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�e main objective of the present paper is to de	ne �-gamma and �-beta distributions and moments generating function for the
said distributions in terms of a new parameter � > 0. Also, the authors prove some properties of these newly de	ned distributions.

1. Basic Definitions

In this section we give some de	nitions which provide a base
for our main results. �e de	nitions (1.1–1.3) are given in
[1] while (1.4–1.6) are introduced in [2]. Also, we have taken
some statistics related de	nitions (1.7–1.11) from [3–5].

1.1. Pochhmmer Symbol. �efactorial function is denoted and
de	ned by

(�)� = {� (� + 1) (� + 2) ⋅ ⋅ ⋅ (� + � − 1) ; for � ≥ 1, � ̸= 0,
1; if � = 0.

(1)

�e function (�)� de	ned in relation (1) is also known as
Pochhmmer symbol.

1.2. Gamma Function. Let 	 ∈ C; the Euler gamma function
is de	ned by

Γ (	) = lim�→∞
�!��−1
(	)� (2)

and the integral form of gamma function is given by

Γ (	) = ∫∞
0

�−1�−��, R (	) > 0. (3)

From the relation (3), using integration by parts, we can easily
show that

Γ (	 + 1) = 	Γ (	) . (4)

�e relation between Pochhammer symbol and gamma
function is given by

(	)� = Γ (	 + �)
Γ (	) . (5)

1.3. Beta Function. �e beta function of two variables is
de	ned as

� (�, �) = ∫1
0
�−1(1 − )�−1�, Re (�) ,Re (�) > 0 (6)

and, in terms of gamma function, it is written as

� (�, �) = Γ (�) Γ (�)
Γ (� + �) . (7)

1.4. Pochhammer �-Symbol. For � > 0, the Pochhammer �-
symbol is denoted and de	ned by

(�)�,	
= {� (� + �) (� + 2�) ⋅ ⋅ ⋅ (� + (� − 1) �) ; for � ≥ 1, � ̸= 0,

1; if � = 0.
(8)
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1.5. �-Gamma Function. For � > 0 and 	 ∈ C, the �-gamma
function is de	ned as

Γ	 (	) = lim�→∞
�!��(��)�/	−1

(	)�,	 (9)

and the integral representation of �-gamma function is

Γ	 (	) = ∫∞
0

�−1�−��/	�. (10)

1.6. �-Beta Function. For Re(�),Re(�) > 0, the �-beta
function of two variables is de	ned by

�	 (�, �) = 1
� ∫
∞

0
�/	−1(1 − )�/	−1� (11)

and, in terms of �-gamma function, �-beta function is de	ned
as

�	 (�, �) = Γ	 (�) Γ	 (�)Γ	 (� + �) . (12)

Also, the researchers [6–10] have worked on the gen-
eralized �-gamma and �-beta functions and discussed the
following properties:

Γ	 (� + �) = �Γ	 (�) , (13)

(�)�,	 = Γ	 (� + ��)Γ	 (�) , (14)

Γ	 (�) = 1, � > 0. (15)

Using the above relations, we see that, for �, � > 0 and � >0, the following properties of �-beta function are satis	ed by
authors (see [6, 7, 11]):

�	 (� + �, �) = �
� + ��	 (�, �) , (16)

�	 (�, � + �) = �
� + ��	 (�, �) , (17)

�	 (��, ��) = 1
�� (�, �) , (18)

�	 (�, �) = 1
� , �	 (�, �) = 1

� . (19)

Note that when � → 1, �	(�, �) → �(�, �).
For more details about the theory of �-special functions

like �-gamma function, �-beta function, �-hypergeometric
functions, solutions of �-hypergeometric di�erential equa-
tions, contegious functions relations, inequalities with appli-
cations and integral representations with applications involv-
ing �-gamma and �-beta functions and so forth. (See [12–17].)
1.7. Probability Distribution and Expected Values. In a ran-
dom experiment with � outcomes, suppose a variable �
assumes the values �1, �2, �3, . . . , �� with corresponding
probabilities �1, �2, �3, . . . , ��; then this collection is called

probability distribution andΣ�
 = 1 (in case of discrete distri-
butions). Also, if�(�) is a continuous probability distribution
function de	ned on an interval [�, �], then ∫�� �(�)�� = 1.

In statistics, there are three types of moments which are
(i) moments about any point � = �, (ii) moments about� = 0, and (iii) moments about mean position of the given
data. Also, expected value of the variate is de	ned as the 	rst
moment of the probability distribution about � = 0 and the�th moment about mean of the probability distribution is
de	ned as �(�
 − �) where � is the mean of the distribution.

Also, �(�) shows the expected value of the variate � and
is de	ned as the 	rst moment of the probability distribution
about � = 0; that is,

 �1 = � (�) = ∫�
�
�� (�) ��. (20)

1.8. GammaDistribution. A continuous random variable" is
said to have a gamma distribution with parameter # > 0, if
its probability distribution function is de	ned by

� (	) = {{{
1

Γ (#)	�−1�−�, 0 ≦ 	 < ∞,
0, elsewhere

(21)

and its distribution function -(	) is de	ned by

- (	) = {{{{{
∫�
0

1
Γ (#)	�−1�−��	, 	 ≥ 0,

0, 	 < 0,
(22)

which is also called the incomplete gamma function.

1.9. Moment Generating Function of Gamma Distribution.
�emoment generating function of " is de	ned by

50 () = � (���) = ∫∞
0

���� (	) �	
= ∫∞
0

1
Γ (#)	�−1�−�(1−�)�	.

(23)

1.10. Beta Distribution of the First Kind. A continuous ran-
dom variable " is said to have a beta distribution with two
parameters# and �, if its probability distribution function is
de	ned by

� (	) = {{{{{

1
� (#, �)	�−1(1 − 	)�−1, 0 ≦ 	 ≦ 1; #, � > 0
0, elsewhere.

(24)
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�is distribution is known as a beta distribution of the 	rst
kind and a beta variable of the 	rst kind is referred to as�1(#, �). Its distribution function -(	) is given by

- (	)

=
{{{{{{{{{{{

0, 	 < 0,
∫�
0

1
� (#, �)	�−1(1 − 	)�−1�	, 0 ≦ 	 ≦ 1; #, � > 0,

0, 	 > 1.
(25)

1.11. Beta Distribution of the Second Kind. A continuous
random variable " is said to have a beta distribution of
the second kind with parameters # and �, if its probability
distribution function is de	ned by

� (	) = {{{{{
1

� (#, �)
	�−1

(1 + 	)�+� , 0 ≦ 	 < ∞; #, � > 0,
0, otherwise

(26)

and its probability distribution function is given by

- (	) = ∫∞
0

1
� (#, �)

	�−1
(1 + 	)�+� �	, 0 ≦ 	 < ∞; #, � > 0.

(27)

2. Main Results: �-Gamma and�-Beta Distributions

In this section, we de	ne gamma and beta distributions in
terms of a new parameter � > 0 and discuss some properties
of these distributions in terms of �.
De�nition 1. Let " be a continuous random variable; then it
is said to have a �-gamma distributionwith parameters# > 0
and � > 0, if its probability density function is de	ned by

�	 (	) =
{{{{{

1
Γ	 (#)	

�−1�−��/	, 0 ≦ 	 < ∞, � > 0,
0, elsewhere

(28)

and its distribution function -	(	) is de	ned by

-	 (	) =
{{{{{
∫�
0

1
Γ	 (#)	

�−1�−��/	�	, 	 > 0,
0, 	 < 0.

(29)

Proposition 2. e newly de�ned Γ	(#) distribution satis�es
the following properties.

(i) e �-gamma distribution is the probability distribu-
tion that is area under the curve is unity.

(ii) e mean of �-gamma distribution is equal to a
parameter#.

(iii) e variance of �-gamma distribution is equal to the
product of two parameters#�.

Proof of (i). Using the de	nition of �-gamma distribution
along with the relation (10), we have

∫∞
0

�	 (	) �	 = 1
Γ	 (#) ∫

∞

0
	�−1�−��/	�	 = Γ	 (#)Γ	 (#) = 1.

(30)

Proof of (ii). Asmean of a distribution is the expected value of
the variate, so the mean of the �-gamma distribution is given
by

	 = �	 (") = 1
Γ	 (#) ∫

∞

0
	 ⋅ 	�−1�−��/	�	. (31)

Using the de	nition of �-gamma function and the relation
(13), we have

	 = 1
Γ	 (#) ∫

∞

0
	��−��/	�	 = Γ	 (# + �)

Γ	 (#) = #Γ	 (#)Γ	 (#) = #.
(32)

Proof of (iii). As variance of a distribution is equal to �(�2) −
(�(�))2, so the variance of �-gamma distribution is calculated
as

Var	 (") = �	 ("2) − (�	("))2. (33)

Now, we have to 	nd �	("2), which is given by

�	 ("2) = 1
Γ	 (#) ∫

∞

0
	2 ⋅ 	�−1�−��/	�	

= 1
Γ	 (#) ∫

∞

0
	�+1�−��/	�	

= Γ	 (# + 2�)
Γ	 (#) = (# + �)#Γ	 (#)Γ	 (#)

= # (# + �) .

(34)

�us we obtain the variance of �-gamma distribution as

:2	 = # (# + �) − #2 = #�, (35)

where :2	 is the notation of variance present in the literature.

2.1. �-Beta Distribution of First Kind. Let " be a continuous
random variable; then it is said to have a �-beta distribution
of the 	rst kindwith two parameters# and �, if its probability
distribution function is de	ned by

�	 (	)

= {{{
1

��	 (#, �)	
�/	−1(1 − 	)�/	−1, 0 ≦ 	 ≦ 1; #, �, � > 0,

0, elsewhere.
(36)
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In the above distribution, the beta variable of the 	rst kind is
referred to as �1,	(#, �) and its distribution function -	(	) is
given by

-	 (	) =
{{{{{{{{{{{{{{{{{

0, 	 < 0,
∫�
0

1
��	 (#, �)	

�/	−1(1 − 	)�/	−1�	, 0 ≦ 	 ≦ 1;
#, � > 0,

0, 	 > 1.
(37)

Proposition 3. e �-beta distribution �1,	(#, �) satis�es the
following basic properties.

(i) �-beta distribution is the probability distribution that
is the area of �1,	(#, �) under a curve �	(	) is unity.

(ii) e mean of this distribution is#/(# + �).
(iii) e variance of �1,	(#, �) is#��/((#+�)2(#+�+�)).

Proof of (i). By using the above de	nition of �-beta distribu-
tion, we have

∫�
0
-	 (	) �	 = ∫�

0

1
��	 (#, �)	

�/	−1(1 − 	)�/	−1�	,
0 ≦ 	 ≦ 1; #, � > 0.

(38)

By the relation (11), we get

∫�
0
-	 (	) �	 = ∫1

0

1
��	 (#, �)	

�/	−1(1 − 	)�/	−1�	

= �	 (#, �)�	 (#, �) = 1.
(39)

Proof of (ii). �emean of the distribution,  �1,	, is given by

 �1,	 = �	 (") = ∫�
0
	-	 (	) �	

= ∫�
0

1
��	 (#, �)	 ⋅ 	

�/	−1(1 − 	)�/	−1�	,
0 ≦ 	 ≦ 1; #, � > 0.

(40)

Using the relations (12), (13), and (16), we have

 �1,	 = ∫1
0

1
��	 (#, �)	

�/	(1 − 	)�/	−1�	 = �	 (# + �, �)
�	 (#, �)

= Γ	 (# + �) Γ	 (�) Γ	 (# + �)
Γ	 (#) Γ	 (�) Γ	 (# + � + �) =

#
# + �.

(41)

Proof of (iii). �e variance of �1,	(#, �) is given by

:2	 = (Var)	 = �	 ("2) − (�	 ("))2, (42)

�	 ("2) = ∫1
0

1
��	 (#, �)	

�/	+1(1 − 	)�/	−1�	

= �	 (# + 2�, �)
�	 (#, �)

= Γ	 (# + 2�) Γ	 (�) Γ	 (# + �)
Γ	 (#) Γ	 (�) Γ	 (# + � + 2�)

= # (# + �)
(# + �) (# + � + �) .

(43)

�us substituting the values of�	("2) and�	(") in (42) along
with some algebraic calculations we have the desired result.

2.2. �-Beta Distribution of the Second Kind. A continuous
random variable " is said to have a �-beta distribution of
the second kind with parameters # and �, if its probability
distribution function is de	ned by

�	 (	)

= {{{{{
1

��	 (#, �)
	�/	−1

(1 + 	)(�+�)/	 , 0 ≦ 	 < ∞; #, �, � > 0,
0, otherwise.

(44)

Note. �e �-beta distribution of the second kind is denoted
by �2,	(#, �).
�eorem 4. e �-beta function of the second kind represents
a probability distribution function that is

∫∞
0

�	 (	) �	 = 1. (45)

Proof. We observe that

∫∞
0

�	 (	) �	 = ∫∞
0

1
��	 (#, �)

	�/	−1
(1 + 	)(�+�)/	 �	. (46)

Let 1 + 	 = 1/�, so that �	 = −��/�2; thus by using the
relation (11), the above equation gives

= 1
�	 (#, �)

1
� ∫
1

0
��/	−1(1 − �)�/	−1�� = �	 (#, �)�	 (#, �) = 1.

(47)

3. Moment Generating Function of�-Gamma Distribution

In this section, we derive the moment generating function
of continuous random variable " of newly de	ned �-gamma
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distribution in terms of a new parameter � > 0, which is
illustrated as

50,	 () = �	 (����) = ∫∞
0

1
Γ	 (#)�

���	�−1�−��/	�	

= 1
Γ	 (#) ∫

∞

0
	�−1�(−��/	)(1−	�)�	.

(48)

Let B = 	(1−�)1/	, so that 	 = B/(1−�)1/	 and �	 = �B/(1−�)1/	. �en substituting these values in (48), we obtain

50,	 () = 1
(1 − �)(�−1)/	Γ	 (#) ∫

∞

0
B�−1�−��/	 �B

(1 − �)1/	
= 1
(1 − �)�/	Γ	 (#) ∫

∞

0
B�−1�−��/	�B

= Γ	 (#)
(1 − �)�/	Γ	 (#) = (1 − �)−�/	, |�| < 1.

(49)

Now di�erentiating � times 50,	() with respect to  and
putting  = 0, we get

 �,	 = # (# + �) (# + 2�) ⋅ ⋅ ⋅ (# + (� − 1) �) . (50)

�us when � = 1, we obtain  �1,	 = #, when � = 2,  �2,	 =#(#+ �), and hence  2,	 =  �21,	 −  �2,	 = #� = variance of the�-gamma distribution proved in Proposition 2.

3.1. Higher Moment in terms of �. �e �th moment in terms
of � is given by

 �,	
= � (") = 1

��	 (#, �) ∫
1

0
	 ⋅ 	�/	−1(1 − 	)�/	−1�	

= 1
��	 (#, �) ∫

1

0
	�/	+−1(1 − 	)�/	−1�	

= �	 (# + ��, �)
�	 (#, �) = Γ	 (# + ��) Γ	 (# + �)

Γ	 (#) Γ	 (# + �� + �)
= # (# + �) (# + 2�) ⋅ ⋅ ⋅ (# + (� − 1) �)
(# + �) (# + � + �) (# + � + 2�) ⋅ ⋅ ⋅ (# + � + (� − 1) �) .

(51)

�eorem 5. e moments of the higher order of �-beta
distribution of the second kind are given as

 �,	 = # (# + �) (# + 2�) ⋅ ⋅ ⋅ (# + (� − 1) �)
(� − �) (� − 2�) ⋅ ⋅ ⋅ (� − ��) . (52)

Proof. Consider

 �,	 = � (") = ∫∞
0

1
��	 (#, �)

	�/	−1+
(1 + 	)(�+�)/	 �	. (53)

Changing the variables as 	 = (1 − �)/� ⇒ �	 = (−1/�2)��,
above equation becomes

= 1
��	 (#, �) ∫

1

0
��/	−−1(1 − �)�/	+−1��. (54)

Replacing (1 − �) by , we have
 �,	 = 1

�	 (#, �)
1
� ∫
1

0
�/	+−1(1 − )�/	−−1�

= �	 (# + ��, � − ��)
�	 (#, �)

= Γ	 (# + ��) Γ	 (� − ��) Γ	 (# + �)
Γ	 (#) Γ	 (�) Γ	 (# + �)

= Γ	 (# + ��) Γ	 (� − ��)Γ	 (#) Γ	 (�) .

(55)

Now using Γ	(� − ��) = Γ	(�)/(� − �)(� − 2�) ⋅ ⋅ ⋅ (� − ��) in
the above equation we get the desired result.

4. Conclusion

In this paper the authors conclude that we have the following.

(i) If � tends to 1, then �-gamma distribution and �-
beta distribution tend to classical gamma and beta
distribution.

(ii) �e authors also conclude that the area of �-gamma
distribution and �-beta distribution for each positive
value of � is one and theirmean is equal to a parameter# and #/(# + �), respectively. �e variance of �-
gamma distribution for each positive value of � is
equal to � times of the parameter #. In this case if� = 1, then it will be equal to variance of gamma
distribution. �e variance of �-beta distribution for
each positive value of � is also de	ned.

(iii) In this paper the authors introduced moments gener-
ating function and higher moments in terms of a new
parameter � > 0.
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