hailan.liang@smail.nju.edu.cn$

Erratum to: Science China Mathematics, December 2017 Vol. 60 No. 12: 2421–2428, doi: 10.1007/s11425-016-9139-1

Citation: Dai X P, Liang H L. Erratum to: On Galvin's theorem for compact Hausdorff right-topological semigroups with dense topological centers. Sci China Math, 2019, 62: 2631–2632, https://doi.org/ 10.1007/s11425-018-1601-4

In the third paragraph on p. 2421 and in Theorem 1' of [3] it is wrongly assumed that "the multiplication on a topological semigroup T can be extended to a right continuous multiplication on βT "; in other words, we wrongly assume that " βT is a compact Hausdorff right-topological semigroup for any topological semigroup T". So using [3, Theorem 1] we can only obtain the following two theorems in place of [3, Theorem 1'], where X' denotes the limit-point set of a space X and J(E) denotes the set of all idempotents in a compact Hausdorff right-topological semigroup E.

Firstly by [3, Theorem 1] and [6] we can obtain the following instead of [3, Theorem 1'].

Theorem 1' (See [1, Lemma 2.1] and [4, Theorem 3.3] for I and II). Let T be a discrete semigroup. Then the following statements hold:

I. Let $v \in (\beta T)' \cap J(\beta T)$ and let $\{V_n\}_{n=1}^{\infty}$ be a sequence of neighborhoods of v in βT . Then there exists a 1-1 map $\tau_{\bullet} \colon \mathbb{N} \to T$ such that $FP(\langle \tau_n \rangle_{n=k}^{\infty}) \subseteq V_k$ for all $k \ge 1$. In particular, any neighborhood of $v \in (\beta T)' \cap J(\beta T)$ contains an infinite IP-set in T.

IIa. For any IP-set $FP(\langle t_n \rangle_{n=1}^{\infty})$ in T, there exists a $v \in J(\beta T)$ such that $v \in \bigcap_{k=1}^{\infty} \operatorname{cls}_{\beta T} FP(\langle t_n \rangle_{n=k}^{\infty})$. IIb. Let H be a subsemigroup of T such that H' is a non-empty subsemigroup of βT . Then for any infinite IP-set $A \subseteq H$, there exists an idempotent $v \in (\beta T)' \cap \operatorname{cls}_{\beta T} A$.

III. If T is weakly left cancelable, then $(\beta T)'$ is T-invariant and so $(\beta T)'$ is a left ideal in βT .

Let G be a Hausdorff topological group with continuous multiplication

$$\lambda \colon G \times G \xrightarrow{(t,x) \mapsto tx} G$$

^{*} Corresponding author

 $[\]textcircled{C}$ Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

and with identity 1. Let \mathscr{U}_{1} be the neighborhood system of 1 in G. Let I = [0, 1] be endowed with the usual topology. A function $\varphi \colon G \to I$ is *left uniformly continuous*, denoted by $F_{\text{luc}}(G)$, if and only if given $\varepsilon > 0$ there exists a $U \in \mathscr{U}_{1}$ such that $|\varphi(x) - \varphi(tx)| < \varepsilon$ for all $x \in G$ and $t \in U$. Define the evaluation map

$$e_{\mathrm{luc}} \colon G \xrightarrow{x \mapsto (\varphi(x))_{\varphi \in F_{\mathrm{luc}}(G)}} I^{F_{\mathrm{luc}}(G)}$$

and let $G^{\text{LUC}} = \text{cls}_{I^{F_{\text{luc}}(G)}} e_{\text{luc}}(G)$, which is a compact Hausdorff subspace of the compact product space $I^{F_{\text{luc}}(G)}$.

 G^{LUC} is called the LUC-*compactification* of G, which is a compact Hausdorff right-topological semigroup with respect to the canonical multiplication (see [2, 5, 7]). Then by [3, Theorem 1] we can obtain the following Theorem 1".

Theorem 1''. Let G be any Hausdorff topological group. Then

(I) Let $v \in (G^{LUC})' \cap J(G^{LUC})$ and let $\{V_n\}_{n=1}^{\infty}$ be a sequence of neighborhoods of v in G^{LUC} . Then there exists a 1-1 map $\tau_i \colon \mathbb{N} \to G$ such that $FP(\langle \tau_n \rangle_{n=k}^{\infty}) \subseteq V_k$ for all $k \ge 1$. In particular, any neighborhood of $v \in (G^{LUC})' \cap J(G^{LUC})$ contains an infinite IP-set in G.

(IIa) For any IP-set $FP(\langle t_n \rangle_{n=1}^{\infty})$ in G, there exists a $v \in J(G^{LUC})$ such that

$$v \in \bigcap_{k=1}^{\infty} \operatorname{cls}_{G^{\operatorname{LUC}}} FP(\langle t_n \rangle_{n=k}^{\infty}).$$

(IIb) Let H be a subsemigroup of G such that H' is a non-empty subsemigroup of G^{LUC} . Then for any infinite IP-set $A \subseteq H$, there exists an idempotent $v \in (G^{LUC})' \cap \operatorname{cls}_{G^{LUC}} A$.

(III) $(G^{\text{LUC}})'$ is G-invariant and so $(G^{\text{LUC}})'$ is a left ideal in G^{LUC} .

References

- Bergelson V, Hindman N. Some topological semicommutative van der Waerden type theorems and their combinatorial consequences. J Lond Math Soc (2), 1992, 45: 385–403
- 2 Berglund J F, Junghenn H D, Milnes P. Analysis on Semigroups. New York: Wiley, 1989
- 3 Dai X P, Liang H L. On Galvin's theorem for compact Hausdorff right-topological semigroups with dense topological centers. Sci China Math, 2017, 60: 2421–2428
- 4 Ellis D, Ellis R, Nerurkar M. The topological dynamics of semigroup actions. Trans Amer Math Soc, 2001, 353: 1279–1320
- 5 Flor P. Über eine Kompaktifizierung topologischer Gruppen. J Reine Angew Math, 1967, 228: 193–198
- 6 Hindman N, Strauss D. Algebra in the Stone-Čech Compactification: Theory and Applications. Berlin: Walter de Gruyter, 1998
- 7 Knapp A.W. Decomposition theorem for bounded uniformly continuous functions on a group. Amer J Math, 1967, 88: 902–914

The online version of the original article can be found at doi: 10.1007/s11425-016-9139-1