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1 Introduction

In one-machine sequencing situations each agent (player) has one job that has to be

ptocessed on a single machine. Each job is specified by its ready time, the earliest time

that the processing of the job can begin, and its processing time, the time the machine

takes to handle the job. We assume that the costs of a player depend linearly on the

completion time of his job. Furthermore, there is an initial order on the jobs of the

agents before the processing of the machine starts.

A group oí agents (a coalition) can save costs by rearranging their jobs in a way that

is admissible with respect to the various ready times and the initial order. By defining

the value of a coalition as the maximum cost savings a coalition can make in this way,

we obtain a cooperative sequencing game related to a one-machine sequencing situation.

The formal model can be found in section 'l.

~'he above gatne theoretic approach was introduced by Curirl, Pedr.rzoli and Tijs

(1989). They showed convexity for all sequencing games arising from one-machine se-

quencing situations in which all jobs have equal ready times. Potters, Curiel, Rajendm

Prasad, Tijs and Iieltman (1990) introduced a class of balanced games that contains se-

quencing games corresponding to one-machine sequencing situations in which the ready

times of all jobs are not necesarry equal. In section 4 it is shown that the convexity

result of Curiel et al. (1989f can be generalized to the special class of sequencing games

that arise from one-machine sequencing situations in which all jobs have equal processing

times and the ready time of each job is a multiple of the processing time.

In section 3 we consider some properties oí this special class of one-machine sequenc-

ing situations. By modifying an algorithm of Rinnooy Kan (1976J one easily determines

the optimal order of any coalition in these sequencing situations. However, this al-

gorithm does not immediaiely describe the relation between optimal orders of various

subcoalitions. Some of these relations are provided in section 3.
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2 5equencing situations

In a one-machine sequencing situation there is a queue of agents, each with one job,

before a machine (counter). Each agent (player) has to process his job on the machine.

The finite set oí agents is denoted by N and ~ N ~- n.

By a bijcction o: N~ { 1, ..., n} we can describc the poeition of the agents in the queuc.

Specifically, o(i) - j means that player i is in position j.

The ready time r; of the job of agent ti is the earliest time the processing of this job

can begin. The processing time p; of the job of agent i is the time the machine takes to

handle this job.

We assume that every agent has a affine cost function c; :[o,oo) ~ R defined by

c;(t) - ~it f- ai with a; ~ o, ai E R.

Further it is assumed that there is an initial order oo : N~ {1,...,n} on the jobs of

the players before the processing of the machine starta with the property that for all

i, j E N with oo(i) G oa(j) it holds that r; C ri. A sequencing situation as described

above is denoted by (oo,r,p,a), where oo : N- ~ {1,...,n}, r-(r;);EN E [O,oo)N,

P-(Pi)iEN E RN and Q-(Qi)iEN E R-}t-

The vector ,0 -(~;);EN E RN is ommited in the description of a sequencing situation

since it will not affect the values of the corresponding sequencing game.

For player i E N we define the following sets with respect to a bijection o. The set of

predecessors of player i is P(o,i) :- {j ~ v(j) G Q(i)} and the set of followers of player i

is F(o, i) :- {j ~ Q(j) ~ o(i)}. The headof i is P(ao, i) U{i} and his tai! is F(ao,i)U{i}.

For notational convenience let P(i) :- P(oo, i) and F(i) :- F(vo, i).

The starting time of the job of agent i if processed according to a bijection a: N~

{1,...,n} (in a semi-active way) is

( max(r;,t~,, f Pi) if o(i) ~ 1

(l r; if a(i) - 1

where j E N such that o(j) - a(i) - 1.

Hence, the completion time of the job of agent i is equal to C(o, i) :- t; , f p;. The total

costs c,(S) oí a coalition S C N, is given by

Co(S) ~- ~ a;(C(~, z)) } I-~i.
iES
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The (maximal) costsavings of a coalition S depend on the set of admisaible reatrange-

ments of this coalition. We call a bijection v: N~ {1,...,n} admiasible for S if it

satisfies the following two conditions:

(i) the starting time of each agent outside the coalition S is equal to his atarting time in

the initial order: t;,,o - t;,o for all i E N`S.

(ii) the agents of S are not allowed to jump over playera outaide S:

P(i) n N`S - P(o, i) n N`S for all i E S.

The set oí admissible rearrangements for a coalition S is denoted by ES .

Before formally introducing sequencing games we recall some well known facts wn-

cerning cooperatives games.

A cooperative game is a pair (N,v) where N is a finite set of players and v is a mapping

v: 2N --~ R with v(Q) - 0 and 2N the collection of all subsets of N.

A game (N, v) is called convex if for all coalitions S,T E 2N it holds that

v(S u T) i- v(S n T) ~ v(S) f v(T) (1)

or, equivalently, if for all coalitions S,T E 2N and all i E N with

5 C T C N`{i} it holds that

v(T U i) - v(T) ~ v(S u i) - v(S).

Cooperative game theory focusses on 'fair' and~or 'stable' division rules from the value

v(N) of the grand coalition. A core element x-(x;);EN E RN is such that no coalition

has an incentive to split of, i.e.

~ x; - v(N) and ~ x; ~ v(S) for all S E 2N.
iEN iES -

The core C(v) consists of all core elements. A game is called balanced if its core is

non-empty. We note that convex games are balanced.

Given a sequencing situation (vo, r, p, a) the corresponding sequencing game(Curiel

et al.(1989)J is defined in such a way that the the worth of a coalition S is equal to the

maximal cost savings the coalition can achievc by means of an admissible rearrangement.

Formally we have,

v(S) - max{~(a;C(oo, i) ~- ~;) -~(a;C(o, i) f~;)}
vEEs ;ES iES

- max{~a;C(QO,i) - ~a;C(o,i)} (2)
oEEs ;ES iES
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A coalition S is called connected with respect to oa if for all i, j E S and k E N,

ao(i) C ao(k) G oo(j) implies k E S. A connected coalition S C T is a component of T

if S U{i} is not connected for every i E T`S. The components of T form a partition

of T, denoted by T~oo. According to condition (ii) of an admissible reartangement of a

coalition S the players of S are not allowed to jump over players outside the coalition.

This implies that an optimal rearrangement is such that the players in each component

are rearranged optimally. Hence, for any coalition T,

v(T) - ~ v(S). (3)
SET~o

In the final part o~ this section we consider sequencing games that arise from sequenc-

ing situations with criteria equivalent to the weighted cost criterion that is used in

this paper. Criteria are called equivalent if any optimal rearrangement with respect

to one criterium is also an optimal rearrangement for the others. In several textbooks

(cí.Conway, Maxwell, Miller (1967)) is shown that the weighted flowtime criterion, the

weighted waiting time and the weighted lateness criterion are equivalent to the weighted

cost criterion. With respect to the corresponding sequencing games one easily verifies

Propoaition 1 Each sequencing situation with a criterion equiva(ent to the weighted

cost criterion generates the sequencing game decribed in (2).

3 Optimal orders of different subcoalitions

In this section we concentrate on sequencing situations (ao, r, p, a) in which all jobs have

equal processing time and the ready times ofeach job is a multiple of the processing time.

W.l.o.g. we restrict attention to sequencing situations (ao, r, p, a) with r; E N and p; - 1

[or all i E N. To calculate the worth of a coalition S in the corresponding sequencing

game we need to find an optimal (-cost minimizing) rearrangement ás : N~{1,...,n}

in the set of admissable rearrangements of the coalition S. For this we use the following

algorithm due to Rinnooy Kan (1976) which generalizes the Smith rule (Smith (19b6)),

that gives an optimal order for sequencing situations with equal ready times. According

to the Smith rule, players are processed in decreasing order ofurgency, where the urgency

of u; of player i is defined by u; :- a;p;~. To obtain the optimal order of the coalition

N, if p; - 1 for all i E N and if the ready times are not necessary equal but all integers,
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at each time t E{0, 1,...} all jobs are considercYl that are available at rnoment t, i.e. the

joba that are not processed before t and that havc a ready time smaller than or equal to t.

The job with the highest urgency of all available jobs at t will be processed at that time.

If there is more then one available job at t with the highest urgency, we pick the one with

the smallest index number. Note that the set of available jobs at a given time can be

empty. The algorithm stops when all jobs are assigned a position. A similar procedure

can be applied to find an optimal rearrangement às for an arbitrary coalition S with

components Sr,...,S„r 1 1 such that min{oo(j) ~ j E Sr} G... G min{ao(j) ~ j E S,}.

Obviously, for all players j E N`S we have that ós(j) - vo(j). Then, inductively, one

can determine the position of all players in S in the following way. If the position of each

player in N`Sk U ... U S, is determined , calculate the earliest possible starting time tk of

a job in the component Sk,k E{1,...,r}. Then all players in Sk are assigned positions

by using the same principle as above, i.e. considering the urgency of the available jobs in

Sk at the time moments t E {ik, tk ~ 1, ...}. In the next step all players in the component

Sktl will be reordered by first calculating tktl. Repeating this procedure we have the

optimal order of S.

To illustrate the algorithm we give the following example. For notational convenience

we denote a bijection v: N-a {1,...,n} by a n-dimensional vector (il,...,i„) with

{il,...,i„} - N where ik denotes the player that is assigned to position k.

Example 1 Let N - {1,2,...,6},00 - (1,2,3,4,5,6),r - (0,0,1,5,6,6),

p-(1,1,1,1, 1,1) and a-(1, 2, 3,1, 5, 5). Note that the urgency of a player i coincides

with a; since p; - 1. First we give the opimal order of N. Let A~ be the set of players

whose job is available at time t E{0,1,2,...}. Then .4a -{1,2} and since a~ ~ al we

have that áN(2) - 1. Ar -{1, 3} and since a3 ~ a1 we have àN(3) - 1. Since Az -{1}

it follows that óN(1) - 3. Then A3 - A4 - 0 since no job is available at time t- 3 and

t- 4. As - {4}, hence óN(4) - 4. A6 -{5, 6}. Then QN(5) - 5 since as - ae. Finally

we have that A~ - {6} and hence QN(6) - 6. Since all jobs are assigned a position the

algorithm stops. Hence, àN -(2, 3,1,4, 5, 6).

Second we give the optimal order of S-{2, 3, 5, 6}. Obviously we have that QS(1) - 1

and QS(4) - 4 and it is sufficient to rearrange optimal SI -{2,3} and Sz -{5,6}.
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Since ta - 1 we have that Ar -{2, 3} and hence ás(3) - 2 and consequently ás(2) - 3.

Since tz - 6 we have that Ae -{5, 6} and hence ás(5) - 5 and ás(6) - 6. Hence,

9s - (1,3,2,4,5,6).

One readily verifies

Lemma 1 Let (ao, r, p, a) be a sequencing situation such that r; E N and p; - 1 for

all i E N. Then for each coalition S the above n(gorithm genemtes a unique optimal

rearrangement ás E Es, i.e. c;s(S) - min,EEs co(S).

Note that if player i has the same position in thc initial rearrangement va as player j in

the optimal rearrangement ás of a coalition S, then the starting times of both players

coincide, i.e. if oa(i) - ás(j), then t;,,o - t~,;s.

In sequencing situations where all ready times are equal the optimal reattangement of

the grand coalition N also induces the optimal rearrangements ás of all other coalitions

S,i.e. with i,j E S it holds that ás(i) G ás(j) if and only if ár,(i) G áN(j) . The

following example shows that this need not be the case if the ready times are not equal.

Example 2 Let N - {1,2,3},00 - (1,2,3),r - (0,0,1), p- (1,1,1) and a - (1,2,3).

Then the optimal order of N is áN -(2,3, I) while á{z,31 -(1,3,2).

The following example shows that in case the requirement p; - 1 for all i E N is dropped

the above algorithm is not appropriate to obtain the optimal rearrangement.

Example3 LetN-{1,2,3},vo-(1,2,3),r-(0,0,1),p-(1,2,3)anda-(1,3,12).

Then the costs w.r.t. the optimal rearrangement (1, 3, 2) are 67 while the costs w.r.t.

the rearrangement (2, 3,1) that is obtained by the algorithm are 72.

The following lemma shows that in the optimal rearrangement of N the position of player

na :- Qó1(n), the last player according the initial order ao, is smaller than or equal to

the position of player no in the optimal rearrangement of any tail. This implies that

player no in the optimal rearrangement of N can not improve his position by joining

another coalition S, since player rao is in a component of S which is a tail.

Lemma 2 Let (ao, r,p, a) be a sequencing situation with r~ E N and p~ - 1 for all

j E N. Then áN(no) G áp~;l(no) for all i E N.

PROOF:

Let i E N. Suppose áN(no) ~ ápl;l(no).

Choose n, E N`{no} such that á~,(nl) - áFl;l(no). Since r,,, C tna,;~~r - t,,,,;N the
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optimality ot óN implies that an, ~ an,.

(a:l) Suppose nl E P(i) U{i}. Then ~ P(óN,nl) fl F(i) ~~ óN(nl) - i~ 1. For

each k E F(i) fl P(óN,n1) it holde that ak ~ an, since rn, G r,~. This impGes that

ak ~ ano and hence k E P(óF{;},no). However, this would imply that óF{;)(no) ~ i~- ~

P(óN,n~) fl F(i) ~1 óf,r(nl) which contradicts the fact that óN(nl) - áF{;}(no).

So we may assume that nl E F(i). Then, consequently, we have nr E P(àF(;},no). How-

ever, if óF(;)(no) - i.} 1 then P(óF{;), no) fl F(i) -~ and we arrive at a contradiction.

Hence, óF{,)(no) 1 i~ l. Now choose n~ E N`{no,n~} such that àN(nz) - óF{;}(n~).

The optimality of óF{;) Implle3 an~ ? an,.

(a:2) Suppose nz E P(i) U{i}. Then ~ P(ó~v,nz) fl F(i) ~~ óN(na) - i 1 1. Moreover,

for each k E F(i) fl P(óN,nz) we have ak ) an, and thus ak ~ an,. This implies that

óF(;)(n~) ~ i~ ~ P(óN, nz) fl F(i) ~~ óN(n2). Contradiction.

So we may assume that nz E F(i). Then nz E P(óF{;),nl) and we have a contradiction

if óF(;}(no) - i f 2. Hence, óF(;)(no) ~ i t 2. Now choose n3 E N`{no, nr, n2} such that

QN(n3) - ~F(i)(n2).

Using the same line of argument as in (a:l) and (a:2) we then find that óF~;}(no) ~ i f3.

We may conclude that, if óF(;)(no) - i f k with k E{1, 2, ..., n- i}, we arrive at a

contradiction after k repetitions. ~

tn the following example we show that lemma 2 need not hold for an arbitrary sequencing

situation.

Example 4 Let N - {1,2,3},vo - (1,2,3),r - (0,0,4), p - (4,1,2) and a - (4,2,5).

Then the optimal rearrangement of N is oN - (2,1, 3) while the optimal rearrangement

of {2,3} is o{z,3} -(1,3,2). Hence aN(3) 1 o{~a}(3).

In the next lemma we show that in the optimal rearrangement of any tail the joba írom

no on are ordered in decreasing urgency.

Lemma 3 Let (vo, r,p, a) 6e a seguencing situation with r~ E N and p~ - 1 Jor all

j E N. Let i E N and k, l E N 6e such that óF(;}u{;}(no) C óF(:)u{;}(k) c óF(;)u{;}(~).

Then ak ~ a~.

PROOF:

Suppose ak G a~. Since r~ G rno C lno,;F~;~~t,~ Player k and ! can switch and decrease the
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total costs of F(i) U{i}. This contradicts the optimality of óF~;}u{:}- ~

Note that lemma 3 can be generalized to sequencing situations with no restrictiona

on the ready time or processing time of a player. Then the players that follow no in the

optimal rearrangement of any tail are ordered in decreasing urgency.

The following lemma shows that the optima] rearrangement àN`{„a} of N`{rto} is induced

by the optimal rearrangement àN of N.

Lemma 4 Let (oo, r,p,a) be a sequencing situation such that r~ E N and p~ - 1 for all

j E N. Then àN`{,a}(k) - àN(k) if QN(k) c vN(no) and

aN`{„o}(k) -~N(k) - 1 if QN(k) ~ aN(n0).

PROOF:

Let (N`{na})i and Nt be the sets of players whose job is available at time t in determining

the optimal rearrangement of N`{no} and N, respectively. For each t E{1,...,r,,, - 1}

we have (N`{no})i - Nt and consequently we have v~{„a}(k) - àN(k) for all k such

that t;N,k G r„o - 1. For each t E{r„o,...,t;N,,,a - 1} (a possibly empty set) we have

(N`{no})~ U{no} - Ni, but since na is not chosen w.r.t N we have óN`{,,,}(k) - óN(k)

for all k such that r„o c t;N,k C t;N,,,,. For t E{t;N,,,o,...} we have (N`{no})i - N~t, it

follows that óN`{„o}(k) - áN(k) - 1 for all k such that teN,k ~ tBN,,,o. 0

The following propositon follows directly from lemma 4.

Proposition 2 Let (a'o, r, p, a) 6e a sequencing situation such that r~ E N and p~ - 1

jor all j E N. Let i E N 6e such that vo(i) ~ ao(k) for alI k E S. Then for all k E S

it holds that às(k) - ásu{:}(k) if Qsu{;}(k) C Qsu{~}(i) and ós(k) - asu{:}(k) - 1 if

dsu{:}(k) ~ Qsu{;}(i).

Note that this propositition gives another approach to obtain the optimal order of a

coalition S.

The following example shows that the result of the last lemma need not hold for an

arbitrary sequencing situation.

Example5 LetN-{1,2,3},oo-(1,2,3),r-(0,0,1),p-(1,2,3)anda-(1,3,12).

Then the optimal rearrangement of {1,2}is (2,1,3), but the optimal rearrangement of

N is (1, 3, 2).
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The next lemma shows that, for any tail, the urgency of player k is larger than or equal to

the urgency of player l if player k takes the same position in the optimal rearrangement

of the tail as player l in the optimal rearrangement of N.

Lemma 5 Let (ao, r, p, a) 6e a sequencing sitnation such that r; E N and p; - 1 jor all

i E N. Let i E N, k E F(i) and l E N be such that óF(;)(k) - áN(I). Then ak ~ a(.

PROOF:

The proof is by induction on the number of players. For ~ N ~- 2 the lemma is trivial.

Assume that for ~ N ~C m the lemma holds. Let ~ N ~- m. We distinguish between

thrce cases.

(i) áF(~)(no) ? áF(;)(k),áN(no) 5 áN(1).

It follows that r„o C tbN.( - t;F(;),k and hence ak ~ a„a. Since áN(no) G áN(1) we have

that a„o ~ a(. Hence ak 1 a(.

O)) ~Fh)(n0) 1 ~Fí;)lk),QN(n0) J ON(I).

Lemma 4 yields that áN`{,b}(I) - áN(1) - áF(t)(k) - áF(;)`{,w}(k). From the induction

hypothesis it follows that ak ~ ar.

(iii) áF(;)(no) G áF(;)(k)

Using lemma 2 we have áN(no) C áF(;)(no) G QF(;)(k) - ál,r(I). By lemma 4 we have

that áN`{„a}(l) - áN(1) - 1 - áF(;)(k) - 1 - QF(;)`{„o}(k). From the induction hypothesis

it follows that ak 1 a(. O

An immediate consequence of lemma 5 is

Corollary 1 Let (QO, r, p, a) be a sequencing situation such that r~ E N and p~ - 1 for

aU j E N. Let i E N then

~ at ? ~ a(
k: bp(')Ik)~del')(~o) i: bN(()~bpc')ln0)

4 On the convexity of sequencing games

In this section it is shown that sequencing games that correspond to sequencing situations

(oo,r,p, a) with r; E N and p; - 1 for all i E N are convex. First, we will give another

expression of the value of a coalition S. Let vo -(il, ..., i„) and assume that o;w is the

optimal rearrangement of S fl (P(ik) U{ik}) within the restrict player set P(ik) U{ik}.
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According to propostion 2 the optimal order a;,,t, is obtained by inserting player iktl

somewhere in the order o;,,. Clearly, if ikt~ ~ S, then o;~~, (ik}1) - k-} 1 otherwise, o;,,~,

can be obtained by consecutive switches of iktl with óis immediate predecessor. The

costsavings contributed by a neighbour switch with a player m is equal to a;,,t, -~m.

Since ós can be constructed by subsequently rearranging (part of) S in the restricted

player set P(ik) U{ik} for k- 1,2,...,n, one derives

v(S) - E E (~; - ~k).
iES kEP(i)nF(JS il

(4)
In the following lemma we glve an expression for the difference of the values of a tail and

the same tail where player no is excluded. Let F(i) :- F(i) U{i} be the tail of player i.

Lemma 6 Let (oo, r, p, a) 6e a sequencing situation such that r~ E N and p~ - 1 for all

j E N and let (N, v) 6e the corresponding sequencing game. Let i E N then

v(F(i)) - v(F(i)`{no}) - ~ (a„o - ak).

PROOF:
kEF(óF~,),rb)

v(!''(i)) - v(F(i)`{no})

- ~ ~ (al - ak) - ~ ~ (al - ak )
IEF(i) kEP(!)nF(óFj.),1) IEF(;)`{no} kEP(f)nF(à}.fq`(~bl'1)

L (ano - ak)

kEP(no )nF(~p~,),no )

~ ~ { ~ (~l - Qk) - ~ (CYI - CYk)}

IEF(i)`{no} kEP(1)nF(óF~) ,1) kEP(I)nF(áf,~~)`{~~,I)

- ~ (~no - ak)
kEF(àP,~~),no)

The first equality follows by (4) and the third by lemma 4.

The restriction (S, v~s) of the game (N, v) to the player set S C N is defined by

v~s(T) :- v(T) for all T C S. The next lemma shows that the restriction (S, v~s) of a

sequencing game (N, v) arising from a sequencing situation with integer ready times and

the processing times all equal to one is again such a sequencing game if the coalition S

is connected. Since the proof of this lemma is straightforward it is omitted.

Lemma 7 Lel (oa,r,p,a) be a sequencing silualion such thal r; E N and p; - I Jor all

i E N and let ( N, v) be the corresponding sequencing game. !f the coalition S is connected

u~ith respect to ao, then lhr game (S,v~s) is lhe sequenciiag garne rorresponding to lhe

sequencing situation
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(~Oi (ri)iESi (pi )iESi (~i )iES)

where the bijection óo : S-r {1,..., ~ S ~} is defined by

áa(i) - oo(i) f 1-min~ESOO(j) for all i E S and r; - max{r;,min~ESt,o,~} for all i E S.

Nuw wc can formulatc

Theorem 1 Let (oo, r, p, a) 6e a sequencing situation such that r; E N and p; - 1 for

all i E N and let (N,v) be the cornesponding sequencing game. Then (N,v) is convez.

PROOF:

The proof is by induction on the number of players. Obviously, if ~ N ~- 1,

v is convex. Assume that for ~ N ~G n the game v is convex. Let ~ N ~- n.

Let i E N, S E 2N and T E 2N be such t,hat S C T C N`{i}. Wc have to prove that

v(T U{i}) - v(T) ~ v(S U{i}) - v(S) (5)

(a) Suppose there exists a playcr j E N, j ~ i such that j~ T.

If {i} is a component of TU{i} then {i} is also a component of SU{i} and, consequently,

v(T U{i}) - v(T) and v(S U{i}) - n(S). So in this case (5) is trivial.

If {i} is not a component of T U{i} there exist Tt C T and 'Iz C 7' such that T~ ~ 0

and v(T U{i}) - v(T) - v(T~ U{i} U Tz) - v(Tl U Ta). Moreover, there are Sl C T~ and

SZ C T~ such that v(S U{i}) - v(S) - v(Sl U{i} U Sz) - v(SI U Sz). Hence, ít suffices

to show that

v(Tr U{i} U T2) - v(Tr U Tz) ? v(Sr U{i} U S2) - v(Sr U Sz) (6)

Then, since Tr U{i} U T2 C N`{j}, lemma 7 and the induction hypothesis imply that

(Tr U{i} U TZ,v~T,u{~}uT,) is a convex sequencing game and therefore (6) is satisfied.

(b) Hence, we may assume that T- N`{i}. Moreover, (a) implies also that it is

sufficient to prove that

v(N) - v(N`{i}) ~ v(N`{j}) - v(N`{i, j}) for all i, j E 11~'

W.l.o.g. we assume that ao(i) G oo(j). Then

v(N) - v(N`{i}) - v(N`{j}) f v(N`{i, j})

- v(N) - v(P(r)) - v(~(r)) - v(P(J)) - v(F(J))

fv(~'(i)) f vÍF(j)) f v(P(j)`P(i t 1))
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- v(N) - v(P(j)) ~ v(P(j)`P(i -}. 1)) - v(F(i))

Two cases are distinguished.

(i) J - no

Then we have

v(N) - v(N`{no}) -}- v(F(i)`{no}) - v(F(i))

- ~ (~na - ~1) - ~ (~no - ~k)
IEF(àN,no) kEF(èpY,),ne)

- ~ (Q'no - 4'))
I: óN(n0)GóN())GáFI,lInO)

~ ~ (Qnu - Ckl) - L~ (~no - ~k)
I: óN(I)1èp1,)(no) k: èF(,)Ik)~aF(,)(n0)

- ~ (ano - al)

~: ÓN(n0 )GuN Í~)COFi,) (n0 )

- ~ a~t ~ aklp
1: oN(I)lopl')(na) k: óF~,)(k)~óFc,)(.w)

where the first equality follows from lemma 6 and the inequality follows from lemma 3

and corollary I.

(~)! 9 c no

The induction hypotheses implies that the game (N`{no},v~(N`{nol)) is convex. Then

the convexity condition (1) with S- F(i)`{no} and T- P(j) yields

v(N`{no}) t v(P(j)`P(i -} 1)) - v(F(i))`{no}) - v(P(j)) ~ 0 (7)

Then (7) and (i) imply

v(N) - v(P(j)) ~ v(P(j)`P(i -}. 1)}) - v(F(i))

-[v(N`{no}) f v(P(j)`P(Z f 1)) - vÍF(:))`{no}) - v(P(7))~

f[v(N) - v(N`{no}) f v(F(i)`{no}) - v(F(i))~ 1 0

O

The following example shows that in general sequencing games are not necessary convex.

Exampleó LetN-{1,2,3},ao-(1,2,3),r-(0,0,1),p-(1,2,3)anda-(1,3,12).

The optimal rearrangement of N is (1,3,2) and, consequcntly, v(N) - 15. Obviously

the optimal rearrangement of {2,3} is (1,3,2) and so v({2,3}) - 15. Since v({1,2}) - 1

and v({2}) - 0 we have that

v(N) - v({2,3}) - 0 c 1- v({1,2}) - v({2}).
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