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Abstract. -We continue the investigation of quantized Yang-Mills theories coupled to
matter fields in the framework of causal perturbation theory. In this approach, which goes
back to Epstein and Glaser, one works with free fields throughout, so that all expressions
are mathematically well-defined. The general proof of the Cg-identities (C-number identities
expressing gauge invariance) 1s completed. We attach importance to the correct treatment
of the degenerate terms and to the Cg-identities with external matter legs. Moreover, the
compatibility of all Cg-identities with P-, T-, C-invariance and pseudo-unitarity is shown.
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1. Introduction

In this paper we complete the study in refs. [1,2,3,4] of gauge invariance for Yang-
Mills theories coupled to matter fields in the framework of causal perturbation theory. This
approach, which goes back to Epstein and Glaser [5], has the merit that only well-defined
quantities, namely free fields, appear, in contrast to the ill-defined interacting fields in the
usual Lagrangian formalism. The central objects in this approach are the n-point distribu-
tions 1}, which appear in the formal power series of the S-matrix

S(g) =1+ % /d%l...d%n To(zy, . 2n)g(21)..g(zn), (1.1)
n=1 "

where g(z) is a tempered switching function. The T,,’s may be viewed as mathematically
well-defined time-ordered products. They are constructed inductively from the given first
order

Ti(z) = T{'(2) + T}(2) + T} (2), (1.2)
with )
A def 19 v
T (x) = Efabc C A (@) Aup(2) FV P () o, (1.3)
Tlu(a:)d:ef —tgfape  Apa()up()0F () (1.4)
TY (@) % i jua(2) A(2), (1.5)

where the matter current j,, is defined by

Q.
Y

N |

: l/)a(x)'fu(/\a)aﬁwﬁ(z) - (1.6)

€

j;ta(x) =

Herein, g is the coupling constant, fu;. are the structure constants of the gauge group

SU(N) and _Ti/\\a, a=1,..,N?—1 denote the generators of the fundamental representation
of SU(N). The gauge potentials A#, F#¥ &ef O* AL — 0" A and the ghost fields u,, @, are

massless and fulfil the wave equation. The matter fields ¥ and Ed-_e‘f ¥~ may be massless
or massive and 9 satisfies the free Dirac equation

17, 0" wo{2) = Mapips(), (1.7)

with a diagonal mass matrix Mag = Mmabap, ma > 0. We want the matter current j,. to
be conserved

0" jualx) = 0, (1.8)

which requires A, M = MtA,(= MA,), Va = 1,..., N? — 1. By means of Schurs lemma, we
conclude that j,, is conserved, if and only if the mass is colour independent

A/[Qﬁ = m(Sag, m Z 0. (19)

Therefore, we only consider matter fields fulfilling (1.9).



The most important property of the S-matrix (1.1) to be proven is gauge invariance,
which means roughly speaking that the commutator of the T),-distributions with the gauge
charge

Q% &3z (8, A" Boua) (1.10)

t=const.

is a (sum of) divergence(s). In first order this holds true

[Q. T (2) + TP (2)] = 8, (T} (2) + T1/1(2)), (1.11)
where et
TIA/'{(.L') = 09 fabe : Apa(@)up(z)FPH(2) -, (1.12)
@)Y = L fae t ua0)un(2)0 () (1.13)
and, by means of the current conservation (1.8),
Q.17 (2)] = i, T}, (x) (1.14)
with et
TV (2) £ i j (2)ua(2). (1.15)

Note that [@, 7] is not a divergence. In order to have gauge invariance in first order, we
are forced to introduce the ghost coupling 7} (1.4). We define gauge invariance in arbitrary
order by

[Q. T2, v zn)] = i 0L T (21, s 2n)- (1.16)
=1

The divergences on the r.h.s. of (1.16) are given by n-th order 7-distributions from a
different theory which contains, in addition to the usual Yang-Mills couplings (1.2) a so-

called Q-vertex, defined by T}, = Tf}‘i + Ty + le/yl (1.12), (1.13), (1.15). (See ref. [2] for
more details.) The operator gauge invariance (1.16) can be expressed by the Cg-identities,
the C-number identities for gauge invariance [2,3]. It is a remarkable fact that the gauge
invariance of quantized non-abelian theories can be formulated by the simple condition
(1.16) involving only the well-defined asymptotic fields (which are free fields) and that this
condition does not connect different orders of the perturbation series. To clarify the latter
point, note that the 4-gluon interaction is not a first order term, it is of second order, namely
the free normalization term

Cig® Alm(:cl)A,,b(rl)As(xz)A';(arz) : fabefaecb(z1 — 22) (1.17)

of To(x1,x2). Gauge invariance (1.16) in second order fixes the value of the normalization
constant C uniquely and (1.17) agrees with the usual 4-gluon interaction (see [1] or sect.
3(b)).

Our gauge invariance (1.16) implies the invariance of the S-matrix (1.1) (in the formal
adiabatic limit g — 1) with respect to the following gauge transformations of the free fields

$(z) — 6a(z) = e TP VG(2)ePY, G = AL FI ug, i, ¥, ¥, (1.18)

where

—

Q déf(—l)QgQ, Qy défi/ d®z : a(z)Gou(z) : . (1.19)
t=const.



3

Qg is the ghost charge operator [6]: [Q,, ua] = —uq, [@y, %] = @a. Obviously, these
transformations (1.18) are linear and the transformed fields are still free fields, as it must
be in causal perturbation theory. Note, that the latter fact excludes a local transformation
Yalz) — eiA(r)wa(m). The infinitesimal versions §¢ = Jx|x=o¢x of (1.18) are proportional
to the (anti)commutators

AL = ~i(=1)9[Q, ARl = (-1)¥ 8 ua, SFL = —i(-1)%W[Q, F*] =0,
bug = —i(=1)9{Q,us} = 0, 80%i, = —i(—1)99{Q, O*i,} = —(—1)999, FF",

Spa = —i(~1)[Q,Ya] = 0, 64, = —i(—1)%[Q,¥,] = 0. (1.20)

These transformations are the free field version of the famous BRS-transformations [7].
Remark: The transformations (1.18) do not completely agree with the transformations in
ref.[1]: ¢(x) — e *9¢(2)et*?. However, due to [Q',Tn(X)] = (—1)99[Q,T»(X)], our
gauge invariance (1.16) implies the invariance of the S-matrix with respect to both kinds of
transformations.

Because we consider transformations of the free fields only and, especially, since we can
not transform 1, 1, the reader may think that (1.16) is only a restricted gauge invariance.
But the main purpose of gauge invariance is to eliminate the unphysical degrees of freedom in
the proof of unitarity on the physical subspace. However, there are no unphysical particles
in the matter sector. Therefore, it causes no troubles that we can not transform v, .
In fact, we succeded in proving the physical unitarity by means of (1.16) (sect. 5 of ref.
[4]). Moreover, the gauge invariance (1.16) yields the usual Ward identities in QED (refs.
[2,12,15]). For Yang-Mills theories we have proven that our Cg-identities (ezpressing (1.16))
imply the usual Slavnov-Taylor identity [8,9,10] in the case of two external legs (sect. 3.3
of ref. [2]). The extension of this result to three and four external legs is in progress {11].
We emphazise that the Cg-identities contain more information than the Slavnov-Taylor
identities, because in the latter the inner vertices are integrated out with g(z) = 1. In order
to derive the Slavnov-Taylor identities from our Cg-identities, the latter integration must be
carried out and we have to eliminate the distributions with one Q-vertex [2,11]. However,
this elimination can not be done completely in the case of an external pair (¢, %). But in
this case also Taylor [8] is forced to introduce the Q-vertezx (1.15) to formulate the Slavnov-
Taylor identities. He needs the C-number distributions tleu(A)’ t%wu(A) (see subsect. 4(b)),
which are precisely the distributions with Q-vertex which we cannot eliminate [11].

We do not consider it as a weakness that we study the simple gauge transformations
(1.18) only. By contrast, it is a virtue that the invariance with respect to these simple
transformations implies the full content of the usual gauge invariance. However, we have
not yet studied the independence on the gauge fizing.

The proof of (1.16) follows the inductive construction of the T3, 15 The crucial step is
the causal distribution splitting d,, = 7, — a,,. The problem is that we do not have a general
formula for a covariant splitting solution r, at our disposal [2]. In QED the non-vanishing
mass of the fermions ¢, ¥ seems to guarantee the existence of the central (or symmetrical)
splitting solution, which is obtained by a dispersion integral from d,, (refs. [5,12]). However,
in the case of non-abelian gauge theories, a mass m > 0 (1.9) of the matter fields does not
help us in this respect because of the self-interaction of the gauge bosons.

The general proof of gauge invariance (1.16) in refs. {1,2,3,4] is not complete concerning
the degenerate terms and the coupling to matter fields. We shall close these gaps and prove
the compatibility of gauge invariance with discrete symmetries and pseudo-unitarity.



2. Outline of the Proof of Gauge Invariance

The proof follows the inductive construction of the T;,, T,,;;. Therefore, it is by induction
on n, too, like most proofs in causal perturbation theory. The operator gauge invariance
(corresponding to (1.16)) of Al,, Ry, and D, = A}, — R},

[Q, Du(z1, ..., 2 _zZaD (21,..., n), (2.1)

has been proven in section 3.1 of ref. [2] in a straightforward way. This proof is very
instructive because it shows that our definition (1.16) of gauge invariance is adapted to the
inductive construction of the T),’s. However, the distribution splitting D, = R, — A, is
done in terms of the numerical distributions d,, = r, — a,, because they depend on the
relative coordinates only and, therefore, are responsible for the support properties. We see
that we have to express the operator gauge invariance (2.1) by the Cg-identities for Dy, the
C-number identities for gauge invariance, which imply the operator gauge invariance (2.1)
of Dy,.
However, there is a serious problem: Consider the { = 1 term on the r.h.s. of (2.1)

Gt DY (1, ..) = (O ) (@1, - u(e1) Ay (22) + A4y (21, . )Bpu(21) Au(22) + oo (22)

If d”A contains a contribution with a factor §(z; — z3), then the terms with different field
operators may compensate, due to the identity

[u(z1) — u(23)]0a' 6(x1 — z3) + 8(x1 — 23)0,u(z1) = 0. (2.3)

(Note that the contribution with u(z3) comes from the term with z; — x3 exchanged, which
belongs to the I = 3 term in (2.1).) Even the definition of the C-number distributions in
R!, A!, (and therefore in Dy, = R}, — A} ) has a certain ambiguity because terms ~ (86) : A
can mix up with terms ~ 8 : 9A... .~ & : F... . . To get rid of these ambiguities, we choose
the convention of only applying Wick’s theorem (doing nothing else) to

Al (21, ... ZTk Trn-i(Z, xn), (2.4)

where the (already constructed) operator decompositions of T, Ty, 4 are inserted, and sim-
ilarly for A;/,, R, and R;/ We do not change this operator decomposition in constructing
Dy, Dnjiy Re, Rty A, At T4, T, /i and Ty, T, /;. We call it the natural operator decom-
position. Note that this prescrlptlon fixes the numerical distributions uniquely, up to the
normalization in the causal splitting 4P =P — . Then, according to (2.1) ((1.16) resp.),
we commute with @ or take the divergence 8,' and obtain the natural operator decomposition
of (2.1) ((1.16) resp.).

However, due to (2.2),(2.3), the Cg-identities for D,, cannot be proven directly by de-
composing (2.1). We must go another way: Instead of proving the operator gauge invariance
(1.16), we prove the corresponding Cg-identities (by induction on n), which are a stronger
statement. In this framework the Cg-identities for D, can be proven by means of the Cg-
identities for T, Ty in lower orders 1 < k <n —1.
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The Cg-identities for D, (or T, resp.) are obtained by collecting all terms in the natural
operator decomposition of (2.1) (or (1.16) resp.) which belong to a particular combination
: O : of external field operators. By doing this, one has to take care of the following two
specifications (A) and (B):

(A) There is a speciality concerning matter fields. A divergence 8,' on the r.h.s. of (2.1)

((1.16)resp.) acting on ¢ or v, appears always in the form 7,8"% or 8”47y, (see subsect.
4(b) below). Due to the Dirac equation

71/81/7/)01 = —1migy, 3”—1/70% = imaa, (25)

we do not obtain a new field operator, as this is the case in pure Yang-Mills theories (e.g.
dyu(z) is not proportional to u(z)). The terms with the divergence acting on % or ¥ and
those with the divergence acting on the numerical distribution, belong to the same Cg-
identity. Therefore, we always apply the Dirac equation (2.5), if the divergence acts on ¢ or
.

(B) The arguments of some field operators must be changed by using §-distributions,
i.e. by applying the simple identity

DBz )O(X) - 6(xy — 2p)... = B(zg)O(X) : 8(z; — zp)... (2.6)

where Xdéf(azl,,zrg, ...zp) and O(X) means the external field operators besides B. Soon,
this will be explained further.

By means of (A) and (B) we are now able to give a precise definition of our assertion
that the Cg-identities hold: We start with the natural operator decomposition of (1.16),
applying always the Dirac equation according to (A). Using several times the identity (2.6),
we can oblain an operator decomposition

(Q Tn(X)] =i 3 T a(X) = 33 (X): 04(X) - (2.7)

(where 7;(X) is a numerical distribution and : O;(X) : a normally ordered combination of
external field operators) which fulfils

7(X)=0, Vj (2.8)

The decomposition (2.7) must be invariant with respect to permutations. The latter means

that the numerical distribution belonging to : O;(zX) : (7 € S,, #X « (Zx1, - Tan))

is obtained from the numerical distribution belonging to : O;(X) : (which is 7;(X)) by
permuting the arguments with = (i.e. it is given by 7;(7X)). Otherwise, we would get
contradictions in the Cg-identities (2.8). We call (2.7) the Cg-operator decomposition of
(1.16).

A Cg-identity is uniquely characterized by its operator combination : @ :. The terms
in a Cg-identity are singular of order [15]

0] + 1 (2.9)

at x = 0, where

3
|0|:4“b—gu—ga—§(gw +95) —d. (2.10)
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Here, b, gu, 94, 9y, gy are the number of gluon, u, @, ¢, y-operators, respectively, in @, and d
is the number of derivatives on these field operators. This was shown in ref. [2].
In the various diagrams contributing to T, and T we have the basic external field

operators A, F,u, 1, ¥ and ©. Going over to [Q, T.], we get one external field operator du
or OF in each non-vanishing term. In Z@LTS’/,, the derivative may act on the numerical
distribution or on an external field operator. In the first case all external field operators are
basic ones (i.e. A, F,u, 04, and ¥). In the second case we always apply the Dirac equation
(2.5) and decompose

aaAu = ‘ljFau + (aaAp,).g, (210&)

where (04 AL)s = 3(0aAu+0,A,). We see that in this second case terms with one non-basic
field operator du, 804, dF,(8A), and terms with only basic ones appear. (The latter are
the 1 F-terms in (2.10a) and the 9+, 8%-terms.) With that we are able to define the various
types of Cg-identities (see sect. 2 of ref. [3]):

Type la: : O : contains one non-basic field operator du or 0F. All terms of [Q,T},]
belong to type Ia.

Type Ib: : O : contains one non-basic field operator 8¢ or (0A);.

Type II: : O : consists of basic field operators only.

The following statement is a part of our assertion that the Cg-identities hold: The
natural and the Cg-operator decomposilion agree for the terms of type Ia or Ib (i.e. the
terms with one non-basic field operator). The §-identity (2.6) and the Dirac equation (2.5)
are applied for terms of type II only.

Now we classify the various terms in (1.16) rsp. (2.7) in another way. There are no pure
vacuum diagrams, i.e. terms with no external legs. This is obvious for [@,T,]. Concerning
the divergences, note that the diagrams of T, /; fulfil g, = ga + 1.

The distributions Dy, Dyy1, An,Anj1,Rn, Ryyi contain connected diagrams only, due to
their causal supports. However, disconnected diagrams appear in A;,A’TL/,,R’,L,R;/I and
therefore also in 7;,, T,,;;. They fulfil the Cg-identities (on T},-level) separately. This can be
proven easily by means of the Cg-identities for their connected subdiagrams, which hold by
the induction hypothesis.

. Let us consider a connected diagram in the natural operator decomposition of (1.16). We
call it degenerate, if it has at least one vertex with two external legs; otherwise the connected
diagram is called non-degenerate. Let x; be the degenerate vertex with two external fields,

say B1, By. Such a degenerate term (i.e. a term belonging to such a degenerate diagram)
has the following form

: Bi(z;)Ba(zi)Ba(zj, ). Br(zj,_o) t Alzi—2p)tn1(21—Tn, ..Zi — T, ... n1—Tp), (2.11)

where k£ #14, ji # i (¥l = 1,...,r — 2) and the coordinate with bar in #,,_; must be omitted.
In general, there is a sum of such terms (2.11) belonging to the fixed (degenerate) opera-
tor combination : O :=: Bl((I!,’)BQ(Z‘,ﬁ)B;g(le)...B,-(:L'jr_z) :. For A(z; — z) the following
possibilities appear:

(8) A = Dp, 3D, 0,8, Dr (1 # v), 00,0, Dr (4 # v # p # 1), Sr,

(b) A = 59 964,

If A = §SF, we apply the Dirac equation 7,8 Sp = —i6(®) —imSr. The 96(4)-terms in
(b) cancel (see remark (3) below). If a degenerate term (2.11) with A = 6 (type (b)) can
be transformed in a non-degenerate one by applying (possibly several times) the identity
(2.6) only, we call it §-degenerate; if this is not possible we call it truly degenerate. All other
degenerate terms (i.e. the terms of type (a)) are called truly degenerate, too.
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Remarks: (1) By considering the possible diagrams for a §-degenerate term, we shall

see (at the beginning of sect. 4) that all 6-degenerate terms can be transformed in non-
degenerate form by applying

: Bl(z‘i)Bg(l‘i).“ : 5(l’i - xk) + (xl — J}k) =
=: Bi(x;)Ba(xr)... : 6(zi — 2k)...+ : Bi(zx)Ba(zs)... : 6(xs — xi)... (2.12)

only, where the term with z;, r; exchanged is taken into account. This identity (2.12) is
a special case of (2.6). However, (2.12) does not suffice to transform all truly degenerate
terms from the natural into the Cg-operator decomposition; (2.6) is needed for this purpose.
We recall that we apply the transformation (2.12) to the é-degenerate terms of type II only
(i.e. the 6-degenerate terms without non-basic field operator). For the §-degenerate terms
of type Ia,b the natural and the Cg-operator decomposition agree.

(2) In the process of distribution splitting é-distributions are produced (e.g. DD(z) =
0,0D7¢%% (g) = §(x)). Therefore, one might think that the distinction in é-degenerate and
truly degenerate terms is not the same for A}, R}, D, and A,, R,,T,. For second order
degenerate diagrams there are really more §’s in Ag, Re, T2 than in A%, RS, Da. However,
6-degenerate terms do not appear at all in this order (see sect. 3). In higher orders n > 3
we take the natural splitting (see sect. 4(b) of ref. [13]) for the degenerate terms (2.11).
This splitting does not generate new é-distributions.

(3) There are terms in the natural operator decomposition of (1.16) which have a
propagator A(z; — x2;) = 08{x; — zx) in (2.11). They are generated by the divergence
8, (term I =4 in ), 01T, ) acting on

1
g2 (8" 0" DF (2 — ) — §g"'°6(xi — 1)) + antisymmetrizations. (2.13)

The second term is the 4-gluon interaction (1.17), which propagates in the inductive con-
struction from second order (see subsect. 3(b)) to higher orders. Doing the necessary
antisymmetrizations in Lorentz indices, the 86(z; — zy)- terms coming from the first term
in (2.13) cancel with the ones coming from the 4-gluon interaction term (see subsection 2(b)
of ref. [3]). Therefore, we need not to care about such 8é-terms.

The truly degenerate terms fulfil the Cg-indentities (on T, -level) separately, by means
of the Cg-identities for their subdiagramms (subsect. 3(a)). The latter hold by the induction
hypothesis. The exception are some tree diagrams in second and third order, which need an
explicit calculation (subsect. 3(b)).

The disconnected and the truly degenerate terms cancel separately in (1.16). There
remain the non-degenerate and é-degenerate ones, which are linearly dependent. Therefore,
the 6-degenerate terms of type I must be transformed in non-degenerate form by using (2.12).
In this way we obtain completely new Cg-identities, in contrast to the disconnected and the
truly degenerate Cg-identities, which rely on Cg-identities in lower orders.

Therefore, 1t is not astonishing that the difficult part of the proof of the Cg-identities
concerns the non-degenerate : O : of type II (including é-degenerate terms). In sect. 4 we
prove the Cg-identities for the non-degenerate and 8-degenerate terms. In part (a) we prove
them for A}, R}, (and therefore also for D,,) by means of the Cg-identities in lower orders.
In the process of distribution splitting the Cg-identities can be violated by local terms only
which are singular of order |O| 4+ 1 (see ref.[2,15]), i.e. the possible anomaly has the form

10]+1
a(zy,..xn) = Z Cy D84 D2y — 2, ). (2.14)
|b‘:0
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We see that we only have to consider Cg-identities with
|0 > —1. (2.15)

This is only possible for Cg-identities with 2-,3-,4-legs and one Cg-identity with 5-legs-
(: O :=: uAAAA :). For the latter, the colour structure excludes an anomaly (2.14) (sect.
4 of ref. [4]). The Cg-identities with 2-,3- and 4-legs without external operators ¥ or
¥ are deduced and proven in refs. [2,3] and [4]. In sect. 4(b) we list the Cg-identities
with : @ : containing v or ¥. Their proof is given in sect. 4(c): First we restrict the
constants C3 in the ansatz (2.14) for the possible anomaly by means of covariance, the
colour structure (see appendix A) and invariance with respect to permutations of the inner
vertices and C-invariance. Then, we remove the possible anomaly by finite renormalizations
of the t-distributions in the Cg-identity. If a certain distribution ¢ appears in several Cg-
identities, the different normalizations of ¢ must be compatible. For certain Cg-identities
(: O:=1uAA: :uAAA:,  uud@A :) the removal of the anomaly is only possible, if one has
some additional information about the infrared behavior of the divergences with respect to
inner vertices (sects. 2 and 3 of ref.[4]). Luckily, this additional input is not needed for the
Cg-identities with ;: @ : containing ¥, ¥. C-invariance does mainly the job of restricting the
constants Cp (2.14) in the latter case. _

To complete the inductive step, one has to prove the Cg-identities for 7;, which is the
n-point distribution of the inverse S-matrix. This was proven in a simple and short way at
the end of sect. 3.4 in ref. [2].

The latter proof is implicitly repeated in section 5, where we prove the compatibility
of the various normalization conditions, which are covariance, P-,T-,C-invariance, pseudo-
unitarity on the whole Fock-space (ref. {4]) and gauge invariance.

The reader may wonder why we shall spend so much words about changing the argu-
ments of some field operators by means of the simple é-identity (2.6). However, the linear
independence of different field operator combinations : O(X) : is lost, if §-distributions are
present (see (2.6) and (2.3)). Therefore, by means of (2.6), one must combine terms, having
different : O(X) : in the natural operator decomposition of [@Q,T,] — ) ;T ;1. If these
combinations are not done in the right way, the Cg-identities (2.8) do not hold.

3. Truly Degenerate Terms

The prototype of a truly degenerate term in the natural operator decomposition of
(1.16) reads

. Bl(.’tl)Bg(l‘l)Bg...Br : A(:L'l - 182)..., A # (S, (31)

see fig.1. The subdiagram with vertices {zs,...z,} is an arbitrary connected diagram. For
example, it is possible that =5 is an external vertex, i.e. that we have an external field
operator By(z3), 3<s<r.

Replacing in (3.1) A(z1 — x2) by é(z1 — z2), the resulting term needs not to be é-
degenerate. The counter examples are the two local tree terms in figs.2 and 3 and their
combinations with (3.1) which are given in figs.4,5 and 6. All terms belonging to figs.2,3,4,5
and 6 are truly degenerate, although they have a factor 6(z; — 22) (or even 6(z1 — z2)6(x2 —
z3)). A tree diagram in order n > 4 has r > 6 external legs. By means of (2.9}, (2.10) the
corresponding numerical distribution is singular of order [2,15]

Ol+1<5—r<—1. (3.2)
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(Remember that we are considering terms in the (natural) operator decomposition of (1.16),
therefore, the singular order is |{@| 4+ 1 and not |Q|.) We conclude from (3.2) that a tree
diagram in order n > 4 has non-local support, i.e. one propagator is A(z; — ;) # 6(x; —x1).

These results lead to the presumption that all truly degenerate terms are ezactly
the terms belonging to the diagrams in figs.1-6, where the vertices may be permuted.
We do not try to prove this statement because we only need the following weaker ver-
sion (which holds obviously): All truly degenerate terms are either the local tree terms
symbolized in figs.2 and 3, or they have the form given by the diagram in fig.7, with
X, ef (z1,..2), Xo def (Zr41,--Zn), A(21 — 2r41) # 8(z1 — z,41). Again, the vertices may
be permuted. The subdiagrams with vertices X; (X» respectively) are arbitrary connected
diagrams. Especially, for X1 = (z1) (r = 1), fig.7 agrees with fig.1. Note that there are also
non-degenerate and é-degenerate terms belonging to fig.7.

In subsect. 3(b) we prove the Cg-identities for the local tree terms of figs.2 and 3, in
subsect. 3(a) we prove them for all terms of the type given by fig.7.

(a) Tree-like diagrams with non-local propagator

There is a heuristic argument for the gauge invariance of the terms symbolized by fig.7:
In the process of distribution splitting the gauge invariance (2.1) of D, can be violated by
local terms only. However, the terms of fig.7 have a non-local propagator A(z; — z,r41).
Therefore, they are non-local and cannot spoil gauge invariance.

The problem with this argument is that it relies on a unique splitting of a (numerical)
distribution into a local and a non-local part, which does not exist. There is an explicit
counter example: First note that instead of summing up all diagrams with permuted vertices,
we may smear out one diagram with a symmetrical test function . Then, by means of the
identity (we assume y and y’ to be inner vertices)

{0p Dret(z — y)(0f — 05,)[6(3; -z —an,..., ¥ —Tn,.. )]

 Bi(2)Ba(2)Bs(2) ...y ol yy zee s o)) (3.3)
=—(8(e—)8(y—y )t (z—2n,.. .y —2n...) : Bi(2)Ba(x)Ba(z) ... 5, p(z, 9,2, ...y, ... 2n))
—(0pDret(2—y)0(y—y' Ntz —2pn,...y¥ —2pn,...): Bi(z)Ba(z) ..., e(z,y,z,.. Y z))
+{0p Dret(z—=y)8(y—y' Mz —2p, ... ¥ —2pn,...) : By(2)Ba(z) ..., O p(z,y, 2,y s Tn))

= —(6(x—y)8(y—y N(z—Tn,... ¥ —2n,...) : Bi(x)Ba(2)Bs(2) ... 5, (T, y,2,. .. ¥ ... Tn)),

(3.36)
which holds on symmetric test functions p(x,y, z,...,y,...z,), the special truly degenerate
term (3.3a) (see (3.1), fig.1) can be transformed into a é-degenerate term (3.3b) (see (2.12)).
Moreover, if ¢ s local, the resulting term (3.3b) is local (in all variables) and, therefore, could
spoil gauge invariance. Note that such transformations (3.3) are forbidden in obtaining the
Cg-operator decomposition from the natural one (see (2.6),(2.7),(2.8)). (Especially, they
are excluded in the definition of §-degenerate and truly degenerate terms, which assures the
uniqueness of this definition.)

In sect. 5 of ref. [3] we gave a proof for the Cg-identities of the terms (3.1) (fig.1), for
pure Yang-Mills theories. The proof there is an explicit calculation of all cases and relies on
the Cg-identities for the subdiagram with vertices {zs,...z,,}. In three steps (A),(B),(C) we
now reformulate that proof and generalize it to the terms in fig.7. Moreover, matter fields
are included.
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(A) First we introduce some notations

Bo™0, B, A, B, F, By w, B, 0u, By, BsET. (3.4)

Furthermore, let A, (z —y) be the ’contraction’ of B, () with B;(y), but with the Feynman
propagators D (z — y) instead of D¥(z — y), —D~(z — y); and with S¥(z — y) instead of
—-St(z—y), ST (z—y) eg

ALY o (2) = 19" 82y DT (2), Desap(z) = —ibapS” (—2),

Azqap(e) = i650DF (2), A1z =0, Ag; = 0 VL. (3.5)

Note that A, # 6, Vs,t. (We omit the 4-gluon interaction terms (1.17), (2.13).) For
simplicity, we omit colour- and Lorentz-indices. We define the index Q(s) by the equation

[Q, Bs]z = i0Bqqs) (3.6)

(commutator [...]_ for s = 0,1,2,5,6, anticommutator {...]; for s = 3,4), eg. Q(1) =
3, Q(2) = 0. For the subdiagram with vertices X; = (z1,...z,) (X2 = (2r41,...2,) respec-
tively), we write

,.(/1) Xl) = Z (/I) X1 B (1‘1) (l: 1,...7’)

Tocoin(Xa) =Y Belwey)TE_iy(X2) c 4. (U =1—r I=r+1,.0),  (3.7)

1

where the dots mean terms without external leg at z; (z,4; resp.). There may be a second
external leg at x1 (&r41 resp.), but Bs(z;) (Bi(zr41) resp.) is the one which is contracted
in fig.7. Then we have

Th(X1,X9) = Z T"(Xl st .731 - 13,-+1)Tt (Xg) S ST

Tup(X1, X2) =Y 1 T (XD)Agy(21 — 2r41)TE_(X2) t 4. for [ < v

st

Topt(X1, X2) =Y i T2 (X1)Ag(z1 = 2g1)Th_, 0 (X2) t +.. forl € {r+1,..n}. (3.8)

st

The terms symbolized by fig.7 are given by the natural operator decomposition of

(@ Tnl X1, Xo)] = i 3 aTun(X1, X0) = 3 [{ (1@, T —zZaI TS (X))
i

st
Delwr = 2r1) = T (X)OAG(1 = 2r41) JTh(Xa) 1 +

+ T { Ao — 24 (£[Q, Th, (Xa)l -

=i 30 TEyu(Xa)) # i0A (21 — 2o )TE_, 1 (X2) b |+ (3.80)

=1
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(B) In order to obtain the Cg-operator decomposition of (3.8a), we consider the Cg-
operator decomposition of the two subdiagrams with vertices X7, respectively X,. By the
induction assumption, the Cg-identities are true for (Tr(X1),T7/1(X1)). Considering only
operator combinations : O;(X1) :=: O;(X1)B;)(z1) : (no sum over j) which contain an
external field operator By;)(z1), By(jy = Bs,0Bs,i0Bg(s), this means

Z{: [QaTj(Xl)]:FBs(l'l) e T:(Xl)zaBQ(s)(:cl) M

8

—ZZ L (X1)Bolwr) s =i - T3y (X0)0By(a1) - }= (3.9a)
—ZTN Xl ) Xl)B(J)(.’L’I) (396)

with
7i(X1) =0, Vj. (3.10)

More precisely: Starting with the natural operator decomposition of (3.9a), one obtains
(3.9b) by applying the Dirac equation (2.5) and the é-identity (2.6) only. Note that 75 (X1)
is a sum of contributions coming from the various terms in (3.9a). (Remark: A term
773 (X1) : O;(X1)B(jy(x1) : (no sum over j) in (3.9b) could have a contribution from a term
iz, ..., Tp...) ~ 8(zp — z1)By(zr) (k #1) in [Q, T, (X1)] -3, T ;1(X1), which has not
the form of the terms in (3.9a). However, there is a second term t5 with z1, x; exchanged:
ta(z1, .oy 2p) =t (Tp, oo ) ~ 82y — z1)B(jy(z1). The sum t; 4+t must be partitioned
In a symmetrical way (see the comment to (2.7),(2.8)) on the two operator combinations
: 0j(X1)B(jy(21) : and : O;(X])B(;)(zk) :, where X{ is obtained from X; by exchanging
1, 2. Taking 5 with : O;(X1)Bj(21) : and ¢; with : O;(X])B;)(zk) :, we really obtain
(3.9).)

Now we replace in the natural operator decomposition of (3.9a) (with the Dirac
equation (2.5) applled) and in (3.9b) the external leg B(;)(z1) by the ’big external leg’
2o Az — 2y )T ,.(Xg) where T} _ (X2) is in the natural operator decomposition
T _(X2) =3, t(n_r)z()( ) : O;(X2) :. In detail this replacement reads

By =Y AuTh_,. 0B, — Y 0ALTE_,, i0Bguy — 3 i0AguyTi_,.  (3.11)
t t t

Note that 0Bs always appears in the form 4Y8,Bs = —imBjs, which we replace by
—imAseT5_.. The latter is meant by writing 0As6T°_, in the following. Analogously
we proceed with §Bg. For example, for s = 2 (By = ) it happens that A (x; — zr41)
contains terms ~ é(&y — xr41). These 8-terms are new terms, produced by the replacement
(3.11). We omit them on both sides of the resulting equation, since we are interested in
terms ~ A(z; — xr41), A # 6 only. In this way equation (3.9) remains true

So{: @ o) —1201 Sn(X)As(21 = 2r41) = 117 (X1)0A (21 — @rp)

7 (X, )laAQ sz = 2r41) } n-r(X2) nod, %4
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=D i (XODAG(@1 = e )i (X2) 1 O5(X1)O0i(X2) : |s, (3.12)
ijt

where 'nod’ means the natural operator decomposition and ' §’ that the terms ~ é(z1 —
zry1) are omitted. The numerical distributions on the r.h.s. vanish by means of (3.10).
The only difference between the Lh.s. and the r.h.s. of (3.12) is that the arguments of some
field operators B(zy), k € {z1,...x,} are changed by using the §-identity (2.6). Analogously,
by means of the Cg-identities for (T, —»(X2), T _r/i(X2)) and with T3 (X1) = 37, 7,(X1)
0;(X1) : (natural op. dec.), one proves

n—r

> Tf(Xl){Ast(l‘l = 21 )(2(Q, T (X2)]5 = ZZ 0T, ju(X2))+

st '=1

Hi0A (@1 — 241) T 1 (X3) = 10D, gy (21 — :c,+1)T,’1_,(X2)}:

nod, 766—-

= 12X A (21 = Zrs1)Tnoryi(X2) 1 05(X1)0i(X3) : |26, (3.13)
sty
with
Tineryi(X2) = 0, Vi, (3.14)

(C) The non-trivial step in the proof is the cancellation of the terms + : T(X;)
10AQ(syt (21 — Zry1)T_(X2)  and — @ T (X1)i0A gy (21 — Zr41)T_(X2) © in the sum
of the Lh.sides of (3.12) and (3.13). Since the (anti)commutators of @ with F,u,y and ¢
vanish (1.18), the following cases appear only:

(1) s =4, t =1: 0Bg(s)(21) = 0Ba(z1) = 8, F#(21), Bi(zr41) = A?(z,41) for (3.12);
By(z1) = 0%u(z1), 0By (®r4+1) = 0B3(2ry1) = 0°u(2r4q) for (3.13). Omitting the terms
~ é(z1 — zr41), one easily verifies 0Ag1 (21 — zp41) + OAss(zs — zr41) = 0.

(2) s = 4, t = 20 0Bg)(z1) = 0, F"#(x1), Bi(xr41) = FP(zr41) for (3.12);
Bo@)(zr41) = 0 and therefore A q(y(z1 — xry1) = 0 for (3.13). Omitting the terms
~ 96(z1 — £r41), one obtains dAg(x; — z,41) = 0.

The further cases s = 1, ¢t = 4 and s = 2, t = 4 are completely analogous to (1),(2).
Taking this cancellation into account, the sum of the 1.h.sides of (3.12) and (3.13) is exactly
the natural operator decomposition (with the Dirac equation applied) of the terms in (3.8a)
(symbolized by fig.7).

Adding up the r.h.sides of (3.12) and (3.13), the above cancellation (1),(2) (of all terms
with the commutated leg contracted) happens, too. This can be seen in the following way:
: T2 (X1)i0Bgsy(21) : in (3.9a) is the term with Q commutated with B,(21). Therefore, it
belongs to a Cg-identity of type Ia and, by means of our induction assumption, is unchanged
by going over from the natural operator decomposition to the Cg-operator decomposition
(see sect. 2). This remains true for the terms & : T3(X1)idAg(s) (21 — 2r41) T (X2) -
in (3.12). The analogous statement holds true for the terms — : T(X1)i0A,q)(z1 —
zr41)TE_(X2) : in (3.13). In other words, the terms cancelling above agree identically in
the Lh.s. and r.h.s. of (3.12), respectively (3.13). Therefore, they also cancel in the sum of
the r.h.sides of (3.12) and (3.13), without use of any é-distribution. We conclude that the
Cg-operator decomposition of the terms in (3.8a) is obtained by the sum of the r.h.sides of
(3.12) and (3.13). Since the numerical distributions of all terms in the latter sum vanish
(see (3.10),(3.14)), the Cg-identities hold. The reasoning given six, seven sentences above
for & : T (X1)i0Ag(sy(®1 — 2r41)T7_(X2) : holds true for all terms in (3.8a) (fig.7) of
type Ia,b: the natural and the Cg-operator decomposition agree for the latter terms. O
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(b) Tree diagrams in second and third order

In ref. [1] we considered gauge invariance in the form
[@,T») = sum of divergences.

We proved it there for pure Yang-Mills theories in second order and for the tree diagrams
in third order. Here, we return to these proofs by using the Cg-identity technique. Note
that the Cg-identities imply gauge invariance in the stronger form (1.16), which contains
the Q-vertices. Moreover, matter fields are included here.

Let us consider gauge invariance (1.16) in second order

2
(@ Tol1,22)] = i) ' Th) (21, 22). (3.15)

=1

In this section 3 we only consider the tree diagramsin (3.15). (The loops are non-degenerate.)
We collect all terms in the natural operator decomposition of (3.15) belonging to a fixed tree
operator combination : O :: The non-local terms (i.e. the terms ~ DF(:vl —z9), ODF (2 —
z3), 00" DF (2, — x3) (no contraction of g, v), 0#8” 8" D¥ (1 — z3) (no contraction of uvr),
SF(z1—x5) or S¥(zy—1z1)) cancel. This was proven in subsect. (a). There remain the local
terms (~ 6(xy —22), ~ 98(x1 —z2)). In order to get them in the Cg-operator decomposition
(2.7), we need to apply the identity (2.6). Since local terms can only appear for |O| > —1
(see (2.9)), we merely have to consider the cases:

(1) Oz, z2) = Apa(z1)0pup (1) Apa(ma) Are(x2) 5,

(2) Oy, @) :=: Apa(z)up(z1)Apa(x2)Are(z2) 1,
(3) :Os(zy,z2) :=: Apa(zr)up(21)A%(22) Fpre(a) 1, (3.16)
(4) : 04(1?1,1‘2) = Aua(:z:l)ub(zl)ud(:cg)ﬁpﬂe(xg) 5

(5) :Os(x1,z2) 1= ug(z1)Aps(z1)¥(22)...¥(z2) : .
Additionally, we have the cases with z, 25 exchanged in (3.16). The partition of the local
terms on the two operator combinations : O;(z1, z2) : and : Oj(x2, 1) : must be done in
a symmetrical way (see the comment to (2.7), (2.8)). Note that the local terms, which we
shall compute, do not cancel in the sum 7;(z1,22) : Oj(x1, 22) : +75(x2, 1) : Oj(x2,21) 1,
in all cases (3.16).
Let us consider the three tree terms

_ng

Ty(z1,x2) = 1

: Aua(l'l)Aub(xl)Apd(xZ)A)\e(z2) : fabcfdec{[guk(ayapDF(zl - 172)+

+Cag"? (1 — 22)) — g"MO* 0 DF (21 — 23) 4+ Coag”?é(xy — 22))] = [X — p}} + ..., (3.17)

—ig2

T3 (21, 22) = C Aga(@0)up(21) Apa(22) Are(22) : fasefaec{[g" (007 DY (21 — 22)+

+Cpg"?b(x1 — 2)) — g”’\(a“apDF(.rl —x3) + Cpg*é(xy —x2))] = X —pl} + ... (3.18)

and the term of T, obtained from (3.18) by exchanging ; and zs. (Note Ty a(zy,22) =
Ty/1(x2,21).) These tree diagrams have singular order [15] w = 0 and, therefore, a free
normalization term ~ C, 36(z1 — x2) has been added.
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Case (1): This case is of type la, whereas (2)-(5) are of type II. Due to [@, Auq(z)] =
i0uuq(z), we have two equal terms from ¢ commuted with (3.17) which contribute. There is
also a contribution from i@fsz"/l(zl, z3), generated by the divergence 8,' acting on u,(z1)
in (3.18). Considering the local terms only, we see that this Cg-identity is fulfilled iff

Ca = Cb. (3.19)

Case (2): There is only a contribution from the divergence dy' acting on the numerical
distribution in the term (3.18) of Tz"/l(xl,:cg). Because of 0D = §, local terms appear in
this Cg-identity only. One easily obtains that the latter is equivalent to

Cy=—=. (3.20)

Gauge invariance fixes the values of Cy, Cy uniquely. The Cy-normalization term (in (3.17))
is the 4-gluon interaction. It propagates into higher orders in the inductive construction of

the T},’s (see sect. 4(b) of ref. [13]).
Case (3): The divergence 0;' acting on the numerical distribution in

T3 (x1,22) = —ig® : Aua(zr)up(z1)A5(22) Fpre(z2) -

Sfavefaec[g"7 0" DF (21 ~ 23) — ¢""0# DF (21 — 22)] + ... (3.21)
produces a non-local and a local term. We need to consider the latter only

ig?

0 T3yu(x1,22) = =+ Aua(@1)up(21) AG(22) Fpre(22) -
'g“T(fabcfdec - fdbcfaec)é(rl - 1'2) + .., (322)

where we have antisymmetrized fu3. f4ee in @, d, because the other terms have this antisym-

metry. There is another local contribution, coming from the Cj-term in (3.18), with the

divergence acting on A,.(r1). The resulting 9, A,,(z1) must be antisymmetrized in vy,

since the numerical distribution has this antisymmetry. We end up with

ig® 1 e -

T L s ;m(l'2)ub(xl)Ad(xz)Fp‘re(wl) - g fadcfechCb(S(a:l - 1‘2) + ...
(3.23)

for this second local contribution. Due to (3.20) and the Jacobi-identity, the sum of (3.22)

and (3.23) vanishes.

Case ({): 80, acting on the numerical distribution in

8,3,51T:ﬁ’/1(x1,133) famad

Tz"/l(rl, ro) = ig?: Apalz)up(er)ug(z2)0pte(x2) © -

'fabcfdec[g“payDF(xl — $2) — g”pa“DF(zl - 1'2)] + ... (324)

produces a non-local and a local term. The latter is

O Ty (21, 29) = % P Aua(z)up(y ) ug(x2)0,te(2g) - -

'gup(fabcfdec - fadcfbec)é(xl - I2) + ... (325)



15

Another local contribution is generated by the divergence 9, acting on the numerical dis-
tribution in

l'Z

T34 (z1, 22) = ‘%— Cup(@ ) ud(21) A (£2)0P e (29) ¢ frdefaec0” DF (21 — 22) + ... (3.26)

This second local contribution cancels with (3.25) by means of the Jacobi-identity.
Case (5} Replacing in (3.24) the open ghost line — fy.c : ua(z2)0,%.(x2) : by the open

matter line % s p(Za)ypAc(x2) 1, we obtain a first local contribution analogously to (3.25)

T1 ig? _
OETY (21, 22) = % S (1) A (21)B(22) Y Aeth(22) © faped(zy — 22) + ... (3.27)
Let us consider the two C-conjugated Compton diagrams

. _
i[ ua('rl)Aub(l’Z)w(l’z)’Y”)\bSF(iCQ —z)AY ' W(z1) t +

T;/l(l‘l,l‘g) = - 4

+ ug(@) A (22)0(21)7" Xa ST (21 — z2) M7 Y (22) ) + ... (3.28)
Using _ B
8t (e )y ST (w1 = 29)..) = —i(22)8(x1 — 22)...,

0:1(...SF(1?2 —z )y Y(ar)) = i8(we — z1)Y(22), (3.29)

we obtain two further local contributions in 8fsz”/l(1:1, z2). These three local terms cancel
by means of
Qifabc/\c -+ Ab/\a — /\a/\b =0. (330)

In QED the ghost fields couple to the matter fields only. Therefore, the term (3.27) is absent.
The sum (3.28) of the two C-conjugated Compton diagrams is already gauge invariant there.

We turn to the tree diagrams in third order, which have five external legs. In the natural
operator decomposition of

3
[Q. Ts(e1, w2, 23)] =i »_ 0 Thy (1, 22, 23) e tegs (3.31)
=1

the non-local terms ~ AN () = 279) AP (279 — 43) OF ~ A(B)(xﬂ ~&r2)8(Lr2 — 2r3) (for
an arbitrary m € S3; A A AB) £ §) cancel (see subsect. (a)). For the A(®)5-terms the
cancellation works only, if 2, is replaced by z,3 (or vice versa) in the arguments of some
field operators, using 8(2z2 — 2x3). These replacements are determined by the Cg-identities
for the subdiagrams with vertices {zs2, 2,3} (see (2.6), the tree diagrams in second order
and subsect. (a)). There remain the local terms ~ §3(zy — z3, z2 — 3). Due to (2.9),(2.10),
they must have the field operators : uAAAA :. (In all other cases one has a derivative on
the external field operators and, therefore, ||+ 1 is smaller than zero.) We write the local
terms in the following symmetrical form

Cs:c/}izés(xl —Z3,L2 I3)[: O6 abede uu/\-r(l'l) i+ O abcdeuuA‘r(l'Q) t 4 O abede ;w/\T(xB) :]1
(3.32)

with
2 Q6 abede purr (@) 1= vg(@) A () Ayo(z)Ara(z)Arelz) © . (3.33)
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The constant C¥/\7 must be invariant with respect to permutations of (g, b), (v, ¢), (), d),

(r,€). There is no such tensor Cf:,;’c)(‘iz which is Lorentz- and SU(N)-invariant (see section 4

of ref. [4]). This finishes the proof of the Cg-identities for third order tree diagrams.

Remark: The Cg-operator decomposition of (3.31) which we constructed, has the fol-
lowing property: All local terms belong to a: Og(%;) :, 7 = 1,2, 3. For example, the operator
combination : 7 : wf . u(z1)A(z1)A(z2)A(z3)A(z3) : contains non-local terms only. This
is not necessary: One can construct another Cg-operator decomposition of (3.31) in which
all local terms are partitioned in a symmetrical way on the operator combinations of the
non-local terms (e.g. : O7 :). Then, : Q¢ : would not appear. We followed this latter
procedure in our Cg-operator decomposition (3.16) of the second order tree terms, with the
exception of : O, :. (Only local terms exist with operators :uAAA:.)

4. Non-Degenerate and s-Degenerate Terms

In this section we prove the Cg-identities belonging to non-degenerate operator combi-
nations : O :in (2.7) (including é-degenerate terms if : O : is of type II) and the Cg-identities
with é-degenerate : O : in (2.7) which are of type Ia or Ib.

First we characterize the diagrams of the é-degenerate terms in (1.16). In (3.2) we
realized that the tree diagrams can have local support in second and third order only.
Obviously, this result holds true even for arbitrary subdiagrams: A term in (1.16) has al
most two §1)-distributions (as propagators) in direct neighbourhood. Neither a chain of three
(or more) §*), nor three 6(*) joining the same vertex, do appear. Consequently, all diagrams
of the 6-degenerate terms have the following form:

(1) Figure 1 with A(z; — 22) replaced by é(xy — 23), or

(2) Figure 4 with A(zy — 23) replaced by é(zy — z3).

Every é-degenerate term can be transformed in non-degenerate form by applying (2.12)
once in (1) and twice in (2). Remark: In (3.32) we proved that the tree terms with local
support cancel in third order. We argued by means of the permutation symmetry of the
external field operators. However, this symmetry is lost if this tree diagram is a subdiagram.
Therefore, case (2) must be considered, too.

(a) Proof of the Cy-identitres for Al,, R}, and D,

By means of the Cg-identities for T} and Ty in lower orders 1 < k < n— 1, we are going
to prove the Cg-identities for A;,. The proof for R;, is completely analogous. Together, we
shall obtain the Cg-identities for D,, = R} — A!. This proof was given already in sect. 3.4
of ref. [2]. However, we did not care about the degenerate terms and the coupling to matter
fields was not mcluded there.

(A) In the natural operator decomposition of [@, Al] — i), 81/1:1/,, we always apply
the Dirac equation (2.5) and obtain

[Q. AL (X)) =Y aAL (X) = 3 ol P(X) : 0V(X) ¢, (4.1)
l J

where a;(jl)(X) does not vanish in general. By means of (2.12), we transform the 6-degenerate
terms of type II in non-degenerate ones. Furthermore, we omit all truly degenerate terms.
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In this way we obtain the Cg-operator decomposition (see (2.7),(2.8)) of the non-degenerate
and é-degenerate terms

[Q, AL(X)] — zZa,An/, = Z DXy 0PX) - (4.2)

non—deg
All: ng)(X) : of type II are non-degenerate. Our aim is to prove

' P(X) =0, Vi (4.3)

For this purpose we construct in (B) another operator decomposition of [@, A,]—i 37, G147,

which fulfils (4.3) by construction. In part (C), we shall prove the agreement of the two
operator decompositions constructed in (A) and (B).

(B) We insert in (see(2.4))

[Q, 4" (X)] _zZa,An/, (X) Z{ QLY —i > 05, Tipl Y)}Tn H(Z en)]+ (4.40)

lLzj€Y
+ 3 B{Q TosZwall =i Y O Tasip(Zizn)} (4.40)
Y, 2 I,IIE{Z,Z‘n}

the Cg-operator decompositions in lower orders k, n — k (see (2.7),(2.8))

Q. T =i Y 0 Tip(Y) =D #e(Y): Ox(Y) :, (4.5)

I:L‘IEY
Tir(Y) =0, Vr, (4.6)
[Q’Tn—k(zv In)] —1 Z d:z:lrn k/I Z In ZT(n k:)s(Z) O (Z (47)
lLej€{Z,zn}
T(n—k)s(Z) = 0, Ys. (48)

For T,,_i(Z, x,) in (4.4a) and Tx(Y) in (4.4b) we insert the natural operator decomposition.
Afterwards, we only apply Wick’s theorem to (4.4a,b). The resulting operator decomposition

(4.4) = (4.40) + (4.40) = >_ o/ D(x) : 0P(X) : (4.9)
J
fulfils ]
o P(X)y=0, Vj, (4.10)

due to (4.6),(4.8). Again, we omit all truly degenerate terms. (In part (C) we shall see
that (4.1) and (4.9) can be obtained from each other by applying the é-identity (2.6) only.
Since the distinction in truly degenerate and é-degenerate/non-degenerate terms does not
depend on the application of (2.6), we omit the same terms here, as we did in part (A).)
Moreover, we tranform the é-degenerate terms of type II in non-degenerate form by means
of (2.6). (Note that (2.6) is needed here, instead of the more special (2.12) in (4.1),(4.2).)
There are several possibilities to do this transformation for a single term. It does not matter
which one we choose. But the permuted terms must be transformed in the same way. Then,
the sum over permutations is a totally symmetrical partition of the external legs on the
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vertices. For example a é-degenerate term 6§®)(z; — z3,22 — z3) : B1(23)B2(z3)... : goes
over in 2”653 6(8)(3:1 — x3,z9 — 23) : Bi(2r1)Ba(zy2)... ;. We end up with the operator
decomposition
4 4
CE Zagfj)(X) L 0M(X) (4.11)
j

which consists of §-degenerate : (9](-4)()() : of type Ia,b and of non-degenerate : (’)54)(X) : of
all types, and fulfils

DXy =0, Vj (4.12)

nj
by means of (4.10).
(C) We are going to prove that (4.2) and (4.11) agree

LOP(X) = 0WM(X) 4 ¥, (X)) = al (X)) =0, V5, (4.13)

after relabeling the index j in a suitable way. ~

In (A) we first applied Wick’s theorem to A}, (X) = 3y 7 Tk(Y)Tn—k(Z, za), where
Tw(Y) and T,,_4(Z, z,,) are in the natural operator decomposition, and similar for A’ ,,(X).
Afterwards, we commuted with (Q, respectively took the divergence J; and applied the Dirac
equation (2.5) to obtain (4.1).

Note that the operation of taking the divergence &; (with application of the Dirac
equation) commutes with contracting, i.e. applying Wick’s theorem. This relies on the fact
that (&) which is produced by contracting % and %, fulfils the Dirac equation (2.5), too.
Moreover, the operation [@,.] commutes with contracting. The latter was shown in detail
in sect. 3.4 of ref. [2]. (The coupling to matter fields causes no complications, since @
commutes with ¥, ¢.) The non-trivial step in that proof there is the cancellation of the
terms, arising by contracting the commutated leg. This is exactely the same cancellation as
demonstrated at the end of the proof in subsect. 3(a).

Reversing now in (A) the order of these operations, we obtain the following statement:
Inserting the natural operator decomposition (with the Dirac equation applied), instead of
the Cg-operator decomposition, for

[Q T:(Y) =i Y 0 Tip(Y) (4.14)
I,:I:{EY
and for
Q. Tuok(Z,za)] =i Y. O Tucip(Z,20) (4.15)
Leje{Z,en}

in (4.4a), respectively in (4.4b), and doing the other steps in exactely the same way as in
(B), we obtain (4.1) instead of (4.9). We know by the induction hypothesis (see (2.7)) that
the natural operator decomposition (with the Dirac equation applied) and the Cg-operator
decomposition can be obtained from each other by applying (2.6) only. The latter property
survives contracting between Y and (Z,z,) in (4.4a,b). Therefore, (4.1) and (4.9) can be
obtained from each other by applying (2.6) only.

The following argument is shown for (4.4b). The procedure for (4.4a) is completely
analogous. Let us consider a term of (4.4b), in which we inserted for (4.15) different oper-
ator decompositions in (A) and (B). The corresponding subdiagram with vertices {Z,z,},
belonging to (4.15), must be truly degenerate or é-degenerate in order (n—k) and it must be
of type 1I, because the natural and the Cg-operator decomposition agree for non-degenerate
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terms and for terms of type Ia,b. Therefore, the (whole) considered term of (4.4b) is of type
I, too. (The proof is finished for the terms in (4.4b) of type la,b.) At the beginning of this
sect. 4, we realized that there are at most two §(4)-distributions in direct neighbourhood.
Consequently, we only must consider two cases which read (before contracting in (4.4b)):

case (1)
tee(Y) 1 Ou(Y) =2 By(y1) .. Bewr ) Bry1 (1) 8(21 — 2o)tn—p(Z, 20) = (4.16a)
=11(Y) : 04(Y) = By(21)...Br(2:)Brgr(2))... 0 8(x) — £2)tn (7, 20), (4.16b)

with y1, .yr 21, ..2r € {xy, 20} CTH{Z, 20}, 21 € {7, 20} \ {21, 22}], 2 < 7 < 4,
case (2)

t~k,(Y) 1 0uY)  Bi(y1) .. Br(yr ) Bryr (). 6(8)(w1 — 3,29 — 3)th-k(Z, zn) = (4.17a)

= {kt(Y) cOUY) 5 By(21)... Br(ze ) Bryr (1) 6(8)(1'1 — 3, &2 — 23)tn_(Z, 2,), (4.17h)

with g1,y 21, .2 € {21, 29,23} C {Z, 2}, 21 € [{Z,2a} \ {x1,22,23}], 3 < r <5,
Vghere t:(Y) : O(Y) : (no sum over t) is a term of the natural operator decomposition of
Ty (Y). The other factors (: By...BrBryy... : 6(4/8)tn_k) are a term of the natural operator
decomposition of (4.15) (for (4.16a),(4.17a)), or they are the corresponding term in the Cg-
operator decomposition of (4.15) (for (4.16b),(4.17b)). These terms belonging to (4.15) are
5-degenerate for r = 2 in case (1) (r = 3 in case (2)) and truly degenerate for r = 3,4 in
case (1) (r = 4,5 in case (2)).

Now we consider the contractions of : O(Y') : with By, ...By. If there remain s = 3 or
4 field operators By, ..., B, uncontracted in case (1) (s = 4 or 5 in case (2)), the resulting
diagram is truly degenerate and, therefore, we omit it.

If all operators By, ..., B, are contracted (s = 0), the resulting operator combinations in
(4.16a) and (4.16b) ((4.17a) and (4.17b) respectively) agree and the numerical distributions
are equal (e.g. DY) (2 — 21)8(x1 — 22) = D) (2 — 22)6(z) — z2), z €Y).

Let us consider case (1) with s = 1 or 2 field operators uncontracted, e.g. By or By Bs.
If such a term is §-degenerate (this is possible for s = 2 only), it must be transformed in
non-degenerate form by applying (2.12) for (4.16a), respectively (2.6) for (4.16b). Now we
consider in each case the sum with the term with z;, z, exchanged. This sum is the same

for (4.16a) and (4.16b), namely for s = 1
te(Y) 1 Of(Y)Bi(21)Ba(z1)...Bp(21) Brg1(21)... s 6(21 — 29)tn—k(Z, Tn)+

+t~kt(y) . Oz(Y)Bl(-l'Q)BQ(.l’l)Br(xl)Br+1(.’L’1) . (5(1‘1 — xg)tn_k(Z, .’En). (418)

where all operators Bo{z1),...B(z1) are contracted with O;(Y) in both terms; for s = 2
this sum reads

te(Y) - Ou(Y)By(21)Ba(22)Ba(21)... By (21) Bry1 (1) ... 1 6(x1 — T2)tn—i(Z, zn)+

+t(Y) : Oi(Y)B1(22) Ba(x1)Ba(z1)... Bp(21) Bry1(z1)... 1 6(z1 — z2)tn_k(Z, xn), (4.19)

where all operators Bs(z1),...B.(z1) are contracted with O¢(Y") in both terms.

We turn to case (2) with the operators By, ..., Bs, s = 1,2 or 3, uncontracted. Again,
the §-degenerate terms must be transformed in non-degenerate form by using (2.12) for
(4.17a), respectively (2.6) for (4.17b). Here we consider the sum of all 6 terms generated
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by permutations of 21,2, z3. These sums agree for (4.17a) and (4.17b): In both cases we
obtain

Z . ...Bl(le)...B,(J),ra)Br+1(.’L‘I)... . 5(8)(1‘1 —r3,T9 — 173) . (420)
mESy

There occur combinations of the various cases which we have discussed. These combi-
nations are no problem, because they concern disjoint groups of vertices, each group having
two (case (1)) or three (case (2)) vertices. O

(b) The Cy-identities with matter fields

Going over from n — 1 to n, the really new Cg-identities belong to non-degenerate : O .
Therefore, only such Cg-identities are considered in this section. We recall our convention

of denoting numerical distributions of non-degenerate terms which we have introduced in
ref. [2]:

tjr‘};._ab‘_‘(ml,xg, )t Ag(zy)Be(za) ... (4.21)

means a distribution with external field operators (legs) A, and B, a and b are colour
indices. The subscripts @2 show that this term belongs to T:/Z(ml,:z:z, ...) with @-vertex
at the second argument of the numerical distribution ¢. An immediate consequence of this
notation is the relation

tilB“.ab,..(:clyi'Z’ o ) = itaBQA...ba..,(xZ) L1y ')’ (4'22)

where we have a minus sign, if A, B are both ghost or both matter operators and a plus
sign in all other cases. The Lorentz indices of the two operators A, B must also be reversed
in (4.22). Note that (4.22) particularly holds, if A and B are the same field operators.
Moreover, the sum over permutations of the vertices is present in Ty,(;1). For example,

Tolzy, . xn) = Z :E(mi)tﬁu

wwAAab(xi’ Zj, Tk, X1, z,...Z;, &;, Tk, ..., :En)-
I£i#) k<] 1 £k

'Lb(fj)Aua(xk)Aub(l'l) N PO (423)

where the coordinates with bar must be omitted. The matrix multiplication : ¥t(...)% :
concerns the spinor space and the space of the fundamental representation.

The Lorentz structure Tlu’/"1 ~ ¥ (1.15) propagates to higher orders in the inductive
construction of the T),,;. We conclude

vi... __ . vil.. v2.. _ 32... v
tEwu... =7 tazpu,,,’ tawu_“ - ta«/)u‘}/ ) (424)

which implies by means of the Dirac equation (2.5)
5f1T,':/1($1a zn) = () (YO0 + im)%{zjum(xl’xz’ L)P(ea).. 4 (4.25)
In appendix A the following colour structures are proven

g ap = Tawbess WGy aas = Toyn(Aa)as, (4.26)

where B = A, F,u and «, 3 are the indices of the fundamental representation.
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The Cg-identities for pure Yang-Mills theories with 2-,3-, and 4-legs were given in refs.
(2,3]. Adding the coupling to matter fields, the form of these Cg-identities remains the same,
as far as we do not admit ezternal ¥ or 1. Moreover, the presence of inner matter lines does
not change the symmetry properties of the numerical distributions. Therefore, the forms of
the possible anomalies and of the normalization polynomials are unchanged. We see that
the Cg-identities without external ¢ or ¥, can be proven as in the case of pure Yang-Mills
theories (see refs. [2,4]).

However, there are additional Cg-identities with external legs % or ¢. An operator
combination : O :, characterizing a Cg-identity, must fulfil g, = ga + 1 (see (2.10) for the
notations). Consequently, only the following new Cg-identities appear (with at most 4-legs),
where we use the classification given in sect. [2]:

Type Ia: For the external legs : O :=: E(.’Cl).‘.lb(dfz)a,,ua(l's) : we get

v _ v3
Thva = Togu (4.27)

where the factor ), is omitted (see (4.26)). For : O :=: ¢(z1)...00(x2)Ovua(z3) Aus(za) : we
obtain
Ty =3 (4.28)
YYAA ab YYuA ab

for : O :=: E(:cl)...d)(xg)ﬁ,,ua(:rg)Fmb(a:4) : we obtain

{AT o geBeT (4.29)
YYAF ab YyuF ab '

and for : O :=: E(rl)...'w(rg)ua(mg)a,,F,”b(z4) : we get

1
vaur D[ VTl VT
YyuFab 2[!] Yyud ab g Mtwwml ab]' (430)
Type Ib: For : O :=: E(l‘l)...w(:cg)ua(xg)%(ayAub(m) + 0uAvb(za)) : we get
o (v e—p) =0, (4.31)

aqu ab

Type II: ¥or : O :=: ¥(z1)...¢Y(z9)us(z3) : we obtain by means of (4.25) and (4.26)

n

0= Zaflri;u(xl,xg,xg,xll, L)+ (4.32a)

=3

4—3?2
+(7V6:1 + im)iwlwu(l‘l,l'g, xr3, T4, ) + ?%wu(:cl, o, T3,XT4, )(8,, 7" — zm)+ (432())
i

+59[5(x3 — )y (21, 22,20, ) = 7y (21,82, 24, )8(22 — 23)]+ (4.32)
+ 27801 = 2ty (23,22, 24,0, (4.32d)

In QED the corresponding Cg-identity has only three terms: The ! = 3-term of (4.32a)
(vertex) and the é-degenerate terms (4.32¢) (self-energy). The é-distributions in the 6-
degenerate terms (4.32c,d) are produced by the divergence b of > 0T, 1, acting on
P(2)y’ ST (21— ), ST (. — 21)7* ¢(x1) (4.32¢) or on 8” DF (2, —.) (4.32d). The 2-legs Cg-
identity 1[t4;g%* — t4.g"] = 23" (sce ref. [2]) is inserted in (4.32d).
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For : O :=: ¢ (x1)..¢p(22)uqa(x3) Aup(z4) : we get similarly to (4.32)

0= Zazltzlgw 4 (21, 22, 23, 24, T, )+ (4.33a)
—Tg

+(v¥ oy 1+zm)tww A b(l’1,$2,l‘3,1‘4,1‘5,. )+ wqu b(xl,zz,x3,5c4,z5,...)(6,, ¥ —im)+
. (4.33b)

i
+5g[/\aé(x3~x1)/\bT5wA(a:1,mz,x4,x5, )= wwA(a:l,zg,u,xs, L)AS(za—23)Aa]+ (4.33¢)
—%w‘fabc)\cé(z] - :L’g)tiza(l'z;, r3,Z3,s5, )+ (433d)

1
—Eg[’Y”/\bé(u —1)A 7@ (x1,z3,23,25,...) — TW (z1, T2, T3, T5, ... ) Aab(22 — T4)Ap 7" ]+
(4.33¢)
+gf“bc)‘cTEu¢A(x1’ T9,23,T5,...)0(z3 — T4). (4.33f)

Again, all é-distributions in (4.33c,d,e,f) are generated by the divergence 9y, acting on
Pz SF(xr — ), ST — )7 v(2) (4 33c.e) or on 0" DF(x; — .) (4.33d,f). The 3-legs
Cg-identity 1224 = L[g*#t¥3 , — g®1*} 4] (see ref. [3]) has been used in (4.33d).

r: Q.= E(xl)...w(xg)ua(x;;)Fw »{4) : we proceed in a similar way and obtain by
means of (4.25), (4.26)

0= Za“tﬂﬂfb (21,72, 73,24, 25, . )+ (4.34a)
~ -z
+(¥" 8 + im) LT‘;TuFab(myrz,ws, Zq,Ts, ~~-)+1%!;TuFab(£1,xz,w3,$4,l'5, 20, 7Y —im)+
(4.34b)
L par
Z[ %ZWA ab(l'l,.’liz, r3,Tr4,Ts, ) - (/L — T)]+ (4346)
[/\ 6(I3 1’1)/\le /F(II,IQ,I’Ll,mS, ) wa(l‘1,(E2,l‘4,£5, ...)/\56(1’2—$3)Aa]+ (434d)
—‘—7,\fabc/\,;6(ac1 — mg)t%fﬂ(m}, x3, T2, Ts, ... )+ (4.34¢)
9 fabe e TEwF(xl’xz‘ z3,Ts5,...)0(23 — £4). (4.34f)

The é-distributions in (4.34d,e) are produced by the divergence 8", acting on ¥(x;)y”
SE(z; - ), S¥(. — z)y"¥(z:1) (4.34d) or on 8" DF(z; — .) (4.34e). The 3-legs Cg-identity
{OZEAT Llg¥reudT. — g®t#27] (see ref. [3]) is inserted in (4.34e). The é-distribution
in (4.34f) comes from a 4-gluon interaction term (see (3.17-20), (2.13)). In (4.34c,f) the
derivative 8; of 3, 8T,,;1 acts on a field operator A, which gives 3 F' (remember (4.31)). In
the other terms (4.34a,b,d.e) 9; acts on the numerical distribution.

(c) C-Invariance and Conservation of the Cg-identities in the Splitting

The distribution splitting is the critical step in the proof of gauge invariance. In fact,
the axial anomaly appears in this step in QED with pseudovector coupling: The normaliza-
tion conditions of vector and axial current conservation are not compatible (see ref. [14]).
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However, these are two different types of gauge invariance, whereas all our Cg-identities ex-
press the same gauge invariance (1.16). Therefore, it is not astonishing that all Cg-identities
can be fulfilled simultaneously, as we are going to prove.

In the process of distribution splitting, only the Cg-identities with |@]| > —1 can be
violated (see (2.15)). These are the identities (4.27), (4.32) and (4.33). The first one is
easily preserved in the splitting by defining Twlj)u by means of (4.27). This is allowed since
the corresponding d-distributions fulfil (4.27).

To prove (4.32), (4.33) we make the ansatz (2.14) for the possible anomaly. Since C-
invariance essentially restricts these anomalies, we first study non-abelian C-invariance [4]:

The Dirac equation and its adjoint (2.5) are invariant under C-conjugation, which transforms
¥, ¥ similarly to QED [15]

Ucwa(2)UZ' = CU4(x)T, Ucu(2)Us' = valz)'C, (4.35)
where a phase factor has been chosen suitably and the matrix C satisfies
’?/MT = _C—l,)/uC, H= Oa 17 27 35 (436)

C:—CT:—C_IZ—C+_ (437)

Then the fermion current transforms as follows

UcjtUst = %Uc P AL UG

= % H(CTH) v AaCrtdy = —% L YATCT T Oy
= _% : E/\Z'r”llﬂ = Uaa’jgl’ (438)
where the definition
Usaor o = = A% = =T (4.39)

of Uyqr has been used. The A, can be chosen to have the following property under complex
conjugation
/\Z = 7'a/\aa T, = %1, (440)

where no summation over a is done. Then, U, is a simple diagonal matrix
Usar = —bgarma, a=1,...N?—1, (4.41)
which fulfils U~} = U7 = U and one easily obtains
fave = UaarUsp Ueer farprer, —dape = Unar Upp Ucerdaryrer (4.42)

by means of (4.39), (3.30) and {4, Ao} = %6@1 + 2dgpe A, (see appendix A of ref. [4]). In
order that Tld' (1.5), T{Lh (1.15) and T} (1.4) are C-invariant, U(;Tl(/l)Uc‘1 = Ti(/1), the

gauge boson and ghost fields must transform according to
Usar Aar = UcAUZ", Usarttar = UcuaUS", Usarliar = Uc iU (4.43)

Obviously, these C-transformed fields fulfil the wave equation, too. The restriction of the
unitary operator Uc to the gluon-ghost sector, which implements U,,e, 1s explicitly con-
structed in appendix A of ref. [4]. One easily verifies by means of (4.42), (4.43) that



24

T4 (1.3), T /1 (1.12) and T7); (1.13) are C-invariant, too. Moreover, the transformed

fields UC¢UC , UCIZJUCI (4.35) and UCAUC , UcuUC , UcuUC (4.43) fulfil the same
(anti)commutation relations as the original ones [15]; otherwise we would have a contradic-
tion to the unitary implementability of these transformations.

We turn to the inductive step. One easily finds that An(/,) (2.4) and Rn(/l) are C-

invariant and, therefore, also D,y = Rn(/,) An(/,) Assuming R,/ to be a sphttlng

solution of Dy /1y, we conclude that UcRn(/I)U is a splitting solution of Uc Dn(/I)U
Dy(1y- Consequently,

Rn(/l) = (Rn(/l) + Uc Ra(nUs?) (4.44)
is a C-invariant splitting solution of D,(/;y, and the corresponding T (/1) is C-invariant, too

UcThUGY = To, UcTopUit =Top, 1< n. (4.45)

Let us consider numerical distributions with one external pair (¥, ¥). By means of (4.35),
(4.37), (4.43) and (4.45) we obtain

Tol(zy,...kn) = Z {:E(zi)tEwB . (i, 25, Tk, ... )0(x5) - +

k#i<j#k
By o (5 T () Bal@e) o (4.46a)
= UcTa(er, - anUG = 3 Uah{: 9(@)Ctgyp y (@i mh, ) O ) 4
k#i<j#k
@)y (e TCT () b Ba(@k)t s (4.46b)

where B, ... is a gluon or a ghost operator and the transposition "I’ in (4.46b) concerns the
spinor space and the space of the fundamental representation. Considering the numerical
distributions belonging to the same operator combination in (4.46a) and (4.46b), we may
not directly conclude that they are equal, because different operator combinations are not
linearly independent if §-distributions are present. However, the ¢-distributions in (4.46) are
C-invariant, i.e. the mentioned equality holds true, but a somewhat complicated argument
is needed to prove this. We avoid it by the simple symmetrization

tleB...a.“('ri’ Tj, T, ) = %[tEwB.“a...(l’i’ X, L, - )+ Uathw’l/JB...bu.(:L‘j’ i, Tk, ...)TC'l].
(4.47)
Due to (4.45), these ¢’ are numerical distributions of the original T,,. For the ¢-distributions
without external (¥, ¥), we see from (4.43) that C-invariance concerns the colour structure
only; the symmetrizations analogous to (4.47) are symmetrizations of the colour tensors.
For T,;; we proceed in the same way. Due to the distinction of the Q-vertex, it happens
that C-invariance connects different numerical distributions. For example, we obtain for the

_ . _l_'A* 2.. . . - .
C-symmetrized tvu o distributions (see (4.24))

t:*—lwumam(atl,xg, T3,...) = _UabC{:p_z&QL,,.b...(xz’ Ty, T3, ...)TC_I. (4.48)

Again the transposition "I’ concerns the spinor space and the space of the fundamental
representation.
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We return to the ansatz for the possible anomalies in (4.32) and (4.33). Note that
the latter Cg-identity appears one step later in the inductive proof. Taking (2.14), Lorentz
covariance, the colour structures (A.11), (A.12) and invariance with respect to permutations
of the inner vertices into account, we obtain

1 ,vi _
E ay = wl,wz,xg,x4,...)+...—

= (Ko + K178, + Ko7" 0,2 + K3y’ 0,2)6Y V(2 — 2,0, .oy Tnet — Th), (4.49)
n+1
Z 6” ‘;,—Ilqu . (21,z9, 23,24, 5, ...:Bn+1) + ... =

= v (KabasInxn + Ksdabede + Ko fapeAe)6*™ (21 — Tpg1, oy Tn — Tng1). (4.50)

In these two equations we go over to the C-symmetrized numerical distributions ¢/,
(4.47). Since this symmetrization is linear and commutes with taking the divergence, we
obtain the C-symmetrized anomalies on the r.h.s.. The latter read by means of (4.35), (4.36),
(4.37), (4.39) and (4.42)

/

T
Za ! :JJVUJU $1,$2,$3,£4,...)+...:

1 d T - z (n—
= {5[1\3 o]yt (05 + 057 + 1&37”&,3}64(” D21 = Zny ooy Zpey — 2n),  (4.51)
n+1
Z 6” ::’(Ll;A b I‘l,l‘z, r3, T4, ...l‘n+1) +...= 7#I{Gfabc/\c64n(xl —Tp4ly -y Tp — l‘n+1).
(4.52)

In contrast to the : yepud -Cg-identity in QED (see ref. [16]), the anomaly (4.50) is not
completely removed by the C-symmetrization (4.47). The non-abelian Cg-identity (4.33)
contains completely new terms. We already have met this phenomenom in second order:
The term (3.27), which has the C-invariant colour structure fopcAe (4.52), is absent in QED.

Now we are going to remove the possible anomalies (4.51) and (4.52) by means of finite
renormalizations of the ¢’ | 7 -distributions. For simplicity we omit the primes. Taking the
singular order of the numerical distributions [15], Lorentz covariance, the colour structures
(A.8), (A.11) and invariance with respect to permutatlons of the inner vertices 1nto account,

— VI 2
the normallzatlon polynomials of Toa = To , (see (4.27)), o (I=4,..n), T wwu T
and Ty Must have the following forms
NZ (@1 zp) = N2 (21, zn) = C3y" 6" D@y — 2n, ooy Bpo1 — ), (4.53)
Nziu(ml rn) = Coy” 64— 1)(1'1 — Ty, Tno1 — Tn), (=4,..n, (4.54)

Nqu(xl’ cZp) = C164("—1)(z1 —Zp, e Tne1l — &n ),

qu(m, n) = Cot (g — g Bt — ), (4.55)

NJW(J:I’ ...In_l) = [C4 + C5’)’Va,fl + Cs—y”@fz]é“(”‘?)(m — Tnely-y Tp—2— I‘n_l). (456)



26

The 4-legs distributions tiw L=134. n), 1t Twua and {12#111 4 have singular order [15]
w = —1 and, therefore, have no freedom of normahzatlon Note that ¢4 and ¢4z could be

renormalized, too. However, this causes a chain reaction of other renormalizations in order
to maintain the Cg-identities already proven (see refs. [2,3]). We shall see that the removal
of the anomalies (4.51), (4.52) is possible without renormalizing tya, taua- C-invariance
restricts the normalization constants in N%wu, N%wu (4.55) and Ng,, (4.56)

C1 = Cz, Cs = —Cs. (457)

In the step from n — 1 to n we must find constants Co, C1 = Ca, C3, C4, C5 = —Cs
fulfilling (see (4.32))

1 T
—{5[1{1 + Ka]v¥ (9t + 652) + 1{37"633}64(”_1)(.@1 — Zp, .., Ty — Tp) =

= Z Bx’N— :L'l, Tg, X3, T4, ...)+

¢—x2

+(y’ 8,1 + im)]\—%w,u(xl,zg, r3,24q,...)+ N%wu(xl’ ro,&3,Z4,...)(0, ¥ —im)+

ig
+?[6(a:3 — 1) N, (21, 22,24, ...) — Ny, (21, 2, 24, )(xo — z3)], (4.58)
for arbitrarily given K, K2, K3, in order to remove the anomaly (4.51). This equation

(4.58) is equivalent to the linear system

1
—5[1{1 + ]\"2] =~Co+ Cy,

—~K3=C3—~-Co+ igC5, (4.59)

which has a 2-dimensional set of solutions for Cy, C1, Cs, Cs. Having performed a renormal-
ization fulfilling (4.59), the Cg-identity (4.32) holds true and there remains a C-invariant and
gauge invariant freedom of normalization: (4.53), (4.54), (4.55) and (4.56) with C replaced
by C (k = 0,1,...6), the latter fulfilling (see (4.57), (4.59))

= ¢, Ch=-C

~CL+C =0, Chy—Ch+igCh=0. (4.60)

Note that C} is restricted neither by C-invariance nor by gauge invariance.
The freedom (4.60) is used in the inductive step from n to n 4+ 1, where the anomaly in
(4.52) must be removed. We have to solve the equation (see (4.33))

e 4
_7”I\6fabc/\c6 n(rl —Tp4ly -y Tn — xn+1) =

1
= —g[)\aé(x:; - xl))‘belﬁpA(rl’xz’ Ta,Ts,.0.) — NwwA

(z1, 22, T4, 5, ...) Apb (22 — £3)Aa]+
1 _
—59[7“)%5(-’54 - x1)>\aN 2T, 28,25, ) — fwu(m,l‘z, 23,T5, .. )Aab(22 — 24)As7"]+

+gfapeAe NWM(l’l,l’z, r3,T5,...)0(x3 — z4), (4.61)
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for an arbitrarily given K¢. Inserting (4.53), (4.55) we obtain

_A’6fabc/\c = %(C(l; + Ci)[)‘a; )\b] + gcéfabc/\c = “gcifabcACs (462)

where (3.30) has been used. The linear system (4.60), (4.62) has a one dimensional set of
solutions for Cf, C1, C4, Cf. Therefore, the anomaly (4.52) can be removed.

For n = 3 the story is simpler, since 8,36(x1 — #3, 29 — £3) = —((’351 + 8,2)8(z1 —
T3,z — z3) and Nwlibu (I = 4,...n) does not appear, but the results are the same.

For the Cg-identities without external ¥, v, we found the following rule in trying to
remove the possible anomaly of a certain Cg-identity: Every renormalization of the é-
degenerate terms which preserves all other Cg-identities, can be absorbed in a renormal-
ization of the non-degenerate terms. In other words: We do not gain an additional freedom
of normalization from the §-degenerate terms to remove the anomaly (see refs. [3,4]). The
above calculation shows that this rule holds true also for (4.32¢), and one easily verifies it
for renormalizations of t,; in (4.32d). However, this rule is broken in (4.33): There is no
freedom of normalization of the non-degenerate terms (4.33a,b), but the possible anomaly
(4.52) can be removed by renormalizing the §-degenerate terms (4.33¢,d,e,f). This is a new
feature, which can be understood by the fact that  commutes with ¢ and ¥ (1.20).

In order to complete the proof of the Cg-identities we still have to show that the Cg-
identities of type Ia,b belonging to é-degenerate : @ : can be maintained in the process
of distribution splitting. This holds generally true for all Cg-identities of type lab, as we
realized in sect. 2 of ref. [3]: The Cg-identities of type Ia are identifications of numerical
distributions of the theory with one Q-vertex with numerical distributions of the normal
theory, both in the natural operator decomposition (see e.g. (4.27-30)). They can easily
be preserved in the process of distribution splitting, because we are free to normalize the
extended theory properly. The Cg-identities of type Ib concern the Lorentz structure only
(see e.g. (4.31)). They hold true in the natural operator decomposition, if the Lorentz
structure is preserved in the process of distribution splitting, which is always assumed.

Remark: The Cg-identities of type Ia,b belonging to é-degenerate : O : can be proven
directly, without using the Cg-identities for A’, R’ proven in sect. 4(a). The corresponding
terms have one non-basic field operator. Therefore, the §-distribution which is responsible for
the 6-degeneration originates from a 4-gluon interaction term (see (1.17), (2.13), (3.19-20)).
The corresponding diagram is obtained by replacing in fig.1 A(xy — z2) by é(zy — z2). The
non-basic field operator is an element of { Bz, ... By }. Analogously to sect. 3(a) the considered
Cg-identities can be reduced to the corresponding Cg-identities for the subdiagram with
vertices s, ...Lq.

5. Discrete Symmetries and Pseudo-Unitarity

(a) Compatibility of P-, T-, C-Invariance and Pseudo- Unitarity

First we study the behaviour of the free field operators with respect to parity P and
time reversal T (see refs. [15,17,18]). Since the free Dirac equation (2.5) is diagonal in the
colour space, we can adopt the transformations of the matter fields from the abelian case

Upta(2)Up' = iy’ Ua(2p),  Upth,(2)Up' = —itb,(zp)7°, (5.1)
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Vrva(2)Vit = 2 Caler), Ved(e)Vp' = Pa(zr)C™ 197, (5.2)

where zp déf(:co, —X), zT déf(—xo,x) and some phase factors have been chosen in a suit-
able way (see sect 4.4 of ref.[15]). Up is unitary, whereas Vp is antiunitary, otherwise the
(anti)commutation relations of the free field operators would not be invariant with respect
to these transformations [15,17,18]. Then, the matter current j% (1.6) transforms according
to (remember (4.39))

Upj(z)Up' = jualzp), Vrjh(z)Vi' = —=Usiw(er). (5.3)

Note that it is not a printing mistake that p is once an upper and once a lower index. We
want T} to be P- and T-invariant

UpTi()Up' = Ti(zp), VrTi(e)Vy' = Ti(zr) = -Ti(z7), (5.4)

where Tl(/l) is the first order T-distribution of the inverse S-matrix. Then, due to UQU ! =
Q for U = Up, Vr, gauge invariance implies

i0y Ty (o) = [Q Th(er)] = Vr[Q, Tu(2))Vr ! =

= VB Ty (2)Vir ! = —i(=82, Ve TY (2)Vy !

and a similar statement for parity. Therefore, P- and T-invariance means for 7',
UpTy) (2)Up" = Tynu(ep),  VoT{(@)Vep' = Tipu(er) = =Tipu(er). (5.5)

Inserting 77 (1.5), Tf/’/1 (1.15) and T§ (1.4) in (5.4), (5.5), we see that the gluon and ghost

fields must transform according to
UpA¥(2)Up' = Aualzp), Upua(2)Up' = ualzp), Upta(z)Up' = ta(zp),  (5.6)

Ve AR ()i ! = U A (zr), Veua(2)Vit = —Ussus(er), Vria(z)Vy ' = =Uais(zr).

(5.7)

One easily verifies that 77 (1.3), T1A/1 (1.12) and T}, (1.13) are P- and T-invariant, too. We

leave it to the reader (or refer to [15,17,18]) to check that the Dirac equation, respectively

wave equation and the (anti)commutation relations of the free field operators are invariant
with respect to the transformations (5.1}, (5.2), (5.6) and (5.7).

Next we consider pseudo-unitarity. The conjugation 'K’ was introduced in sect. 5 of ref.

[4] and in [6]. Tt is related to taking the adjoint '+’ and transforms the free field operators
in the following way

AH()K = A @), (@) = u(@), wW2)F = -u(2),

()K= y@)t, V)X =9@)*t. (5.8)

Obviously 'K’ agrees with taking the adjoint on the physical subspace, which is defined by
excluding scalar and longitudinal gluons and the ghost fields u, @ (see sect. 5 of ref. [4]).
In contrast to the C-, P- and T-transformations, the conjugation 'K’ cannot be unitarily or
antiunitarily implemented in Fock space, since

(B1B)¥ = B¥ B, (5.9)
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where By, By are arbitrary free field operators. It is easy to check that 77 and Ty are
pseudo-unitary

Ti(z)¥ = Ti(z) = ~Ti(2), Tip(z)® =Tiu() = —Ti(). (5.10)

We turn to the inductive step in the construction of the T;,(;;y. By means of the fact that
An(/l)’ n(/l) are sums of tensor products of lower Tj(/,y, Tk(/r), k < n (see(2.4)), one obtains
the P-, T-invariance and pseudo-unitarity of An(/,), R (/1) and D,/ = Rn(/l - An(/l) (see
ref. [15]) The discrete symmetries P, T, C and pseudo-unitarity can be violated (by local
terms) in the causal splitting D,(;1y = Rn(j1) — An(yny only. Analogously to (4.44), one
obtains a P-, respectively T-invariant or pseudo-unitary splitting solution by symmetrizing
an arbitrary splitting solution (see ref. [15]). For example, the symmetrization

u def 1

n(/D = 5 5(Bngny = n(/z)) (5.11)

yields a pseudo-unitary splitting solution. Note that these symmetrizations only change the
normalization of R,;y. The question is, whether these symmetrizations are compatible.
Since

Up=Uy, Vi=Uv, VpUp=UyUpVr, (5.12)

where Uy is a so-called valency operator, U2 = 1, the group generated by Uc, Up, Vr has
more than 8 elements. Due to U2 =1, [Ug,Up] =0, [Ue, Vr] = 0, it has 16 elements. By
symmetrizing an arbitrary splitting solution with respect to this group, we obtain a C- and
P- and T-invariant splitting solution (see sect. 4.4 of ref. [15]).

Now we add the symmetrization (5.11) with respect to pseudo-unitarity. To prove

(-0 HE = 0F (5.13)
for an arbitrary operator combination 3, one needs (5.9) and that "K’ transforms a creation
operator in an annihilation operator and vice versa. Because B — UBU™! (for U =
Uc, Up, Vr) transforms a creation operator (annihilation operator respectively) in a creation
(annihilation) operator, we obtain

U:0.U=Uv0oU™ ., U=Uc, Up, Vr. (5.14)
By means of (4.35), (4.43), (5.1), (5.2), (5.6), (5.7) and (5.8) one easily verifies
UBKU—' = (UBU"YK, U =Uc, Up, Vr, B=A, F,u, 4,9, ¢. (5.15)
Together with (5.13) and (5.14) we conclude
UGN U = voku-" = (UoU )% .= (U :0: U HK. (5.16)
This implies for U = Ue (with R,/ = Z]‘ ri O )
UcRE UGt =3 riUc(: 0; 95U =3 r5(Uo - 05 - UGHX = (Ue RuyUs ¥,

J 7

(5.17)
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where * is the complex conjugation. This means that the C-transformation R, —
UcRn(/l)Uc_l (see (4.44)) commutes with R,/ — —RnK(/,) (see (5.11)). Therefore, through

def 1 - -
Rty = 7 [Ragn = Ry + Uc RunUg " = Uc Ry UG, (5.18)

we obtain a C-invariant and pseudo-unitary splitting solution RS(“/I). Similarly one concludes
from (5.16) that the P- and T-transformations (on the space of the retarded distributions
Rp(1y) commute with Ry, — ——RnK(/I) (see sect. 4.4 of ref. [15] for the detailed form of the

P- and T-transformations). Moreover note that Ry — —RnK(/,) is an involution. Conse-

quently, the group G, generated by R,y — —RnK(m and by these P-, T-, C-transformations

(on the space of the R,(;1’s), has 32 elements. By symmetrizing an arbitrary splitting so-
lution with respect to this group

|
s _ g
Bon =35 2_ B (5.19)
9€G

and constructing
def 1
'SR~ R, Ti(xy,...x,) = H;Tg(xﬂ,...,xm),

def ¢ 1
i SR = Roy Tap(ey,zn) = ;;,ZTQ/W-M(””“’ ey Tn),s (5.20)
Tow

we obtain a T),(;)-distribution, which fulfils all these symmetries
UCT;(/,)(X)UC” = ;(/1)(X)7 UPT:;(XP)UEI = T;(X)1 UPT;/IV(XP)UEI = ;/I/I(X)v
ViTi(Xr)Vit = T3(X), VaTy,, (Xo)Vit = T3 h(X), Tﬁ(/z)(X)K =T n(X), (5.21)

where X & (21, ...xn), Xp def (z1p, ...znp), X1 def (211, ...znr) and T;(/I) is the n-th order
T-distribution of S~!(g). The latter means

TUX)=-THX) - Y Task(V)T(Z) = ~T3(X) - Ry(X) - RU(X) (5.22)
YUZ=X,Y#0, Z#0

and analogously for T;/,. Thereby, R/, is the usual R} -distribution of the causal construction
and R/ is a similar object
Ry 3 Tk (N TR(V, 20). (5.23)
UUV:{z‘l,.‘.xn_l},U;ﬁ@

Note that R;, and R;, are given by the induction hypothesis and that their sum R;,(X) +
R(X) =3 Tni(Y)Ti(Z) is symmetrical with respect to permutations of zi, ..., n. There-
fore, the latter holds true also for T73(X).

Moreover, if we start with a Lorentz covariant and SU(N)-invariant R,/ in (5.19), the
resulting T;(/I) 1s Lorentz covariant and SU(N)-invariant, too.
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We turn to the numerical distributions ¢* in the natural operator decomposition of
T;(/I). We assume them to be Lorentz covariant, SU(N)-invariant and to respect the permu-
tation symmetry (5.20). (Since we have chosen the natural operator decomposition, these
properties could be violated by local terms only. For example, a single numerical distri-
bution could have a non-covariant normalization term which drops out in the sum over all
diagrams.) Similarly to C-invariance (see (4.45-47)), it requires some work to prove the P-,
T-, C-invariance and the pseudo-unitarity of the ¢*-distributions belonging to 77 (/1) We
avoid it by symmetrizing them with respect to G

t“def 1 Zt (5.24)

QEG

analogously to (4.47). Thereby the transformation ¢ — t,, ¢ € G is defined in the following
way: It is induced from the operator transformation

T(X) — g(T)X) = UcT(X)UGY, UpT(Xp)Up", Ve T(Xr)Vyl, T(X)® ... (5.25)

(see (5.21)). Applying these transformations to T(X) = E t;(X) : 0;(X) :, we define
g(TNX) = 322,45 4(X) © O5(X) 1, eg. for T (X) = 2 t"l( ) : Oj(X) : and the P-

transformation

(T th(/\p Up : Oi(Xp) 1 Upt Y 1(X) : 05(X) -
J

more precisely

de!

(X)) =, (Xp) for 1 0;(X):=Up:0i(Xp): Up'. (5.26)
Note {Up : O;(Xp) : Up'li} = {: O;(X) : |} and that ¢;(X) and ¢; 4(X) belong to the
same operator combination : O;(X) : in T(X), respectively g(T)(X). For g being the C-
conjugation, we refer the reader to (4.46-48). Let us illustrate this transformation by another
example: By identifying the numerical distributions in T:/I(X) and in VTT,I/I,,(XT)V{I
belonging to the operator combination : /(z;)...¥0(22)ua(z3)Au(Ta) : we get

(Xr)y°C™t,

g (X) = (=Uae)(=Upa)y* Ci-

Yypudabyg wqu cdvi

where t) is a numerical distribution of Tn(/;). Because of (5.22), the latter can be defined
by

t= —t—r' — 1", (5.27)

with 7', r” being the numerical distributions in the natural operator decomposition of
R;(/l), Rx(/”. (Remark: In sect. 4(a) we have proven the Cg-identities for r’. Analogously
one proves the Cg-identities for #/. With (5.27) we conclude that the Cg-identities for ¢
imply the Cg-identities for #.) Due to (5.21), the ¢*/-distributions (5.24) are still numerical
distributions of T n (/1)
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(b) Compatibility with the Cy-Identities

The last step is to prove the compatibility of the discrete symmetries and psecudo-
unitarily with the Cg-ideniities. For this purpose we consider finite renormalizations

oty = Tagy+ Nagnyy Nogny = 225 nj-l) : 05 : and a possible anomaly A(X) = 3, a; : O;
violating the operator gauge invariance (1.16)

D AT (X) + Q. (X)) = ALX). (5.28)

Due to (5.22), n(/[) must be renormalized, too

Tagsy = Tagry + Nany = Tty = Nagns (5.29)

and taking additionally the gauge invariance of R;(/I) and er:(/l) into account we conclude
231 at(X) +iQ, Tn(X)] = A(X) = —A(X). (5.30)

Analogously to (5.25), (5.26), the operator transformations N — ¢g(N), A — g(A), g € G,

induce transformations n;” — n; ;, a; — a; 4 of the corresponding numerical distributions.
By means of

QY =Q, UcQU:'=Q. UpQUp'=Q, VrQV7' =Q, (5.31)

we obtain from (5.28)

Z alg(Tn/I) + Z[Q)Q(Tn)] = (_I)T(g)g('A): g€ Gs (532)
i

where T'(g) is the number of time reversals in g. Next we consider a Cg-identity belonging
to (5.28)

ot +t=a, (5.33)
I

with ¢ being a sum of terms, possibly containing é-degenerate terms. According to (5.25-26),
the numerical distributions ¢, ¢, a are replaced by t;,4, ¢, a4 in the step from (5.28) to (5.32).
Therefore, performing the operator decomposition in (5.32), the Cg-identity (5.33) changes
into

S oty + 1, = (-1)TWa,. (5.34)
i

(We have pointed out several times that such an operator decomposition is not unique.
(5.34) can be deduced rigorously from (5.33). But for this purpose some properties of the
transformations t(;) — t(l)g, a — a, must be worked out. Note that these transformations
are not linear or antilinear in general.) Similarly to (5.33), (5.34), one obtains the following
statement: If n;, n remove the anomaly in (5.33), i.e. they fulfil

> om+n=—a, (5.35)
!
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the transformed normalization polynomials remove (—1)7(9)q,
> oy +ng = —(~1)TWa,. (5.36)
!

Now we make the ansatz for the possible anomalies with the symmetrical ¢*'-distribu-
tions (5.24)

ooty +t7 =a’. (5.37)
I

By means of (5.34) we conclude
o' = (~1)7@aqs. (5.38)

In the case of C-invariance this has given us a restriction of the possible anomalies (4.51),
(4.62). We have proven that there exist normalization polynomials nf, n® of ¢;’, t* which
remove the anomaly a’, 1.e. they fulﬁl (5.35). The question is whether ¢}’ + nj, t*' + n® are
still invariant with respect to G: (¢ i n(,))g = t(z) + nfl)? Generally, this is not true. But
we can symmetrize the normallzatlon polynomials with respect to G

s S 1 ang nsldef 1 Z" (5.39)

EEG gEG

We conclude by means of (5.36), (5.38) that nf’, n*/ remove the anomaly a*, too. Moreover,
7' +nj’, t* + n* are still invariant with respect to G.

Summing up, we have proven that the numerical distributions in the natural operator
decomposition of Ty, T,,; can be normalized in such a way that, simultaneously, they are
Lorentz covariant, SU(N)-invariant, P-, T-, C-invariant, pseudo-unitary and fulfil the Cg-
identities.

Appendix A: Colour Structure in the Fundamental
Representation

In this appendix we study the structure of the colour tensor of an arbitrary diagram
with external field operators

case 11 1 O 1= ¥ (21)¥s(22) 1, (A1)
case 2: (g :=: Ea(xl)wg(m)ua(a%) : (A.2)
case 3: 1Oz = ¥, (21)¥p(z2)uqs(z3) Al (24) 1, (A.3)

These tensors are SU(N)-scalars (A.1), -vectors (A.2), -tensors of second rank (A.3) in the
fundamental representation. They are used in subsects. 4(b,c) for the determination of
- the colour structure of the numerical distributions ¢z, t5, g (4.26),

i
T wwA’t Pou (4.53-56),
- the ansatz for the possible anomalies of the Cg-identities characterized by : Oy : and
O3 : (4.49-50).

- the normalization polynomials of ¢
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All diagrams with external legs : O; :,@2 : or : O3 : have an open matter line going
through the diagram from 3 to . For every vertex on this line we have a matrix A,; (¢ =

1,2,...1) (see (1.5), (1.15)). These matrizes get multiplied: : Ja(zl)()\al/\az...)\al)aﬁwﬁ(z'g) Y
since the propagators ngﬁ), Sgi;/av, Sgﬁ are ~ 6,3. By applying several times

2 .
Aadp = NéableN + dasere + ifabeAe, (A~4)
this matrix product can be reduced to
(AalAaz‘”AaI) = Fall“Z"'allNXN + F(?laz...alCAC’ (A'B)

where F‘111‘12~--“l and Ft;2102---a1c are invariant SU(N)-tensors of rank » = I, [ + 1 respectively.

(A basis for the latter tensors (up to rank r = 5) was given in appendix A of ref. [4]. We
shall repeatedly use these bases.) The other vertices and the other inner lines of the diagram
(which may include matter loops) contribute another invariant SU(N)-tensor F 5, 3,. The
total colour structure of the diagram is

Fblb:;...bs/\al/\azn-/\al - Fblbz...b‘g Fallaz.ual:lNXN + FblbzubsFanaQ...alc)\c' (A6)
There are contractions between the indices by, bs, ...b; and aq, as, ...a;:
In case 1 all these indices must be contracted (s =)
Falag...aIFglaz___alleN + F‘1102~-01Ft121a2ma10)‘0' (A7)
Since F".1°‘2---a1Fal1az---az = C € C and since there exists no SU(N)-vector Fawz---azFanagu.alu
we obtain
(A7) =Clyxn. (A.8)
In case 2 one index (= a) is not contracted. There are two possibilities: (1) a €
{b1,..bs}, (s =1+1)
FaalaQ...aIFalla?”al1N><N + Faa1a2“.a1Fa2102_”alc/\c- (Ag)
(2)a€e{a,..qi}, (s=1-1)

1 2
Fal“2~-"1—l F“l“?'“a‘“al_llNXN + Falaz,..al_lFalaz..,a“.al_lc)‘c‘ (Al())

In both cases the term (F F!),1yxn vanishes because there exists no SU(N)-vector (FF1!),.
All SU(N)-tensors of second rank are multiples of §4.. Therefore, (FF?)s. must have this
form for (1) and (2). We obtain

(A.9),(A.10) = C),, C€C. (A.11)

In case 3 two indices (= a, b) are not contracted in (A.6). Then, (FF!)y is an SU(N)-
tensor of second rank: (FFY), = Cl84, C! € C (see above), whereas (FF?). is an
SU(N)-tensor of rank 3. Therefore, the latter must have the form (FF?)s. = C?dgpe +
C3fape, C?,C3 € C. Consequently, we obtain the total colour structure

C'6apInxnN + CPdapedre + C° fapeXe. (4.12)
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Figure Captions

Fig.1. The two field operators Bi(z1)Bs(x1) can not be partitioned on two different
vertices by means of (2.6). Therefore, terms of (1.16) having the structure of fig.1, are truly
degenerate.

Fig.2. Four external legs can be partitioned on two vertices by means of (2.6). Therefore,
such a term in the natural operator decomposition of {1.16) is truly degenerate.

Fig.3. Five external legs and three vertices - a truly degenerate term in the natural
operator decomposition of (1.16).

Figs.4,5 and 6. Combinations of figs.2 and 3 with fig.1. Not all external legs can be par-
titioned on different vertices. Therefore, such terms in the natural operator decomposition
of (1.16) are truly degenerate.

Fig.7. In the natural operator decomposition of (1.16) some non-degenerate, some §-
degenerate and all truly degenerate terms (apart from the terms of figs.2 and 3) have the
structure of fig.7, where A # 6%, The Cg-identities for these terms are proven in subsect.
3(a) by means of the Cg-identities for the two (arbitrary) subdiagrams with vertices X,
respectively Xo.
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