Tilburg University

On games corresponding to sequencing situations with ready times

Hamers, H.J.M.; Borm, P.E.M.; Tijs, S.H.

Publication date:
1993

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Hamers, H. J. M., Borm, P. E. M., \& Tijs, S. H. (1993). On games corresponding to sequencing situations with ready times. (Discussion Papers / CentER for Economic Research; Vol. 9316). Unknown Publisher.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

CBM R

Discussion paper 16

CentER
 for
 Economic Research

No. 9316
ON GAMES CORRESPONDING TO SEQUENCING SITUATIONS WITH READY TIMES
by Herbert Hamers, Peter Borm and Stef Tijs

March 1993

ON GAMES CORRESPONDING TO SEQUENCING SITUATIONS WITH READY TIMES

Herbert Hamers * Peter Borm Stef Tijs

Tilburg University
February 1993

Abstract

This paper considers the special class of cooperative sequencing games that arise from one-machine sequencing situations in which all jobs have equal processing times and the ready time of each job is a multiple of the processing time. By establishing relations between optimal orders of subcoalitions it is shown that each sequencing game within this class is convex.

Keywords: Cooperative games, one-machine sequencing problems.

[^0]
1 Introduction

In one-machine sequencing situations each agent (player) has one job that has to be processed on a single machine. Each job is specified by its ready time, the earliest time that the processing of the job can begin, and its processing time, the time the machine takes to handle the job. We assume that the costs of a player depend linearly on the completion time of his job. Furthermore, there is an initial order on the jobs of the agents before the processing of the machine starts.

A group of agents (a coalition) can save costs by rearranging their jobs in a way that is admissible with respect to the various ready times and the initial order. By defining the value of a coalition as the maximum cost savings a coalition can make in this way, we obtain a cooperative sequencing game related to a one-machine sequencing situation. The formal model can be found in section 2.

The above game theoretic approach was introduced by Curiel, Pederzoli and Tijs (1989). They showed convexity for all sequencing games arising from one-machine sequencing situations in which all jobs have equal ready times. Potters, Curiel, Rajendra Prasad, Tijs and Veltman (1990) introduced a class of balanced games that contains sequencing games corresponding to one-machine sequencing situations in which the ready times of all jobs are not necesarry equal. In section 4 it is shown that the convexity result of Curiel et al. (1989) can be generalized to the special class of sequencing games that arise from one-machine sequencing situations in which all jobs have equal processing times and the ready time of each job is a multiple of the processing time.

In section 3 we consider some properties of this special class of one-machine sequencing situations. By modifying an algorithm of Rinnooy Kan (1976) one easily determines the optimal order of any coalition in these sequencing situations. However, this algorithm does not immediately describe the relation between optimal orders of various subcoalitions. Some of these relations are provided in section 3.

2 Sequencing situations

In a one-machine sequencing situation there is a queue of agents, each with one job, before a machine (counter). Each agent (player) has to process his job on the machine. The finite set of agents is denoted by N and $|N|=n$.
By a bijection $\sigma: N \rightarrow\{1, \ldots, n\}$ we can describe the position of the agents in the queue. Specifically, $\sigma(i)=j$ means that player i is in position j.
The ready time r_{i} of the job of agent i is the earliest time the processing of this job can begin. The processing time p_{i} of the job of agent i is the time the machine takes to handle this job.
We assume that every agent has a affine cost function $c_{i}:[0, \infty) \rightarrow \mathbf{R}$ defined by $c_{i}(t)=\alpha_{i} t+\beta_{i}$ with $\alpha_{i}>0, \beta_{i} \in \mathbf{R}$.
Further it is assumed that there is an initial order $\sigma_{0}: N \rightarrow\{1, \ldots, n\}$ on the jobs of the players before the processing of the machine starts with the property that for all $i, j \in N$ with $\sigma_{0}(i)<\sigma_{0}(j)$ it holds that $r_{i} \leq r_{j}$. A sequencing situation as described above is denoted by $\left(\sigma_{0}, r, p, \alpha\right)$, where $\sigma_{0}: N \rightarrow\{1, \ldots, n\}, r=\left(r_{i}\right)_{i \in N} \in[\mathbf{0}, \infty)^{\mathbf{N}}$, $p=\left(p_{i}\right)_{i \in N} \in \mathbf{R}_{+}^{N}$ and $\alpha=\left(\alpha_{i}\right)_{i \in N} \in \mathbf{R}_{+}^{N}$.
The vector $\beta=\left(\beta_{i}\right)_{i \in N} \in \mathbf{R}^{\mathbf{N}}$ is ommited in the description of a sequencing situation since it will not affect the values of the corresponding sequencing game.

For player $i \in N$ we define the following sets with respect to a bijection σ. The set of predecessors of player i is $P(\sigma, i):=\{j \mid \sigma(j)<\sigma(i)\}$ and the set of followers of player i is $F(\sigma, i):=\{j \mid \sigma(j)>\sigma(i)\}$. The head of i is $P\left(\sigma_{0}, i\right) \cup\{i\}$ and his tail is $F\left(\sigma_{0}, i\right) \cup\{i\}$. For notational convenience let $P(i):=P\left(\sigma_{0}, i\right)$ and $F(i):=F\left(\sigma_{0}, i\right)$.
The starting time of the job of agent i if processed according to a bijection $\sigma: N \rightarrow$ $\{1, \ldots, n\}$ (in a semi-active way) is

$$
t_{i, \sigma}:= \begin{cases}\max \left(r_{i}, t_{j, \sigma}+p_{j}\right) & \text { if } \sigma(i)>1 \\ r_{i} & \text { if } \sigma(i)=1\end{cases}
$$

where $j \in N$ such that $\sigma(j)=\sigma(i)-1$.
Hence, the completion time of the job of agent i is equal to $C(\sigma, i):=t_{i, \sigma}+p_{i}$. The total costs $c_{\sigma}(S)$ of a coalition $S \subset N$, is given by

$$
c_{\sigma}(S):=\sum_{i \in S} \alpha_{i}(C(\sigma, i))+\beta_{i}
$$

The (maximal) costsavings of a coalition S depend on the set of admissible rearrangements of this coalition. We call a bijection $\sigma: N \rightarrow\{1, \ldots, n\}$ admissible for S if it satisfies the following two conditions:
(i) the starting time of each agent outside the coalition S is equal to his starting time in the initial order: $t_{i, \sigma_{0}}=t_{i, \sigma}$ for all $i \in N \backslash S$.
(ii) the agents of S are not allowed to jump over players outside S :

$$
P(i) \cap N \backslash S=P(\sigma, i) \cap N \backslash S \text { for all } i \in S .
$$

The set of admissible rearrangements for a coalition S is denoted by Σ_{S}.
Before formally introducing sequencing games we recall some well known facts concerning cooperatives games.

A cooperative game is a pair (N, v) where N is a finite set of players and v is a mapping $v: 2^{N} \rightarrow \mathbf{R}$ with $v(\emptyset)=0$ and 2^{N} the collection of all subsets of N.
A game (N, v) is called convex if for all coalitions $S, T \in 2^{N}$ it holds that

$$
\begin{equation*}
v(S \cup T)+v(S \cap T) \geq v(S)+v(T) \tag{1}
\end{equation*}
$$

or, equivalently, if for all coalitions $S, T \in 2^{N}$ and all $i \in N$ with
$S \subset T \subset N \backslash\{i\}$ it holds that

$$
v(T \cup i)-v(T) \geq v(S \cup i)-v(S)
$$

Cooperative game theory focusses on 'fair' and/or 'stable' division rules from the value $v(N)$ of the grand coalition. A core element $x=\left(x_{i}\right)_{i \in N} \in \mathbf{R}^{\mathbf{N}}$ is such that no coalition has an incentive to split of, i.e.

$$
\sum_{i \in N} x_{i}=v(N) \text { and } \sum_{i \in S} x_{i} \geq v(S) \text { for all } S \in 2^{N}
$$

The core $C(v)$ consists of all core elements. A game is called balanced if its core is non-empty. We note that convex games are balanced.

Given a sequencing situation (σ_{0}, r, p, α) the corresponding sequencing game(Curiel et al.(1989)) is defined in such a way that the the worth of a coalition S is equal to the maximal cost savings the coalition can achieve by means of an admissible rearrangement. Formally we have,

$$
\begin{align*}
& v(S)=\max _{\sigma \in \Sigma_{S}}\left\{\sum_{i \in S}\left(\alpha_{i} C\left(\sigma_{0}, i\right)+\beta_{i}\right)-\sum_{i \in S}\left(\alpha_{i} C(\sigma, i)+\beta_{i}\right)\right\} \\
& =\max _{\sigma \in \Sigma_{S}}\left\{\sum_{i \in S} \alpha_{i} C\left(\sigma_{0}, i\right)-\sum_{i \in S} \alpha_{i} C(\sigma, i)\right\} \tag{2}
\end{align*}
$$

A coalition S is called connected with respect to σ_{0} if for all $i, j \in S$ and $k \in N$, $\sigma_{0}(i)<\sigma_{0}(k)<\sigma_{0}(j)$ implies $k \in S$. A connected coalition $S \subset T$ is a component of T if $S \cup\{i\}$ is not connected for every $i \in T \backslash S$. The components of T form a partition of T, denoted by T / σ_{0}. According to condition (ii) of an admissible rearrangement of a coalition S the players of S are not allowed to jump over players outside the coalition. This implies that an optimal rearrangement is such that the players in each component are rearranged optimally. Hence, for any coalition T,

$$
\begin{equation*}
v(T)=\sum_{S \in T / \operatorname{og}} v(S) \tag{3}
\end{equation*}
$$

In the final part of this section we consider sequencing games that arise from sequencing situations with criteria equivalent to the weighted cost criterion that is used in this paper. Criteria are called equivalent if any optimal rearrangement with respect to one criterium is also an optimal rearrangement for the others. In several textbooks (cf.Conway, Maxwell, Miller (1967)) is shown that the weighted flowtime criterion, the weighted waiting time and the weighted lateness criterion are equivalent to the weighted cost criterion. With respect to the corresponding sequencing games one easily verifies Proposition 1 Each sequencing situation with a criterion equivalent to the weighted cost criterion generates the sequencing game decribed in (2).

3 Optimal orders of different subcoalitions

In this section we concentrate on sequencing situations (σ_{0}, r, p, α) in which all jobs have equal processing time and the ready times of each job is a multiple of the processing time. W.l.o.g. we restrict attention to sequencing situations (σ_{0}, r, p, α) with $r_{i} \in \mathbf{N}$ and $p_{i}=1$ for all $i \in N$. To calculate the worth of a coalition S in the corresponding sequencing game we need to find an optimal (=cost minimizing) rearrangement $\hat{\sigma}_{S}: N \rightarrow\{1, \ldots, n\}$ in the set of admissable rearrangements of the coalition S. For this we use the following algorithm due to Rinnooy Kan (1976) which generalizes the Smith rule (Smith (1956)), that gives an optimal order for sequencing situations with equal ready times. According to the Smith rule, players are processed in decreasing order of urgency, where the urgency of u_{i} of player i is defined by $u_{i}:=\alpha_{i} p_{i}^{-1}$. To obtain the optimal order of the coalition N, if $p_{i}=1$ for all $i \in N$ and if the ready times are not necessary equal but all integers,
at each time $t \in\{0,1, \ldots\}$ all jobs are considered that are available at moment t, i.e. the jobs that are not processed before t and that have a ready time smaller than or equal to t. The job with the highest urgency of all available jobs at t will be processed at that time. If there is more then one available job at t with the highest urgency, we pick the one with the smallest index number. Note that the set of available jobs at a given time can be empty. The algorithm stops when all jobs are assigned a position. A similar procedure can be applied to find an optimal rearrangement $\hat{\sigma}_{S}$ for an arbitrary coalition S with components $S_{1}, \ldots, S_{r}, r \geq 1$ such that $\min \left\{\sigma_{0}(j) \mid j \in S_{1}\right\}<\ldots<\min \left\{\sigma_{0}(j) \mid j \in S_{r}\right\}$. Obviously, for all players $j \in N \backslash S$ we have that $\hat{\sigma}_{S}(j)=\sigma_{0}(j)$. Then, inductively, one can determine the position of all players in S in the following way. If the position of each player in $N \backslash S_{k} \cup \ldots \cup S_{r}$ is determined, calculate the earliest possible starting time t_{k} of a job in the component $S_{k}, k \in\{1, \ldots, r\}$. Then all players in S_{k} are assigned positions by using the same principle as above, i.e. considering the urgency of the available jobs in S_{k} at the time moments $t \in\left\{t_{k}, t_{k}+1, \ldots\right\}$. In the next step all players in the component S_{k+1} will be reordered by first calculating t_{k+1}. Repeating this procedure we have the optimal order of S.

To illustrate the algorithm we give the following example. For notational convenience we denote a bijection $\sigma: N \rightarrow\{1, \ldots, n\}$ by a n-dimensional vector $\left(i_{1}, \ldots, i_{n}\right)$ with $\left\{i_{1}, \ldots, i_{n}\right\}=N$ where i_{k} denotes the player that is assigned to position k.
Example 1 Let $N=\{1,2, \ldots, 6\}, \sigma_{0}=(1,2,3,4,5,6), r=(0,0,1,5,6,6)$, $p=(1,1,1,1,1,1)$ and $\alpha=(1,2,3,1,5,5)$. Note that the urgency of a player i coincides with α_{i} since $p_{i}=1$. First we give the opimal order of N. Let A_{t} be the set of players whose job is available at time $t \in\{0,1,2, \ldots\}$. Then $A_{0}=\{1,2\}$ and since $\alpha_{2}>\alpha_{1}$ we have that $\hat{\sigma}_{N}(2)=1 . A_{1}=\{1,3\}$ and since $\alpha_{3}>\alpha_{1}$ we have $\hat{\sigma}_{N}(3)=1$. Since $A_{2}=\{1\}$ it follows that $\hat{\sigma}_{N}(1)=3$. Then $A_{3}=A_{4}=\emptyset$ since no job is available at time $t=3$ and $t=4$. $A_{5}=\{4\}$, hence $\hat{\sigma}_{N}(4)=4 . A_{6}=\{5,6\}$. Then $\hat{\sigma}_{N}(5)=5$ since $\alpha_{5}=\alpha_{6}$. Finally we have that $A_{7}=\{6\}$ and hence $\hat{\sigma}_{N}(6)=6$. Since all jobs are assigned a position the algorithm stops. Hence, $\hat{\sigma}_{N}=(2,3,1,4,5,6)$.
Second we give the optimal order of $S=\{2,3,5,6\}$. Obviously we have that $\hat{\sigma}_{S}(1)=1$ and $\hat{\sigma}_{S}(4)=4$ and it is sufficient to rearrange optimal $S_{1}=\{2,3\}$ and $S_{2}=\{5,6\}$.

Since $t_{1}=1$ we have that $A_{1}=\{2,3\}$ and hence $\hat{\sigma}_{S}(3)=2$ and consequently $\hat{\sigma}_{S}(2)=3$. Since $t_{2}=6$ we have that $A_{6}=\{5,6\}$ and hence $\hat{\sigma}_{S}(5)=5$ and $\hat{\sigma}_{S}(6)=6$. Hence, $q_{S}=(1,3,2,4,5,6)$.
One readily verifies
Lemma 1 Let $\left(\sigma_{0}, r, p, \alpha\right)$ be a sequencing situation such that $r_{i} \in \mathbf{N}$ and $p_{i}=1$ for all $i \in N$. Then for each coalition S the above algorithm generates a unique optimal rearrangement $\hat{\sigma}_{S} \in \Sigma_{S}$, i.e. $c_{\hat{\sigma}_{S}}(S)=\min _{\sigma \in \Sigma_{s}} c_{\sigma}(S)$.
Note that if player i has the same position in the initial rearrangement σ_{0} as player j in the optimal rearrangement $\hat{\sigma}_{S}$ of a coalition S, then the starting times of both players coincide, i.e. if $\sigma_{0}(i)=\hat{\sigma}_{S}(j)$, then $t_{i, \sigma_{0}}=t_{j, \hat{\sigma}_{S}}$.
In sequencing situations where all ready times are equal the optimal rearrangement of the grand coalition N also induces the optimal rearrangements $\hat{\sigma}_{S}$ of all other coalitions S,i.e. with $i, j \in S$ it holds that $\hat{\sigma}_{S}(i)<\hat{\sigma}_{S}(j)$ if and only if $\hat{\sigma}_{N}(i)<\hat{\sigma}_{N}(j)$. The following example shows that this need not be the case if the ready times are not equal. Example 2 Let $N=\{1,2,3\}, \sigma_{0}=(1,2,3), r=(0,0,1), p=(1,1,1)$ and $\alpha=(1,2,3)$. Then the optimal order of N is $\hat{\sigma}_{N}=(2,3,1)$ while $\hat{\sigma}_{(2,3)}=(1,3,2)$.
The following example shows that in case the requirement $p_{i}=1$ for all $i \in N$ is dropped the above algorithm is not appropriate to obtain the optimal rearrangement.
Example 3 Let $N=\{1,2,3\}, \sigma_{0}=(1,2,3), r=(0,0,1), p=(1,2,3)$ and $\alpha=(1,3,12)$. Then the costs w.r.t. the optimal rearrangement $(1,3,2)$ are 67 while the costs w.r.t. the rearrangement $(2,3,1)$ that is obtained by the algorithm are 72 .
The following lemma shows that in the optimal rearrangement of N the position of player $n_{0}:=\sigma_{0}^{-1}(n)$, the last player according the initial order σ_{0}, is smaller than or equal to the position of player n_{0} in the optimal rearrangement of any tail. This implies that player n_{0} in the optimal rearrangement of N can not improve his position by joining another coalition S, since player n_{0} is in a component of S which is a tail.
Lemma 2 Let $\left(\sigma_{0}, r, p, \alpha\right)$ be a sequencing situation with $r_{j} \in \mathbf{N}$ and $p_{j}=1$ for all $j \in N$. Then $\hat{\sigma}_{N}\left(n_{0}\right) \leq \hat{\sigma}_{F(i)}\left(n_{0}\right)$ for all $i \in N$.
Proof:
Let $i \in N$. Suppose $\hat{\sigma}_{N}\left(n_{0}\right)>\hat{\sigma}_{F(i)}\left(n_{0}\right)$.
Choose $n_{1} \in N \backslash\left\{n_{0}\right\}$ such that $\hat{\sigma}_{N}\left(n_{1}\right)=\hat{\sigma}_{F(i)}\left(n_{0}\right)$. Since $r_{n_{0}} \leq t_{n_{0}, \hat{\partial}_{F(i)}}=t_{n_{1}, \hat{\sigma}_{N}}$ the
optimality of $\hat{\sigma}_{N}$ implies that $\alpha_{n_{1}} \geq \alpha_{n_{0}}$.
(a:1) Suppose $n_{1} \in P(i) \cup\{i\}$. Then $\left|P\left(\hat{\sigma}_{N}, n_{1}\right) \cap F(i)\right| \geq \hat{\sigma}_{N}\left(n_{1}\right)-i \geq 1$. For each $k \in F(i) \cap P\left(\hat{\sigma}_{N}, n_{1}\right)$ it holds that $\alpha_{k}>\alpha_{n_{1}}$ since $r_{n_{1}} \leq r_{k}$. This implies that $\alpha_{k}>\alpha_{n_{0}}$ and hence $k \in P\left(\hat{\sigma}_{F(i)}, n_{0}\right)$. However, this would imply that $\hat{\sigma}_{F(i)}\left(n_{0}\right)>i+1$ $P\left(\hat{\sigma}_{N}, n_{1}\right) \cap F(i) \mid \geq \hat{\sigma}_{N}\left(n_{1}\right)$ which contradicts the fact that $\hat{\sigma}_{N}\left(n_{1}\right)=\hat{\sigma}_{F(i)}\left(n_{0}\right)$. So we may assume that $n_{1} \in F(i)$. Then, consequently, we have $n_{1} \in P\left(\hat{\sigma}_{F(i)}, n_{0}\right)$. However, if $\hat{\sigma}_{F(\mathrm{i})}\left(n_{0}\right)=i+1$ then $P\left(\hat{\sigma}_{F(\mathrm{i})}, n_{0}\right) \cap F(i)=\emptyset$ and we arrive at a contradiction. Hence, $\hat{\sigma}_{F(i)}\left(n_{0}\right)>i+1$. Now choose $n_{2} \in N \backslash\left\{n_{0}, n_{1}\right\}$ such that $\hat{\sigma}_{N}\left(n_{2}\right)=\hat{\sigma}_{F(i)}\left(n_{1}\right)$. The optimality of $\hat{\sigma}_{F(i)}$ implies $\alpha_{n_{2}} \geq \alpha_{n_{1}}$.
(a:2) Suppose $n_{2} \in P(i) \cup\{i\}$. Then $\left|P\left(\hat{\sigma}_{N}, n_{2}\right) \cap F(i)\right| \geq \hat{\sigma}_{N}\left(n_{2}\right)-i \geq 1$. Moreover, for each $k \in F(i) \cap P\left(\hat{\sigma}_{N}, n_{2}\right)$ we have $\alpha_{k}>\alpha_{n_{2}}$ and thus $\alpha_{k}>\alpha_{n_{1}}$. This implies that $\hat{\sigma}_{F(i)}\left(n_{1}\right)>i+\left|P\left(\hat{\sigma}_{N}, n_{2}\right) \cap F(i)\right| \geq \hat{\sigma}_{N}\left(n_{2}\right)$. Contradiction.
So we may assume that $n_{2} \in F(i)$. Then $n_{2} \in P\left(\hat{\sigma}_{F(i)}, n_{1}\right)$ and we have a contradiction if $\hat{\sigma}_{F(i)}\left(n_{0}\right)=i+2$. Hence, $\hat{\sigma}_{F(i)}\left(n_{0}\right)>i+2$. Now choose $n_{3} \in N \backslash\left\{n_{0}, n_{1}, n_{2}\right\}$ such that $\hat{\sigma}_{N}\left(n_{3}\right)=\hat{\sigma}_{F(i)}\left(n_{2}\right)$.
Using the same line of argument as in (a:1) and (a:2) we then find that $\hat{\sigma}_{F(i)}\left(n_{0}\right)>i+3$. We may conclude that, if $\hat{\sigma}_{F(i)}\left(n_{0}\right)=i+k$ with $k \in\{1,2, \ldots, n-i\}$, we arrive at a contradiction after k repetitions.

In the following example we show that lemma 2 need not hold for an arbitrary sequencing situation.
Example 4 Let $N=\{1,2,3\}, \sigma_{0}=(1,2,3), r=(0,0,4), p=(4,1,2)$ and $\alpha=(4,2,5)$. Then the optimal rearrangement of N is $\sigma_{N}=(2,1,3)$ while the optimal rearrangement of $\{2,3\}$ is $\sigma_{\{2,3\}}=(1,3,2)$. Hence $\sigma_{N}(3)>\sigma_{\{2,3\}}(3)$.
In the next lemma we show that in the optimal rearrangement of any tail the jobs from n_{0} on are ordered in decreasing urgency.
Lemma 3 Let $\left(\sigma_{0}, r, p, \alpha\right)$ be a sequencing situation with $r_{j} \in \mathbf{N}$ and $p_{j}=1$ for all $j \in N$. Let $i \in N$ and $k, l \in N$ be such that $\hat{\sigma}_{F(i) \cup(i)}\left(n_{0}\right) \leq \hat{\sigma}_{F(i) \cup(i)}(k)<\hat{\sigma}_{F(i) \cup(i)}(l)$. Then $\alpha_{k} \geq \alpha_{l}$.
Proof:
Suppose $\alpha_{k}<\alpha_{l}$. Since $r_{l} \leq r_{n_{0}} \leq t_{n_{0}, \hat{\sigma}_{P(i) \cup(i)}}$ player k and l can switch and decrease the
total costs of $F(i) \cup\{i\}$. This contradicts the optimality of $\hat{\sigma}_{F(i) \cup(i\}}$.

Note that lemma 3 can be generalized to sequencing situations with no restrictions on the ready time or processing time of a player. Then the players that follow n_{0} in the optimal rearrangement of any tail are ordered in decreasing urgency.
The following lemma shows that the optimal rearrangement $\hat{\sigma}_{N \backslash\left\{n_{0}\right\}}$ of $N \backslash\left\{n_{0}\right\}$ is induced by the optimal rearrangement $\hat{\sigma}_{N}$ of N.
Lemma 4 Let $\left(\sigma_{0}, r, p, \alpha\right)$ be a sequencing situation such that $r_{j} \in \mathbf{N}$ and $p_{j}=1$ for all $j \in N$. Then $\hat{\sigma}_{N \backslash\left\{n_{0}\right\}}(k)=\hat{\sigma}_{N}(k)$ if $\hat{\sigma}_{N}(k)<\hat{\sigma}_{N}\left(n_{0}\right)$ and $\hat{\sigma}_{N \backslash\left\{n_{0}\right\}}(k)=\hat{\sigma}_{N}(k)-1$ if $\hat{\sigma}_{N}(k)>\hat{\sigma}_{N}\left(n_{0}\right)$.
Proof:
Let $\left(N \backslash\left\{n_{0}\right\}\right)_{t}$ and N_{t} be the sets of players whose job is available at time t in determining the optimal rearrangement of $N \backslash\left\{n_{0}\right\}$ and N, respectively. For each $t \in\left\{1, \ldots, r_{n_{0}}-1\right\}$ we have $\left(N \backslash\left\{n_{0}\right\}\right)_{t}=N_{\mathrm{t}}$ and consequently we have $\hat{\sigma}_{N \backslash\left\{n_{0}\right\}}(k)=\hat{\sigma}_{N}(k)$ for all k such that $t_{\partial_{N}, k} \leq r_{n_{0}}-1$. For each $t \in\left\{r_{n_{0}}, \ldots, t_{\partial_{N}, n_{0}}-1\right\}$ (a possibly empty set) we have $\left(N \backslash\left\{n_{0}\right\}\right)_{t} \cup\left\{n_{0}\right\}=N_{t}$, but since n_{0} is not chosen w.r.t N we have $\hat{\sigma}_{N \backslash\left\{n_{0}\right\}}(k)=\hat{\sigma}_{N}(k)$ for all k such that $r_{n_{0}} \leq t_{\partial_{N}, k}<t_{\partial_{N}, n_{0}}$. For $t \in\left\{t_{\partial_{N}, n_{0}}, \ldots\right\}$ we have $\left(N \backslash\left\{n_{0}\right\}\right)_{t}=N_{t+1}$ it follows that $\hat{\sigma}_{N \backslash\left\{n_{0}\right\}}(k)=\hat{\sigma}_{N}(k)-1$ for all k such that $t_{\partial_{N}, k}>t_{\partial_{N}, n_{0}}$.

The following propositon follows directly from lemma 4.
Proposition 2 Let $\left(\sigma_{0}, r, p, \alpha\right)$ be a sequencing situation such that $r_{j} \in \mathbf{N}$ and $p_{j}=1$ for all $j \in N$. Let $i \in N$ be such that $\sigma_{0}(i)>\sigma_{0}(k)$ for all $k \in S$. Then for all $k \in S$ it holds that $\hat{\sigma}_{S}(k)=\hat{\sigma}_{S \cup\{i\}}(k)$ if $\hat{\sigma}_{S \cup\{i\}}(k)<\hat{\sigma}_{S \cup\{i\}}(i)$ and $\hat{\sigma}_{S}(k)=\hat{\sigma}_{S \cup\{i\}}(k)-1$ if $\hat{\sigma}_{S \cup(i)}(k)>\hat{\sigma}_{S \cup\{i\}}(i)$.
Note that this propositition gives another approach to obtain the optimal order of a coalition S.
The following example shows that the result of the last lemma need not hold for an arbitrary sequencing situation.
Example 5 Let $N=\{1,2,3\}, \sigma_{0}=(1,2,3), r=(0,0,1), p=(1,2,3)$ and $\alpha=(1,3,12)$.
Then the optimal rearrangement of $\{1,2\}$ is $(2,1,3)$, but the optimal rearrangement of N is $(1,3,2)$.

The next lemma shows that, for any tail, the urgency of player k is larger than or equal to the urgency of player l if player k takes the same position in the optimal rearrangement of the tail as player l in the optimal rearrangement of N.
Lemma 5 Let $\left(\sigma_{0}, r, p, \alpha\right)$ be a sequencing situation such that $r_{i} \in \mathbf{N}$ and $p_{i}=1$ for all $i \in N$. Let $i \in N, k \in F(i)$ and $l \in N$ be such that $\hat{\sigma}_{F(i)}(k)=\hat{\sigma}_{N}(l)$. Then $\alpha_{k} \geq \alpha_{l}$. Proof:

The proof is by induction on the number of players. For $|N|=2$ the lemma is trivial. Assume that for $|N|<m$ the lemma holds. Let $|N|=m$. We distinguish between three cases.
(i) $\hat{\sigma}_{F(i)}\left(n_{0}\right) \geq \hat{\sigma}_{F(i)}(k), \hat{\sigma}_{N}\left(n_{0}\right) \leq \hat{\sigma}_{N}(l)$.

It follows that $r_{n_{0}} \leq t_{\hat{\partial}_{N}, l}=t_{\hat{\partial}_{F(i)}, k}$ and hence $\alpha_{k} \geq \alpha_{n_{0}}$. Since $\hat{\sigma}_{N}\left(n_{0}\right) \leq \hat{\sigma}_{N}(l)$ we have that $\alpha_{n_{0}} \geq \alpha_{l}$. Hence $\alpha_{k} \geq \alpha_{l}$.
(ii) $\hat{\sigma}_{F(\mathrm{i})}\left(n_{0}\right) \geq \hat{\sigma}_{F(i)}(k), \hat{\sigma}_{N}\left(n_{0}\right)>\hat{\sigma}_{N}(l)$.

Lemma 4 yields that $\hat{\sigma}_{N \backslash\left\{n_{0}\right\}}(l)=\hat{\sigma}_{N}(l)=\hat{\sigma}_{F(i)}(k)=\hat{\sigma}_{F(i) \backslash\left\{n_{0}\right\}}(k)$. From the induction hypothesis it follows that $\alpha_{k} \geq \alpha_{l}$.
(iii) $\hat{\sigma}_{F(i)}\left(n_{0}\right)<\hat{\sigma}_{F(i)}(k)$

Using lemma 2 we have $\hat{\sigma}_{N}\left(n_{0}\right) \leq \hat{\sigma}_{F(i)}\left(n_{0}\right)<\hat{\sigma}_{F(i)}(k)=\hat{\sigma}_{N}(l)$. By lemma 4 we have that $\hat{\sigma}_{N \backslash\left\{n_{0}\right\}}(l)=\hat{\sigma}_{N}(l)-1=\hat{\sigma}_{F(i)}(k)-1=\hat{\sigma}_{F(i) \backslash\left\{n_{0}\right\}}(k)$. From the induction hypothesis it follows that $\alpha_{k} \geq \alpha_{l}$.

An immediate consequence of lemma 5 is
Corollary 1 Let $\left(\sigma_{0}, r, p, \alpha\right)$ be a sequencing situation such that $r_{j} \in \mathbf{N}$ and $p_{j}=1$ for all $j \in N$. Let $i \in N$ then

$$
\sum_{k: \dot{\partial}_{F(0)}(k)>\dot{\sigma}_{F(0)}^{\left(n_{0}\right)}} \alpha_{k} \geq \sum_{l: \dot{\partial}_{N}(l)>\dot{\sigma}_{F(0)}\left(n_{0}\right)} \alpha_{l}
$$

4 On the convexity of sequencing games

In this section it is shown that sequencing games that correspond to sequencing situations (σ_{0}, r, p, α) with $r_{i} \in N$ and $p_{i}=1$ for all $i \in N$ are convex. First, we will give another expression of the value of a coalition S. Let $\sigma_{0}=\left(i_{1}, \ldots, i_{n}\right)$ and assume that $\sigma_{i_{k}}$ is the optimal rearrangement of $S \cap\left(P\left(i_{k}\right) \cup\left\{i_{k}\right\}\right)$ within the restrict player set $P\left(i_{k}\right) \cup\left\{i_{k}\right\}$.

According to propostion 2 the optimal order $\sigma_{i_{k+1}}$ is obtained by inserting player i_{k+1} somewhere in the order $\sigma_{i_{k}}$. Clearly, if $i_{k+1} \notin S$, then $\sigma_{i_{k+1}}\left(i_{k+1}\right)=k+1$ otherwise, $\sigma_{i_{k+1}}$ can be obtained by consecutive switches of i_{k+1} with his immediate predecessor. The costsavings contributed by a neighbour switch with a player m is equal to $\alpha_{i_{k+1}}-\alpha_{m}$. Since $\hat{\sigma}_{S}$ can be constructed by subsequently rearranging (part of) S in the restricted player set $P\left(i_{k}\right) \cup\left\{i_{k}\right\}$ for $k=1,2, \ldots, n$, one derives

$$
\begin{equation*}
v(S)=\sum_{i \in S} \sum_{k \in P(i) \cap F\left(\partial_{s, i}\right)}\left(\alpha_{i}-\alpha_{k}\right) \tag{4}
\end{equation*}
$$

In the following lemma we give an expression for the difference of the values of a tail and the same tail where player n_{0} is excluded. Let $\overline{F(i)}:=F(i) \cup\{i\}$ be the tail of player i. Lemma 6 Let $\left(\sigma_{0}, r, p, \alpha\right)$ be a sequencing situation such that $r_{j} \in \mathbf{N}$ and $p_{j}=1$ for all $j \in N$ and let (N, v) be the corresponding sequencing game. Let $i \in N$ then

Proof:

$$
v(\overline{F(i)})-v\left(\overline{F(i)} \backslash\left\{n_{0}\right\}\right)=\sum_{k \in F\left(\partial_{\overline{F(})}, n_{0}\right)}\left(\alpha_{n_{0}}-\alpha_{k}\right)
$$

$$
\begin{aligned}
& v(\overline{F(i)})-v\left(\overline{F(i)} \backslash\left\{n_{0}\right\}\right) \\
& =\sum_{l \in \overline{F(i)}} \sum_{k \in P(l) \cap F\left(\sigma_{\overline{F(i)}}, l\right)}\left(\alpha_{l}-\alpha_{k}\right)-\sum_{l \in \overline{F(i) \backslash\left\{n_{0}\right)}} \sum_{k \in P(l) \cap F\left(\partial_{\overline{F(0)} \backslash\left(n_{0}\right)}, l\right)}\left(\alpha_{l}-\alpha_{k}\right) \\
& =\sum_{k \in P\left(n_{0}\right) \cap F\left(\partial_{\overline{F(})}^{\left.n_{0}\right)}\right.}\left(\alpha_{n_{0}}-\alpha_{k}\right) \\
& +\sum_{l \in \overline{F(i)} \backslash\left\{n_{0}\right\}}\left\{\sum_{k \in P(l) \cap F\left(\partial_{\overline{F(})}, l\right)}\left(\alpha_{l}-\alpha_{k}\right)-\sum_{k \in P(l) \cap F\left(\sigma_{\overline{F(})}\right)\left(n_{0}\right)}\left(\alpha_{l}-\alpha_{k}\right)\right\} \\
& =\sum_{k \in F\left(\bar{\sigma}_{\overline{F(})}, n_{0}\right)}\left(\alpha_{n_{0}}-\alpha_{k}\right)
\end{aligned}
$$

The first equality follows by (4) and the third by lemma 4.

The restriction $\left(S, v_{\mid S}\right)$ of the game (N, v) to the player set $S \subset N$ is defined by $v_{\mid S}(T):=v(T)$ for all $T \subset S$. The next lemma shows that the restriction $\left(S, v_{\mid S}\right)$ of a sequencing game (N, v) arising from a sequencing situation with integer ready times and the processing times all equal to one is again such a sequencing game if the coalition S is connected. Since the proof of this lemma is straightforward it is omitted.
Lemma 7 Let $\left(\sigma_{0}, r, p, \alpha\right)$ be a sequencing situation such that $r_{i} \in \mathbf{N}$ and $p_{i}=1$ for all $i \in N$ and let (N, v) be the corresponding sequencing game. If the coalition S is connected with respect to σ_{0}, then the game $\left(S, v_{\mid}\right)$is the sequencing game corresponding to the sequencing situation

$$
\left(\overline{\sigma_{0}},\left(\overline{r_{i}}\right)_{i \in S},\left(p_{i}\right)_{i \in \mathcal{S},}\left(\alpha_{i}\right)_{i \in S}\right)
$$

where the bijection $\overline{\sigma_{0}}: S \rightarrow\{1, \ldots,|S|\}$ is defined by $\overline{\sigma_{0}}(i)=\sigma_{0}(i)+1-\min _{j \in S} \sigma_{0}(j)$ for all $i \in S$ and $\bar{r}_{i}=\max \left\{r_{i}, \min _{j \in S} t_{\sigma_{0, j}}\right\}$ for all $i \in S$.

Now we can formulate
Theorem 1 Let $\left(\sigma_{0}, r, p, \alpha\right)$ be a sequencing situation such that $r_{i} \in \mathbf{N}$ and $p_{i}=1$ for all $i \in N$ and let (N, v) be the corresponding sequencing game. Then (N, v) is convex. Proof:

The proof is by induction on the number of players. Obviously, if $|N|=1$, v is convex. Assume that for $|N|<n$ the game v is convex. Let $|N|=n$. Let $i \in N, S \in 2^{N}$ and $T \in 2^{N}$ be such that $S \subset T \subset N \backslash\{i\}$. We have to prove that

$$
\begin{equation*}
v(T \cup\{i\})-v(T) \geq v(S \cup\{i\})-v(S) \tag{5}
\end{equation*}
$$

(a) Suppose there exists a player $j \in N, j \neq i$ such that $j \notin T$.

If $\{i\}$ is a component of $T \cup\{i\}$ then $\{i\}$ is also a component of $S \cup\{i\}$ and, consequently, $v(T \cup\{i\})=v(T)$ and $v(S \cup\{i\})=v(S)$. So in this case (5) is trivial.

If $\{i\}$ is not a component of $T \cup\{i\}$ there exist $T_{1} \subset T$ and $T_{2} \subset T$ such that $T_{1} \neq \emptyset$ and $v(T \cup\{i\})-v(T)=v\left(T_{1} \cup\{i\} \cup T_{2}\right)-v\left(T_{1} \cup T_{2}\right)$. Moreover, there are $S_{1} \subset T_{1}$ and $S_{2} \subset T_{2}$ such that $v(S \cup\{i\})-v(S)=v\left(S_{1} \cup\{i\} \cup S_{2}\right)-v\left(S_{1} \cup S_{2}\right)$. Hence, it suffices to show that

$$
\begin{equation*}
v\left(T_{1} \cup\{i\} \cup T_{2}\right)-v\left(T_{1} \cup T_{2}\right) \geq v\left(S_{1} \cup\{i\} \cup S_{2}\right)-v\left(S_{1} \cup S_{2}\right) \tag{6}
\end{equation*}
$$

Then, since $T_{1} \cup\{i\} \cup T_{2} \subset N \backslash\{j\}$, lemma 7 and the induction hypothesis imply that $\left(T_{1} \cup\{i\} \cup T_{2}, v_{\mid T_{1} \cup(i\} \cup T_{2}}\right)$ is a convex sequencing game and therefore (6) is satisfied.
(b) Hence, we may assume that $T=N \backslash\{i\}$. Moreover, (a) implies also that it is sufficient to prove that

$$
v(N)-v(N \backslash\{i\}) \geq v(N \backslash\{j\})-v(N \backslash\{i, j\}) \text { for all } i, j \in N
$$

W.l.o.g. we assume that $\sigma_{0}(i)<\sigma_{0}(j)$. Then

$$
\begin{aligned}
& v(N)-v(N \backslash\{i\})-v(N \backslash\{j\})+v(N \backslash\{i, j\}) \\
& =v(N)-v(P(i))-v(F(i))-v(P(j))-v(F(j)) \\
& +v(P(i))+v(F(j))+v(P(j) \backslash P(i+1))
\end{aligned}
$$

$$
=v(N)-v(P(j))+v(P(j) \backslash P(i+1))-v(F(i))
$$

Two cases are distinguished.
(i) $j=n_{0}$

Then we have

$$
\begin{aligned}
& v(N)-v\left(N \backslash\left\{n_{0}\right\}\right)+v\left(F(i) \backslash\left\{n_{0}\right\}\right)-v(F(i)) \\
& =\sum_{l \in F\left(\partial_{N}, n_{0}\right)}\left(\alpha_{n_{0}}-\alpha_{l}\right)-\sum_{k \in F\left(\partial_{P(0)}, n_{0}\right)}\left(\alpha_{n_{0}}-\alpha_{k}\right) \\
& =\sum_{l: \partial_{N}\left(n_{0}\right)<\partial_{N}(l) \leq \partial_{F(0)}\left(n_{0}\right)}\left(\alpha_{n_{0}}-\alpha_{l}\right) \\
& +\sum_{l: \partial_{N}(l)>\partial_{F(0)}\left(n_{0}\right)}\left(\alpha_{n_{0}}-\alpha_{l}\right)-\sum_{k: \partial_{F(0)}(k)>\partial_{F(0)}\left(n_{0}\right)}\left(\alpha_{n_{0}}-\alpha_{k}\right) \\
& =\sum_{l: \partial_{N}\left(n_{0}\right)<\partial_{N}(l) \leq \partial_{F(0)}\left(n_{0}\right)}\left(\alpha_{n_{0}}-\alpha_{l}\right) \\
& -\sum_{l: \partial_{N}(l)>\partial_{F(i)}\left(n_{0}\right)} \alpha_{l}+\sum_{k: \partial_{F(i)}(k)>\partial_{F(i)}\left(n_{0}\right)} \alpha_{k} \geq 0
\end{aligned}
$$

where the first equality follows from lemma 6 and the inequality follows from lemma 3 and corollary 1.
(ii) $j<n_{0}$

The induction hypotheses implies that the game ($\left.N \backslash\left\{n_{0}\right\}, v_{\mid\left(N \backslash\left\{n_{0}\right\}\right)}\right)$ is convex. Then the convexity condition (1) with $S=F(i) \backslash\left\{n_{0}\right\}$ and $T=P(j)$ yields

$$
\begin{equation*}
\left.v\left(N \backslash\left\{n_{0}\right\}\right)+v(P(j) \backslash P(i+1))-v(F(i)) \backslash\left\{n_{0}\right\}\right)-v(P(j)) \geq 0 \tag{7}
\end{equation*}
$$

Then (7) and (i) imply

$$
\begin{aligned}
& v(N)-v(P(j))+v(P(j) \backslash P(i+1)\})-v(F(i)) \\
& \left.=\left[v\left(N \backslash\left\{n_{0}\right\}\right)+v(P(j) \backslash P(i+1))-v(F(i)) \backslash\left\{n_{0}\right\}\right)-v(P(j))\right] \\
& +\left[v(N)-v\left(N \backslash\left\{n_{0}\right\}\right)+v\left(F(i) \backslash\left\{n_{0}\right\}\right)-v(F(i))\right] \geq 0
\end{aligned}
$$

The following example shows that in general sequencing games are not necessary convex.
Example 6 Let $N=\{1,2,3\}, \sigma_{0}=(1,2,3), r=(0,0,1), p=(1,2,3)$ and $\alpha=(1,3,12)$. The optimal rearrangement of N is $(1,3,2)$ and, consequently, $v(N)=15$. Obviously the optimal rearrangement of $\{2,3\}$ is $(1,3,2)$ and so $v(\{2,3\})=15$. Since $v(\{1,2\})=1$ and $v(\{2\})=0$ we have that

$$
v(N)-v(\{2,3\})=0<1=v(\{1,2\})-v(\{2\}) .
$$

References:

Conway R., Maxwell W., Miller L. (1967), Theory of Scheduling, Addison-Wesley Publishing Company,pp. 13,44.

Curiel I., Pederzoli G., Tijs S. (1989), Sequencing games, European Journal of Operational Research, 40, 344-351.

Potters J., Curiel I., Rajendra Prasad V., Tijs S., Veltman B. (1990), Sequencing and Cooperation, Report 9031, Department of Mathematics Nijmegen.

Rinnooy Kan A. (1976), Machine Scheduling Problems, Martinus Nijhof, The Hague,pp. 80.

Smith W. (1956), Various Optimizers for single-stage production, Naval Reaearch Logistics Quarterly, 3, 59-66.

(For	previous papera please	consult previous discussion papera,)
No.	Author(s)	Title
9148	S. van Wijnbergen	Trade Reform, Policy Uncertainty and the Current Account: A Non-Expected Utility Approach
9149	S. van Wijnbergen	Intertemporal Speculation, Shortages and the Political Economy of Price Reform
9150	G. Koop and M.F.J. Steel	A Decision Theoretic Analysis of the Unit Root Hypothesis Using Mixtures of Elliptical Models
9151	A.P. Barten	Consumer Allocation Models: Choice of Functional Form
9152	R.T. Baillie, T. Bollerslev and M. R. Redfearn	Bear Squeezes, Volatility Spillovers and Speculative Attacks in the Hyperinflation 1920s Foreign Exchange
9153	M.F.J. Steel	Bayesian Inference in Time Series
9154	A.K. Bera and S. Lee	Information Matrix Test, Parameter Heterogeneity ARCH: A Synthesis
9155	F. de Jong	A Univariate Analysis of EMS Exchange Rates Using a Target
9156	B. le Blanc	Economies in Transition
9157	A.J.J. Talman	Intersection Theorems on the Unit Simplex and the Simplotope
9158	H. Bester	A Model of Price Advertising and Sales
9159	A. Özcam, G. Judge, A. Bera and T. Yancey	The Risk Properties of a Pre-Test Estimator for Zellner's Seemingly Unrelated Regression Model
9160	R.M.W.J. Beetsma	Bands and Statistical Properties of EMS Exchange Rates: A Monte Carlo Investigation of Three Target Zone Models Zone Model
9161	A.M. Lejour and H.A.A. Verbon	Centralized and Decentralized Decision Making on Social Insurance in an Integrated Market Multilateral Institutions
9162	S. Bhattacharya	Sovereign Debt, Creditor-Country Governments, and Multilateral Institutions
9163	H. Bester, A. de Palma, W. Leininger, E. -L. von Thadden and J. Thomas	The Missing Equilibria in Hotelling's Location Game

No.	Author (s)	Title
9164	J. Greenberg	The Stable Value
9165	Q.H. Vuong and W. Wang	Sellecting Estimated Models Using Chi-Square Statistics
9166	D. O. Stahl II	Evolution of Smart ${ }_{n}$ Players
9167	D.0. Stahl II	Strategic Advertising and Pricing with Sequential Buyer Search
9168	T.E. Nijman and F.C. Palm	Recent Developments in Modeling Volatility in Financial Data
9169	G. Asheim	Individual and Collective Time Consistency
9170	H. Carlsson and E. van Damme	Equilibrium Selection in Stag Hunt Games
9201	M. Verbeek and Th. Nijman	Minimum MSE Estimation of a Regression Model with Fixed Effects from a Series of Cross Sections
9202	E. Bomhoff	Monetary Policy and Inflation
9203	J. Quiggin and P. Wakker	The Axiomatic Basis of Anticipated Utility; A Clarification
9204	Th. van de Klundert and S. Smulders	Strategies for Growth in a Macroeconomic Setting
9205	E. Siandra	Money and Specialization in Production
9206	W. Härdle	Applied Nonparametric Models
9207	M. Verbeek and Th. Nijman	Incomplete Panels and Selection Bias: A Survey
9208	W. Hardle and A.B. Tsybakov	How Sensitive Are Average Derivatives?
9209	S. Albæk and P.B. Overgaard	Upstream Pricing and Advertising Signal Downstream Demand
9210	M. Cripps and J. Thomas	Reputation and Commitment in Two-Person Repeated Games
9211	S. Albæk	Endogenous Timing in a Game with Incomplete Information
9212	T.J.A. Storcken and P.H.M. Ruys	Extensions of Choice Behaviour
9213	R.M.W.J. Beetsma and F. van der Ploeg	Exchange Rate Bands and Optimal Monetary Accommodation under a Dirty Float
9214	A. van Soest	Discrete Choice Models of Family Labour Supply
9215	W. Guth and K. Ritzberger	On Durable Goods Monopolies and the (Anti-) CoaseConjecture

No. Author(s)	Title	
9216	A. Simonovits	Indexation of Pensions in Hungary: A Simple
		Cohort Model

No. Author(s)	Title		
9234	J. Angrist and		
G. Imbens		\quad	Average Causal Response with Variable Treatment
:---			
Intensity			

No. Author(s)	Title			
9252	A.L. Bovenberg and	Environmental Taxation and Labor-Market		
R.A. de Mooij			\quad	Distortions
:---	:---	\quad	A. Lusardi	Permanent Income, Current Income and Consumption:
:---	:---			
9253	Evidence from Panel Data			

[^0]: *Herbert Hamers is financally supported by the Netherland Organisation for Scientific Research(NWO).
 Dept. of Econometrics, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands.

